To see the other types of publications on this topic, follow the link: LiFe5O8.

Journal articles on the topic 'LiFe5O8'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'LiFe5O8.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Berbenni, V., A. Marini, and D. Capsoni. "Solid State Reaction Study of the System Li2CO3/Fe2O3." Zeitschrift für Naturforschung A 53, no. 12 (December 1, 1998): 997–1003. http://dx.doi.org/10.1515/zna-1998-1212.

Full text
Abstract:
Abstract A thermoanalytical (TGA/DSC) and diffractometric (XRD) study has been performed on the solid state reaction system Li2CO3 -Fe2O3 in the x Li range 0.10±0.50. A detailed analysis of the results shows that the data are in agreement with a reaction model where the carbonate decomposition is regulated by the formation of both LiFeO2 and LiFe5O8 , and the relative amount of the two phases depends on the initial composition. The DSC evidence offers the possibility to directly quantify the LiFe5Ox phase. Furthermore it allows one to obtain the enthalpies of formation of both LiFeO2 and LiFe5O8 .
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Tao, Divakar Mantha, and Ramana G. Reddy. "The Corrosion Behavior of Stainless Steel 316L in Novel Quaternary Eutectic Molten Salt System." High Temperature Materials and Processes 36, no. 3 (March 1, 2017): 257–65. http://dx.doi.org/10.1515/htmp-2015-0202.

Full text
Abstract:
AbstractIn this article, the corrosion behavior of stainless steel 316L in a low melting point novel LiNO3-NaNO3-KNO3-NaNO2 eutectic salt mixture was investigated at 695 K which is considered as thermally stable temperature using electrochemical and isothermal dipping methods. The passive region in the anodic polarization curve indicates the formation of protective oxides layer on the sample surface. After isothermal dipping corrosion experiments, samples were analyzed using SEM and XRD to determine the topography, corrosion products, and scale growth mechanisms. It was found that after long-term immersion in the LiNO3-NaNO3-KNO3-NaNO2 molten salt, LiFeO2, LiFe5O8, Fe3O4, (Fe, Cr)3O4 and (Fe, Ni)3O4 oxides were formed. Among these corrosion products, LiFeO2 formed a dense and protective layer which prevents the SS 316L from severe corrosion.
APA, Harvard, Vancouver, ISO, and other styles
3

Smolentsev, A. I., A. B. Meshalkin, N. V. Podberezskaya, and A. B. Kaplun. "Refinement of LiFe5O8 crystal structure." Journal of Structural Chemistry 49, no. 5 (September 2008): 953–56. http://dx.doi.org/10.1007/s10947-008-0163-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Teixeira, Silvia Soreto, Manuel P. F. Graça, José Lucas, Manuel Almeida Valente, Paula I. P. Soares, Maria Carmo Lança, Tânia Vieira, et al. "Nanostructured LiFe5O8 by a Biogenic Method for Applications from Electronics to Medicine." Nanomaterials 11, no. 1 (January 14, 2021): 193. http://dx.doi.org/10.3390/nano11010193.

Full text
Abstract:
The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-treated (HT) at temperatures between 400 and 1000 °C, and their structure, morphology, electrical and magnetic characteristics, cytotoxicity, and magnetic hyperthermia assays were performed. The heat treatment of the LiFe5O8 powder tunes the crystallite sizes between 50 nm and 200 nm. When increasing the temperature of the HT, secondary phases start to form. The dielectric analysis revealed, at 300 K and 10 kHz, an increase of ε′ (≈10 up to ≈14) with a tanδ almost constant (≈0.3) with the increase of the HT temperature. The cytotoxicity results reveal, for concentrations below 2.5 mg/mL, that all samples have a non-cytotoxicity property. The sample heat-treated at 1000 °C, which revealed hysteresis and magnetic saturation of 73 emu g−1 at 300 K, showed a heating profile adequate for magnetic hyperthermia applications, showing the potential for biomedical applications.
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Su-Yong, Kwang-Su Kim, Un-Gi Jong, Chung-Jin Kang, Song-Chol Ri, and Chol-Jun Yu. "First-principles study on structural, electronic, magnetic and thermodynamic properties of lithium ferrite LiFe5O8." RSC Advances 12, no. 25 (2022): 15973–79. http://dx.doi.org/10.1039/d2ra01656g.

Full text
Abstract:
We systematically investigate the material properties of lithium ferrite LiFe5O8 – structural, magnetic, electronic, lattice vibrational properties and thermodynamic stability – using density functional theory calculations.
APA, Harvard, Vancouver, ISO, and other styles
6

Sarah, P., and S. V. Suryanarayana. "Magnetostriction in composites of LiFe5O8–BaTiO3." Journal of Magnetism and Magnetic Materials 260, no. 1-2 (March 2003): 211–14. http://dx.doi.org/10.1016/s0304-8853(02)01325-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

de Picciotto, L. A., and MM Thackeray. "Lithium insertion into the spinel LiFe5O8." Materials Research Bulletin 21, no. 5 (May 1986): 583–92. http://dx.doi.org/10.1016/0025-5408(86)90113-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Hua, Fengqing Wu, Lizhu Song, Muyu Zhao, Jianping Wang, and Helie Luo. "Magnetic properties of nanocrystalline LiFe5O8 particles." Journal of Magnetism and Magnetic Materials 134, no. 1 (May 1994): 134–36. http://dx.doi.org/10.1016/0304-8853(94)90084-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Hua, Lizhu Song, Fengqing Wu, Zichen Wang, Jianping Wang, and Helie Luo. "Preparation and magnetic properties of nanocrystalline LiFe5O8." Journal of Materials Science Letters 13, no. 4 (1994): 256–57. http://dx.doi.org/10.1007/bf00571768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wu, Hong, Huifeng Li, Genban Sun, Shulan Ma, and Xiaojing Yang. "Synthesis, characterization and electromagnetic performance of nanocomposites of graphene with α-LiFeO2 and β-LiFe5O8." Journal of Materials Chemistry C 3, no. 21 (2015): 5457–66. http://dx.doi.org/10.1039/c5tc00778j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dai, Yong-Ming, Ya-Fen Wang, and Chiing-Chang Chen. "Synthesis and characterization of magnetic LiFe5O8-LiFeO2 as a solid basic catalyst for biodiesel production." Catalysis Communications 106 (March 2018): 20–24. http://dx.doi.org/10.1016/j.catcom.2017.12.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Oda, Kiichi, and Tetsuo Yoshio. "Preparation of LiFe5O8 by the sol—gel method." Journal of Materials Science Letters 5, no. 5 (May 1986): 545–48. http://dx.doi.org/10.1007/bf01728686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, C. J., M. Greenblatt, and J. V. Waszczak. "Lithium insertion compounds of LiFe5O8, Li2FeMn3O8, and Li2ZnMn3O8." Journal of Solid State Chemistry 64, no. 3 (October 1986): 240–48. http://dx.doi.org/10.1016/0022-4596(86)90068-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kim, Seong J., Zhien C. Chen, and Anil V. Virkar. "Phase Transformation Kinetics in the Doped System LiAl5O8-LiFe5O8." Journal of the American Ceramic Society 71, no. 10 (October 1988): C428—C432. http://dx.doi.org/10.1111/j.1151-2916.1988.tb07517.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mohapatra, Prajna P., and Pamu Dobbidi. "Magnetic and broadband dielectric studies of calcium-substituted LiFe5O8." Journal of Magnetism and Magnetic Materials 500 (April 2020): 166354. http://dx.doi.org/10.1016/j.jmmm.2019.166354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lin, Ying, Jingjing Dong, Jingjing Dai, Jingping Wang, Haibo Yang, and Hanwen Zong. "Facile Synthesis of Flowerlike LiFe5O8 Microspheres for Electrochemical Supercapacitors." Inorganic Chemistry 56, no. 24 (December 2017): 14960–67. http://dx.doi.org/10.1021/acs.inorgchem.7b02257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Chireh, Mahshid, Mahmoud Naseri, and Saeedeh Ghiasvand. "Enhanced photocatalytic and antibacterial activities of RGO/LiFe5O8 nanocomposites." Journal of Photochemistry and Photobiology A: Chemistry 385 (December 2019): 112063. http://dx.doi.org/10.1016/j.jphotochem.2019.112063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Rodriguez, J. M. Fernandez, J. Morales, J. Navas, and J. L. Tidaro. "TG and DSC studies of lithium insertion in LiFe5O8." Thermochimica Acta 133 (October 1988): 203–7. http://dx.doi.org/10.1016/0040-6031(88)87158-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Li, Hua, Xin Wang, Pengxia Zhou, Hua Wu, Chonggui Zhong, Zhengchao Dong, and Junming Liu. "Strain-tuned optical property in magnetoelectric LiFe5O8 thin film." Journal of Alloys and Compounds 821 (April 2020): 153199. http://dx.doi.org/10.1016/j.jallcom.2019.153199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yang, Hua, Dejun Wang, Zichen Wang, Muyu Zhao, Tiejun Li, and Li Wang. "A study of the photovoltage properties of nanocrystalline LiFe5O8." Materials Chemistry and Physics 48, no. 3 (May 1997): 212–15. http://dx.doi.org/10.1016/s0254-0584(96)01887-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sarah, P., T. Bhimasankaram, G. S. Kumar, and S. Suryanarayana. "Dielectric Properties of Diphasic Composites of BaTiO3 and LiFe5O8." Crystal Research and Technology 26, no. 8 (1991): 1085–90. http://dx.doi.org/10.1002/crat.2170260823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ibrahim, Ahmed Hassan, and Yehia Abbas. "The effect of Tin additionon on Structural and magnetic properties of the stannoferrite Li0.5+0.5XFe2.5-1.5XSnXO4." JOURNAL OF ADVANCES IN PHYSICS 12, no. 3 (October 30, 2016): 4307–21. http://dx.doi.org/10.24297/jap.v12i3.9.

Full text
Abstract:
The physical properties of ferrites are verysensitive to microstructure, which in turn critically dependson the manufacturing process.Nanocrystalline Lithium Stannoferrite system Li0.5+0.5XFe2.5-1.5XSnXO4,X= (0, 0.2, 0.4, 0.6, 0.8 and 1.0) fine particles were successfully prepared by double sintering ceramic technique at pre-sintering temperature of 500oC for 3 h andthepre-sintered material was crushed and sintered finally in air at 1000oC.The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction (XRD) and the Rietveld method.The refinement results showed that the nanocrystalline ferrite has a two phases of ordered and disordered phases for polymorphous lithium Stannoferrite.The particle size of as obtained samples were found to be ~20 nm through TEM that increases up to ~ 85 nmand isdependent on the annealing temperature. TEM micrograph reveals that the grains of sample are spherical in shape. (TEM) analysis confirmed the X-ray results.The particle size of stannic substituted lithium ferrite fine particle obtained from the XRD using Scherrer equation.Magneticmeasurements obtained from lake shore’s vibrating sample magnetometer (VSM), saturation magnetization ofordered LiFe5O8 was found to be (57.829 emu/g) which was lower than disordered LiFe5O8(62.848 emu/g).Theinterplay between superexchange interactions of Fe3+ ions at A and B sublattices gives rise to ferrimagnetic ordering of magnetic moments,with a high Curie-Weiss temperature (TCW ~ 900 K).
APA, Harvard, Vancouver, ISO, and other styles
23

Singhal, Sonal, and Kailash Chandra. "Cation Distribution in Lithium Ferrite (LiFe5O8) Prepared via Aerosol Route." Journal of Electromagnetic Analysis and Applications 02, no. 01 (2010): 51–55. http://dx.doi.org/10.4236/jemaa.2010.21008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Li, Bin, Yi Xie, Huilan Su, Yitai Qian, and Xianming Liu. "Synthesis of the nanocrystalline α-LiFe5O8 in a solvothermal process." Solid State Ionics 120, no. 1-4 (May 1999): 251–54. http://dx.doi.org/10.1016/s0167-2738(98)00556-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kinoshita, Yuto, Noriaki Kida, Masato Sotome, Tatsuya Miyamoto, Yusuke Iguchi, Yoshinori Onose, and Hiroshi Okamoto. "Terahertz Radiation by Subpicosecond Magnetization Modulation in the Ferrimagnet LiFe5O8." ACS Photonics 3, no. 7 (June 8, 2016): 1170–75. http://dx.doi.org/10.1021/acsphotonics.6b00272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ernst, F. O., H. K. Kammler, A. Roessler, S. E. Pratsinis, W. J. Stark, J. Ufheil, and P. Novák. "Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8." Materials Chemistry and Physics 101, no. 2-3 (February 2007): 372–78. http://dx.doi.org/10.1016/j.matchemphys.2006.06.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rezlescu, N., L. Rezlescu, M. L. Craus, and E. Rezlescu. "LiFe5O8 and BaFe12O19 Fine Particles Crystallised in a Glassy Matrix." Crystal Research and Technology 34, no. 7 (August 1999): 829–36. http://dx.doi.org/10.1002/(sici)1521-4079(199908)34:7<829::aid-crat829>3.0.co;2-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sohn, R. S. T. M., A. A. M. Macêdo, M. M. Costa, S. E. Mazzetto, and A. S. B. Sombra. "Studies of the structural and electrical properties of lithium ferrite (LiFe5O8)." Physica Scripta 82, no. 5 (October 12, 2010): 055702. http://dx.doi.org/10.1088/0031-8949/82/05/055702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yang, Jiao, Jianfei Lei, Kai Du, Xudong Zheng, and Xiujuan Jin. "The microwave magnetism of epitaxy LiFe5O8 thin film modulated by thickness." Current Applied Physics 20, no. 4 (April 2020): 589–92. http://dx.doi.org/10.1016/j.cap.2020.02.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Dong, Jingjing, Ying Lin, Hanwen Zong, and Haibo Yang. "Hierarchical LiFe5O8@PPy core-shell nanocomposites as electrode materials for supercapacitors." Applied Surface Science 470 (March 2019): 1043–52. http://dx.doi.org/10.1016/j.apsusc.2018.11.204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gridnev, V. N., B. B. Krichevtsov, V. V. Pavlov, and R. V. Pisarev. "Magnetization-odd nonreciprocal reflection of light from the magnetoelectric—ferromagnet LiFe5O8." Journal of Experimental and Theoretical Physics Letters 65, no. 1 (January 1997): 68–73. http://dx.doi.org/10.1134/1.567327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Marin, S. J., M. O'Keeffe, and D. E. Partin. "Structures and Crystal Chemistry of Ordered Spinels: LiFe5O8, LiZnNbO4, and Zn2TiO4." Journal of Solid State Chemistry 113, no. 2 (December 1994): 413–19. http://dx.doi.org/10.1006/jssc.1994.1389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chireh, Mahshid, and Mahmoud Naseri. "Effect of calcination temperature on the physical properties of LiFe5O8 nanostructures." Advanced Powder Technology 30, no. 5 (May 2019): 952–60. http://dx.doi.org/10.1016/j.apt.2019.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wu, Lixiang, Fu-Shen Zhang, Zhi-Yuan Zhang, and Cong-Cong Zhang. "An environmentally friendly process for selective recovery of lithium and simultaneous synthesis of LiFe5O8 from spent LiFePO4 battery by mechanochemical." Journal of Cleaner Production 396 (April 2023): 136504. http://dx.doi.org/10.1016/j.jclepro.2023.136504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mohapatra, Prajna P., and Pamu Dobbidi. "Effect of carbon reinforcement on the EMI shielding response of LiFe5O8 ceramics." Materials Characterization 189 (July 2022): 111985. http://dx.doi.org/10.1016/j.matchar.2022.111985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Udhayakumar, S., G. Jagadish Kumar, E. Senthil Kumar, M. Navaneethan, and K. Kamala Bharathi. "Temperature and frequency dependent dielectric and conductivity properties of Sr doped LiFe5O8." Materials Letters 300 (October 2021): 130171. http://dx.doi.org/10.1016/j.matlet.2021.130171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ahniyaz, A. "Low temperature preparation of β-LiFe5O8 fine particles by hydrothermal ball milling." Solid State Ionics 151, no. 1-4 (November 2002): 419–23. http://dx.doi.org/10.1016/s0167-2738(02)00548-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

An, Sung Yong, In-Bo Shim, and Chul Sung Kim. "Synthesis and magnetic properties of LiFe5O8 powders by a sol–gel process." Journal of Magnetism and Magnetic Materials 290-291 (April 2005): 1551–54. http://dx.doi.org/10.1016/j.jmmm.2004.11.244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wolska, E., P. Piszora, W. Nowicki, and J. Darul. "Vibrational spectra of lithium ferrites: infrared spectroscopic studies of Mn-substituted LiFe5O8." International Journal of Inorganic Materials 3, no. 6 (September 2001): 503–7. http://dx.doi.org/10.1016/s1466-6049(01)00069-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Liu, Kun, Ruyi Zhang, Lu Lu, Shaobo Mi, Ming Liu, Hong Wang, Shengqiang Wu, and Chunlin Jia. "Atomic-scale investigation of spinel LiFe5O8 thin films on SrTiO3 (001) substrates." Journal of Materials Science & Technology 40 (March 2020): 31–38. http://dx.doi.org/10.1016/j.jmst.2019.08.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yang, Hua, Ziehen Wang, Muyu Zhao, Jianping Wang, Dehua Han, Helie Luo, and Li Wang. "A study of the magnetic properties of nanocrystalline LiFe5O8 and Li0.5Fe2.3Cr0.2O4 particles." Materials Chemistry and Physics 48, no. 1 (March 1997): 60–63. http://dx.doi.org/10.1016/s0254-0584(97)80078-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

de Morais, J. E. V., A. J. N. de Castro, R. G. M. Oliveira, F. F. do Carmo, A. J. M. Sales, J. C. Sales, M. A. S. Silva, et al. "Magneto Tuning of a Ferrite Dielectric Resonator Antenna Based on LiFe5O8 Matrix." Journal of Electronic Materials 47, no. 7 (April 6, 2018): 3829–35. http://dx.doi.org/10.1007/s11664-018-6255-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhu, Dongdong, Fengyin Zhou, Yongsong Ma, Yu Xiong, Xiangyun Li, Wei Li, and DiHua Wang. "An economic, self-supporting, robust and durable LiFe5O8 anode for sulfamethoxazole degradation." Chemosphere 316 (March 2023): 137810. http://dx.doi.org/10.1016/j.chemosphere.2023.137810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Loukya, B., D. S. Negi, R. Sahu, N. Pachauri, A. Gupta, and R. Datta. "Structural characterization of epitaxial LiFe5O8 thin films grown by chemical vapor deposition." Journal of Alloys and Compounds 668 (May 2016): 187–93. http://dx.doi.org/10.1016/j.jallcom.2016.01.217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hu, Youzuo. "α-LiFe5O8: A promising iron-based anode material for lithium-ion batteries." Materials Science and Engineering: B 297 (November 2023): 116792. http://dx.doi.org/10.1016/j.mseb.2023.116792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Li, Jing, Di Zhou, Pengjian Wang, Wenfeng Liu, and Jinzhan Su. "Raspberry-like LiFe5O8 nanoparticles embedded on MoS2 microflowers with excellent microwave absorption performance." Journal of Materials Chemistry A 8, no. 39 (2020): 20337–45. http://dx.doi.org/10.1039/d0ta07483g.

Full text
Abstract:
Herein, novel nanostructure composites of LiFe5O8/MoS2 have been successfully prepared by a two-step hydrothermal method with excellent microwave absorption performance, in which raspberry-like LiFe5O8 nanoparticles embedded three-dimensional MoS2 microflowers.
APA, Harvard, Vancouver, ISO, and other styles
47

Bonsdorf, G., H. Langbein, and K. Knese. "Investigations into phase formation of LiFe5o8 from decomposed freeze-dried Li-Fe-formates." Materials Research Bulletin 30, no. 2 (February 1995): 175–81. http://dx.doi.org/10.1016/0025-5408(94)00119-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Liu, Run, Linlin Pan, Silu Peng, Lili Qin, Jian Bi, Jiangtao Wu, Hua Wu, and Zuo-Guang Ye. "The magnetoelectric effect in a cubic ferrimagnetic spinel LiFe5O8 with high coupling temperature." Journal of Materials Chemistry C 7, no. 7 (2019): 1999–2004. http://dx.doi.org/10.1039/c8tc05615c.

Full text
Abstract:
We report an effective magnetoelectric (ME) coupling phenomenon in cubic ferrimagnetic spinel LiFe5O8, with the command of its polarization by an applied magnetic field. This material exhibits the highest ME coupling temperature among the magnetoelectric spinel and related materials so far reported.
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Jing, and Di Zhou. "Influence of Ag doping on the dielectric and magnetic properties of LiFe5O8 ceramics." Journal of Alloys and Compounds 785 (May 2019): 13–18. http://dx.doi.org/10.1016/j.jallcom.2019.01.148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sousa, Osmar M., Raiane S. Araujo, and Sabrina M. Freitas. "Calculation of the electronic and optical properties of LiFe5O8: An ab initio study." Computational and Theoretical Chemistry 1159 (July 2019): 27–30. http://dx.doi.org/10.1016/j.comptc.2019.05.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography