Dissertations / Theses on the topic 'Life energy cycle assessment'

To see the other types of publications on this topic, follow the link: Life energy cycle assessment.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Life energy cycle assessment.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hau, Jorge Luis. "Integrating life cycle assessment, energy and emergy analysis." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1407139681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gastelum, Zepeda Leonardo. "Life Cycle Assessment of a Wave Energy Converter." Thesis, KTH, Industriell ekologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-206486.

Full text
Abstract:
Renewable energies had accomplish to become part of a new era in the energy development area, making people able to stop relying on fossil fuels. Nevertheless the environmental impacts of these new energy sources also require to be quantified in order to review how many benefits these new technologies have for the environment. In this project the use of a Life Cycle Assessment (LCA) will be implemented in order to quantify the environmental impact of wave energy, an LCA is a technique for assessing various aspects with the development of a product and its potential impact throughout a product’s life (ISO 14040, 1997). Several renewables have been assessed for their environmental impact using this tool (wind power, biofuels, photovoltaic panels, among others). This project will be focused on the study of wave power, specifically devices called point absorbers.At the beginning this thesis offers a description of the Life Cycle Assessment methodology with a brief explanation of each steps and requirements according to the ISO 14000 Standard. Later a description of different wave energy technologies is explained, along with the classification of different devices depending on its location and its form of harvesting energy. After explaining the different types available at the moment, the thesis will focus on the point absorber device and explain an approach that can be taken in order to simplify the complexity of the whole system.Once the device is fully explained the thesis approaches the methodology pursued in order to evaluate the system in terms of environmental impact in the selected category, for this case global warming. After, an evaluation of the different modules from the wave energy converter in terms of its environmental impact and choosing the best conditions in order to reduce it has being done.At the end of the thesis an economical overview of building wave energy converters is considered among its monetized cost to the environment and a comparison of this new technologies among other renewables in the market is done, in order to have an overview of the potential this type of energy can have.The main research question to be answered by this master thesis is how competitive is wave energy among other renewable technologies available at the moment. Since at the moment wave energy is in its early stages a representation of how other renewables had advanced from its early stages until today is presented, and the potential of this type of energy is evaluated in environmental and economic figures showing competitive results that can further be improved.
APA, Harvard, Vancouver, ISO, and other styles
3

Lohse, Tim. "Life cycle assessment of a plus-energy house." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266478.

Full text
Abstract:
Purpose: This study analyses the environmental impacts of a plus-energy house. Such buildings produce more energy in their use-phase than they consume, by generating energy with photovoltaic cells and saving energy via extensive insulation. The entire life cycle of the building is investigated form cradle to grave. The research focuses on the identification of environmental hotspots and the break-even time, after which the avoided burdens from the energy surplus even out the environmental impacts. Method: To answer the research questions, an ISO 14040 compliant environmental impact assessment (LCA) was conducted. It covers the raw material extraction, production and manufacturing of the building, the energy consumption by the inhabitants, the demolition and subsequent waste processing as well as the energy generation from the photovoltaic cells during 50 years lifetime. The life cycle impact assessment method was based on EN 15804 with seven impact categories: global warming potential, depletion potential of the stratospheric ozone, acidification potential of soil and water, eutrophication potential, formation potential of tropospheric ozone, abiotic depletion potential for non-fossil resources, and abiotic depletion potential for fossil resources. Results: The use-phase with energy generation and consumption dominates in all the impact categories except for the stratospheric ozone depletion potential. Photovoltaic cell production has the largest impact in terms of resource and ozone depletion. The building does not set off its impacts with its avoided burdens during its lifetime. The break-even time is calculated for each impact category and starts at 654 years for global warming potential. The geometric standard deviation is calculated for every process, so that a Monte-Carlo simulation can be run. This makes it possible to calculate the standard deviation of the results. Discussion: It is possible to enhance the environmental performance of the building by focusing on the hotspots. A sensitivity analysis shows that enhancing the energy surplus during the use-phase would be the most effective measure. This could be achieved by increasing the photovoltaic cell area or decreasing the energy consumption.
APA, Harvard, Vancouver, ISO, and other styles
4

Fedoruk, M. "Life cycle assessment of energy saving measures in buildings." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/64686.

Full text
Abstract:
The energy sector itself poses greаt chаllenges for most countries, especiаlly with the present finаnciаl аnd environmentаl circumstаnces аnd the need to enhаnce economic development while meeting climаte chаnge goаls.
APA, Harvard, Vancouver, ISO, and other styles
5

Petrovic, Bojana. "Life cycle assessment and life cycle cost analysis of a single-family house." Licentiate thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-36901.

Full text
Abstract:
The building industry is responsible for 35% of final energy use and 38% of CO2 emissions at a global level. The European Union aims to reduce CO2 emissions in the building industry by up to 90% by the year 2050. Therefore, it is important to consider the environmental impacts buildings have. The purpose of this thesis was to investigate the environmental impacts and costs of a single-family house in Sweden. In the study, the life cycle assessment (LCA) and the life cycle cost (LCC) methods have been used by following the “cradle to grave” life cycle perspective.  This study shows a significant reduction of global warming potential (GWP), primary energy (PE) use and costs when the lifespan of the house is shifted from 50 to 100 years. The findings illustrate a total decrease in LCA outcome, of GWP to 27% and PE to 18%. Considering the total LCC outcome, when the discount rate increases from 3% to 5% and then 7%, the total costs decrease significantly (60%, 85% to 95%). The embodied carbon, PE use and costs from the production stage/construction stage are significantly reduced, while the maintenance/replacement stage displays the opposite trend. Operational energy use, water consumption and end-of-life, however, remain largely unchanged. Furthermore, the findings emphasize the importance of using wood-based building materials due to its lower carbon-intensive manufacturing process compared to non-wood choices.   The results of the LCA and LCC were systematically studied and are presented visually. Low carbon and cost-effective materials and installations have to be identified in the early stage of a building design so that the appropriate investment choices can be made that will reduce a building’s total environmental and economic impact in the long run. Findings from this thesis provide a greater understanding of the environmental and economic impacts that are relevant for decision-makers when building single-family houses.
Byggbranschen svarar för 35% av den slutliga energianvändningen och 38 % av koldioxidutsläppen på global nivå. Europeiska unionen strävar efter att minska koldioxidutsläppen i byggnadsindustrin med upp till 90% fram till 2050. Därför är det viktigt att beakta byggnaders miljöpåverkan. Syftet med denna avhandling var att undersöka miljöpåverkan och kostnader för ett enfamiljshus i Sverige. I studien har livscykelbedömningen (LCA) och livscykelkostnadsmetoderna (LCC) använts genom att tillämpa livscykelperspektivet ”vagga till grav”. Studien visar en stor minskning av global uppvärmningspotential (GWP), användning av primärenergi (PE) och kostnader vid växling från 50 till 100 års husets livslängd. Resultaten visar en årlig minskning med 27% för utsläpp av växthusgaser och med 18% för användningen av primärenergi. Med tanke på det totala LCC-utfallet, när diskonteringsräntan ökar från 3%, 5% till 7%, minskar de totala kostnaderna avsevärt (60%, 85% till 95%). Det noteras att klimatavtrycket, primärenergianvändningen och kostnaderna från produktionssteget/konstruktionssteget minskar avsevärt, medan underhålls- / utbytessteget visar den motsatta trenden när man byter från 50 till 100 års livslängd. Den operativa energianvändningen, vattenförbrukningen och avfallshanteringen är fortfarande nästan samma när man ändrar livslängden. Vidare betonar resultaten vikten av att använda träbaserade byggmaterial på grund av lägre klimatpåverkan från tillverkningsprocessen jämfört med alternativen. LCA- och LCC-resultaten studerades systematiskt och redovisades visuellt. De koldioxidsnåla och kostnadseffektiva materialen och installationerna måste identifieras i ett tidigt skede av en byggnadskonstruktion genom att välja lämpliga investeringsval som kommer att minska de totala miljö och ekonomiska effekterna på lång sikt. Resultaten från denna avhandling ger ökad förståelse för miljömässiga och ekonomiska konsekvenser som är relevanta för beslutsfattare vid byggnation av ett enfamiljshus.
APA, Harvard, Vancouver, ISO, and other styles
6

Yossef, Delav, and Dino Hot. "Comparative life cycle assessment of organic building materials." Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-37774.

Full text
Abstract:
The ever-increasing awareness of global warming has made the building industry startlooking for alternative building solutions in order to meet the changing demands. Thesechallenges have given rise to organization which aim to go further and construct moresustainable alternatives in the form of Ecovillages. This thesis is conducted in collaborationwith Bysjöstrans Ekoby and aims to investigate what type of organic alternatives exist andhow they perform in building elements.The study was carried out through a comparative LCA where a base case construction forboth roof and wall was established. Followed by comparing different organic materials toeach other and the base case materials in order to determine low-impact materials. The goalwas to replaces as many layers within the structure such as insulation, structure, roofcladding, façade, wind and vapor barrier.This was later followed by combing the materials together in order to identify whichalternative construction options would perform the best in regard to greenhouse gasemissions (CO2 eq kg) and primary energy use (MJ).The results of the study show that the performance or organic materials vary significantly.Whit a lot of materials being better but also worse than traditional materials. It showed thatfor internal wall and roof surface adding clay plater can reduce the GHG emission with 68%, timber frame with 98 %, façade with 43 %, roof cladding with 93 %, vapor barrier with76 % and insulation with 79 %. The best preforming construction option could reduce thebase case emission with 68 %.
APA, Harvard, Vancouver, ISO, and other styles
7

Dahlsten, Hilda. "Life Cycle Assessment of Electricity from Wave Power." Thesis, Institutionen för energi och teknik, SLU, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-162582.

Full text
Abstract:
The use of ocean wave energy for electricity production has considerable potential, though it has proven to be difficult. A technology utilizing the heaving (up-and-down) motions of the waves was conceived at Uppsala University in the early 2000´s, and is being further developed for commercial use by Seabased Industry AB. The purpose of this master´s degree project was to increase the knowledge of the environmental performance of Seabased´s wave energy conversion concept and identifying possible areas of improvement. This was done by conducting a life cycle assessment (LCA) of a hypothetical prototype wave power plant. All flows of materials, energy, emissions and waste were calculated for all stages of a wave power plant´s life cycle. The potential environmental impact of these flows was then assessed, using the following impact categories: • Emission of greenhouse gases • Emission of ozone depleting gases • Emission of acidifying gases • Emission of gases that contribute to the forming of ground-level ozone • Emission of substances to water contributing to oxygen depletion (eutrophication) • Energy use (renewable and non-renewable) • Water use The methodology used was that prescribed by the ISO standard for Environmental Product Declarations (EPD) and further defined by the International EPD Programme.The potential environmental impact was calculated per kWh of wave power electricity delivered to the grid. The main result of the study is that the potential environmental impact of a wave power plant mainly stems from the manufacturing phase. In particular, the production of steel parts makes a large contribution to the overall results. Future wave power plant designs are expected to be considerably more material efficient, meaning that there are large possibilities to improve the environmental performance of this technology.
APA, Harvard, Vancouver, ISO, and other styles
8

Davidsson, Simon. "Life Cycle Exergy Analysis of Wind Energy Systems : Assessing and improving life cycle analysis methodology." Thesis, Uppsala universitet, Globala energisystem, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-157185.

Full text
Abstract:
Wind power capacity is currently growing fast around the world. At the same time different forms of life cycle analysis are becoming common for measuring the environmental impact of wind energy systems. This thesis identifies several problems with current methods for assessing the environmental impact of wind energy and suggests improvements that will make these assessments more robust. The use of the exergy concept combined with life cycle analysis has been proposed by several researchers over the years. One method that has been described theoretically is life cycle exergy analysis (LCEA). In this thesis, the method of LCEA is evaluated and further developed from earlier theoretical definitions. Both benefits and drawbacks with using exergy based life cycle analysis are found. For some applications the use of exergy can solve many of the issues with current life cycle analysis methods, while other problems still remain. The method of life cycle exergy analysis is used to evaluate the sustainability of an existing wind turbine. The wind turbine assessed appears to be sustainable in the way that it gives back many times more exergy than it uses during the life cycle.
APA, Harvard, Vancouver, ISO, and other styles
9

Jones, Craig I. "Life cycle energy consumption and environmental burdens associated with energy technologies and buildings." Thesis, University of Bath, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.532723.

Full text
Abstract:
This portfolio of published research contains nine papers and assesses the life cycle environmental burdens of energy technologies and buildings. Several analytical tools were used but these all fall under the umbrella of environmental life cycle assessment (LCA), and include energy analysis, carbon appraisal and the consideration of other environmental issues. The life cycle of all products starts with an assessment of embodied impacts. The current author has completed significant research on the embodied carbon of materials. This includes the creation of a leading embodied carbon database (the ICE database) for materials which has been downloaded by over 10,000 professionals and has made a significant contribution to knowledge. This portfolio of work includes analysis on methods for recycling in embodied impact assessment and LCA. This is an influential topic and therefore appears in two of the publications. The ICE database was applied by the current author to over 40 domestic building case studies and an embodied carbon model for buildings was created from these. The latter was used to provide benchmark values for six types of new houses in the UK.The portfolio of work then progresses to full LCA of energy systems. LCA is used to assess the embodied impacts versus operational impacts of 11 kV electrical cables. In this case embodied impacts were not significant and preference should be given to reducing electrical losses in the cables. The tool of LCA was then applied to a national electricity network. It revealed that Lebanon had a particularly poor centralised electricity network that was both unreliable and unsustainable with high impacts in all environmental categories. The final paper in this portfolio is on Building Integrated PV (BIPV) and brings together all aspects of the current author’s work and knowledge. It considers embodied burdens, electricity generation and BIPV can replace roofing materials.
APA, Harvard, Vancouver, ISO, and other styles
10

Dong, Jun. "MSWs gasification with emphasis on energy, environment and life cycle assessment." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2016. http://www.theses.fr/2016EMAC0017/document.

Full text
Abstract:
Récemment, la pyro-gazéification de déchets ménagers solides (DMS) a suscité une plus grande attention, en raison de ses bénéfices potentiels en matière d’émissions polluantes et d’efficacité énergique. Afin de développer un système de traitement de ces déchets, durable et intégré, ce manuscrit s’intéresse plus spécifiquement au développement de la technique de pyro-gazéification des DMS, à la fois sur l’aspect technologique (expérimentations) et sur son évaluation globale (modélisation). Pour cette étude, quatre composants principaux représentatifs des DMS (déchet alimentaire, papier, bois et plastique) ont été pyro-gazéifiés dans un lit fluidisé sous atmosphère N2, CO2 ou vapeur d’eau. Les expériences ont été menées avec les composés seuls ou en mélanges afin de comprendre les interactions mises en jeu et leurs impacts sur la qualité du syngas produit. La présence de plastique améliore significativement la quantité et la qualité du syngas (concentration de H2). La qualité du syngas est améliorée plus particulièrement en présence de vapeur d’eau, ou, dans une moindre mesure, en présence de CO2. Les résultats obtenus ont été ensuite intégrés dans un modèle prédictif de pyro-gazéification basé sur un réseau de neurones artificiels (ANN). Ce modèle prédictif s’avère efficace pour prédire les performances de pyro-gazéification des DMS, quelle que soit leur composition (provenance géographique). Pour améliorer la qualité du syngas et abaisser la température du traitement, la gazéification catalytique in-situ, en présence de CaO, a été menée. L’impact du débit de vapeur d’eau, du ratio massique d’oxyde de calcium, ainsi que de la température de réaction a été étudié en regard de la production (quantité et pourcentage molaire dans le gaz) d’hydrogène. La présence de CaO a permis d’abaisser de 100 oC la température de gazéification, à qualité de syngas équivalente. Pour envisager une application industrielle, l’activité du catalyseur a aussi été évaluée du point de vue de sa désactivation et régénération. Ainsi, les températures de carbonatation et de calcination de 650 oC et 800 oC permettent de prévenir la désactivation du catalyseur, tandis que l’hydratation sous vapeur d’eau permet la régénération. Ensuite, une étude a été dédiée à l’évaluation et à l’optimisation de la technologie de pyro-gazéification par la méthode d’analyse de cycle de vie (ACV). Le système de gazéification permet d’améliorer les indicateurs de performances environnementales comparativement à l’incinération conventionnelle. De plus, des systèmes combinant à la fois la transformation des déchets en vecteur énergétique et la mise en œuvre de ce vecteur ont été modélisés. La pyro-gazéification combinée à une turbine à gaz permettrait de maximiser l’efficacité énergétique et de diminuer l’impact environnemental du traitement. Ainsi, les résultats permettent d’optimiser les voies actuelles de valorisation énergétique, et de d’optimiser les techniques de pyro-gazéification
Due to the potential benefits in achieving lower environmental emissions and higher energy efficiency, municipal solid waste (MSW) pyro-gasification has gained increasing attentions in the last years. To develop such an integrated and sustainable MSW treatment system, this dissertation mainly focuses on developing MSW pyro-gasification technique, including both experimental-based technological investigation and assessment modeling. Four of the most typical MSW components (wood, paper, food waste and plastic) are pyro-gasified in a fluidized bed reactor under N2, steam or CO2 atmosphere. Single-component and multi-components mixture have been investigated to characterize interactions regarding the high-quality syngas production. The presence of plastic in MSW positively impacts the volume of gas produced as well as its H2 content. Steam clearly increased the syngas quality rather than the CO2 atmosphere. The data acquired have been further applied to establish an artificial neural network (ANN)-based pyro-gasification prediction model. Although MSW composition varies significantly due to geographic differences, the model is robust enough to predict MSW pyro-gasification performance with different waste sources. To further enhance syngas properties and reduce gasification temperature as optimization of pyro-gasification process, MSW steam catalytic gasification is studied using calcium oxide (CaO) as an in-situ catalyst. The influence of CaO addition, steam flowrate and reaction temperature on H2-rich gas production is also investigated. The catalytic gasification using CaO allows a decrease of more than 100 oC in the reaction operating temperature in order to reach the same syngas properties, as compared with non-catalyst high-temperature gasification. Besides, the catalyst activity (de-activation and re-generation mechanisms) is also evaluated in order to facilitate an industrial application. 650 oC and 800 oC are proven to be the most suitable temperature for carbonation and calcination respectively, while steam hydration is shown to be an effective CaO re-generation method. Afterwards, a systematic and comprehensive life cycle assessment (LCA) study is conducted. Environmental benefits have been achieved by MSW gasification compared with conventional incineration technology. Besides, pyrolysis and gasification processes coupled with various energy utilization cycles are also modeled, with a gasification-gas turbine cycle system exhibits the highest energy conversion efficiency and lowest environmental burden. The results are applied to optimize the current waste-to-energy route, and to develop better pyro-gasification techniques
APA, Harvard, Vancouver, ISO, and other styles
11

Ximenes, Naves Alex. "Whole Life Sustainability Assessment at the Building Industry and Constructed Assets, through the Whole Life Costing Assessment and Life Cycle Costing Assessment evaluating the economic and financial aspects." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/670202.

Full text
Abstract:
Els edificis d’energia neta poden ser entesos com a edificis, que durant un temps determinat generen tanta energia com consumeixen. Ja sigui des del punt de vista de l’oferta o el consum, la disponibilitat d’energia està relacionada amb alguns aspectes bàsics, com ara la font (s), la conversió, la distribució, l’ús, el malbaratament, l’optimització, l’eficiència i l’autonomia. Aquests temes revelen la complexitat del tema de l'energia i justifiquen l'atenció especial que li dóna la comunitat acadèmica. Per obtenir resultats tangibles en l'anàlisi d'aquests sistemes, en el nostre estudi ens centrem en la modelització i optimització de solucions energètiques aplicades a edificis o sistemes similars. D'altra banda, el període de temps dels objectes analitzats es va estendre fins al seu període de cicle de vida previst. Es van establir els objectius principals com: - Verificar i analitzar l’estat de la tecnologia de les energies renovables per a edificis i actius construïts i l’aplicabilitat de l’anàlisi de costos del cicle de vida a aquests temes; - Configurar models reproductibles d’edificis i les seves principals càrregues elèctriques, mitjançant eines d’enginyeria de processos assistits per ordinador, per procedir a simulacions i optimització, considerant-se com a font d’energia primària l’energia solar; - Quantificar, utilitzant estudis de casos reals i hipotètics, els beneficis de les solucions proposades, amb l'objectiu de realitzar tota l'avaluació de la sostenibilitat de la vida mitjançant la reducció de tot el cost del cicle de vida;
Los edificios de energía de red cero pueden entenderse como edificios, que durante un tiempo dado generan tanta energía como consumen. O bien, desde el punto de vista del suministro o el consumo, la disponibilidad de energía está relacionada con algunos problemas básicos, como las fuentes, la conversión, la distribución, la utilización, el desperdicio, la optimización, la eficiencia y la autonomía. Estos problemas revelan la complejidad del tema de la energía y justifican la atención especial que le presta la comunidad académica. Para obtener resultados tangibles en el análisis de estos sistemas, en nuestro estudio nos centramos en el modelado y la optimización de soluciones energéticas aplicadas a edificios o sistemas similares. Por otro lado, el período de tiempo de los objetos analizados se extendió a su período de ciclo de vida esperado. Los objetivos principales se establecieron como: - Verificar y analizar el estado de la técnica de las soluciones de energía renovable para edificios y activos construidos y la aplicabilidad del análisis de costos de ciclo de vida a estas cuestiones; - Configure modelos reproducibles de edificios y sus principales cargas eléctricas, a través de herramientas de Ingeniería de Procesos Asistidos por Computadora, para proceder a simulaciones y optimización, considerando como fuente de energía primaria la energía solar;
Net-zero energy buildings can be understood as buildings, that for a given time, generate as much energy as they consume. Either, from the point of view of supply or consumption, energy availability is related to some basic issues such as source (s), conversion, distribution, utilization, waste, optimization, efficiency and autonomy. These issues reveal the complexity of the subject of energy and justify the special attention given to it by the academic community. To obtain tangible results in the analysis of these systems, in our study we focus on the modelling and optimization of energy solutions applied to buildings or similar systems. On the other hand, the time frame of the analysed objects was extended to their expected life cycle period. The main objectives were stablished as: - Verify and analyse the state-of-the-art of renewable energy solutions for buildings and constructed assets and the applicability of life cycle costing analysis to these issues; - Configure reproducible models of buildings and their main electrical loads, via Computer Aided Process Engineering tools, to proceed simulations and optimization, considering as primary energy source solar energy; - Quantify, using real-life and hypothetical case studies, the benefits of the proposed solutions, aiming the whole life sustainability assessment through the reduction of the whole life cycle costing; and - Guarantee the reproducibility of the models and main general results of this study and make them public, to contribute with their applicability and further researches.
APA, Harvard, Vancouver, ISO, and other styles
12

Prasara-A, Jittima, and s3126806@student rmit edu au. "Comparative life cycle assessment of rice husk utilization in Thailand." RMIT University. Global Studies, Social Science and Planning, 2010. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20100304.122826.

Full text
Abstract:
Thailand is one of the largest rice producing nations in the world. Moreover, there is a trend for Thai rice exports to increase. This could imply that if the trend continues, there will be an increased quantity of rice husk in the future. Rice husk is a co-product of rice products generated in the rice milling process, accounting for about 23 percent of the total paddy weight. To make use of this large quantity of rice husk, the husk has traditionally been used as an energy source in the rice mills themselves. More recently, the Thai government has promoted the use of biomass to substitute for fossil fuel consumption and to reduce the environmental impacts caused by using fossil fuels. Therefore, rice husk, which is one of the main sources of biomass in Thailand, has already been used on a commercial scale. However, the environmental impacts associated with different rice husk applications have not yet been widely investigated in the Thai context. While there is a need to find ways of dealing with rice husk disposal, it is also important to ensure that this husk is used in ways that harm the environment least. This research aims to identify the most environmentally friendly use of rice husk for Thailand. To achieve this, the research is divided into three main stages; identification of main current and potential uses of rice husk in Thailand; data collection; and data analysis using Life Cycle Analysis approach. A range of methods such as literature review, questionnaires with rice mill owners, and interviews with industry personnel, were used to help in identifying the current and potential uses of rice husk. The major current and potential rice husk uses chosen to be examined in this research are those uses of rice husk in electricity generation, in cement manufacture and in cellulosic ethanol production. The second stage is to collect detailed data about the processes of the selected rice husk uses to be examined. This was undertaken by literature review, questionnaires and interviews with involved industry personnel. The last stage is to analyse the data collated. Life Cycle Assessment (LCA) approach and the L CA software package SimaPro (version 7.1.6) were used to assess the environmental impacts of the selected rice husk uses. Results from the LCA are reviewed in the context of critical policy issues, including the Thai government biomass policies; the capacity of the production process of rice husk use options; and the infrastructure availability and practicality of the rice husk use options. Based on the goal and scope of the study, the data available for this study and the review of the issues just mentioned, it is concluded that, in the short term, the most practical environmentally friendly use of rice husk across the three uses investigated is the use of rice husk in electricity generation. However, with expected oil shortages in the future, rice husk should also be considered for use in cellulosic ethanol production, as this option helps to save some amount of petrol.
APA, Harvard, Vancouver, ISO, and other styles
13

Hashemi, Farzad Tabassom. "Life Cycle Assessment (LCA) for a DC-microgrid energy system in Fjärås." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263173.

Full text
Abstract:
Application of Photovoltaic PV panels for electricity production has rapidly increased in recent years in Sweden after launching a capital subsidy for PV panel installations in 2009. Kungsbacka municipality’s housing company equipped two groups of buildings in Fjärås with PV systems to generate electricity. The newly built residential buildings are connected to a DC-microgrid, whereas the existing buildings have been equipped with a single PV system. This project conducts a cradle to gate life cycle assessment (LCA) for this DC-microgrid energy system. The main purpose of this project is to determine which parts and processes of the DC-microgrid contribute to highest environmental impact throughout their lifespan from cradle to gate stages. Moreover, this study explores the energy payback time (EPBT) and the cumulative energy demand (CED) for the DC-microgrid. Additionally, this study performs two comparative LCA. First the DC-microgrid is being compared with PV system to determine which system has higher environment impacts, and secondly, the DC-microgrid is being compared with the average electricity mix in Sweden in terms of contribution to environmental impacts. The LCA follows the ISO 14040 framework and the baseline method is applied in order to assess 11 environmental impact categories. Two different functional units are adopted in this study. One is based on installed kilowatt peak (kWp) capacity by which environmental impacts of the PV system are compared with the DC-microgrid system. The other functional unit for this study is 1 kWh of delivered electricity to residential buildings produced by the DC-microgrid system. This functional unit is used exclusively for a stand-alone analysis of the DC-microgrid system in order to make it comparable with other microgrid systems or other systems with different energy sources, such as hydro, wind or nuclear. The results of the stand-alone LCA analysis of the DC-microgrid show that the battery has high contribution in human toxicity and terrestrial ecotoxicity whereas the energy hub system (Ehub) is the main contributor to eutrophication, abiotic depletion, fresh water aquatic ecotoxicity and marineaquatic ecotoxicity. The monocrystalline PV panel has the highest impact on global warming and abiotic depletion (fossil fuel). In addition, the EPBT for the DC-microgrid system is approximately 3.7 years. This means that one can get energy free of cost for an estimated time of 26.5 years if the lifetime of the system is assumed to be 30 years. The CED results show that monocrystalline PV production is an intense energy process which requires more non-renewable energy than all remaining parts of the DC-microgrid. The comparison of the DC-microgrid with the PV system reveals that the DC-microgrid has a higher environmental impact almost in all impact categories. This is mainly due to batteries and inverters which have a clear effect on the result. The CED analysis results illustrate that the multicrystalline PV panel production from the PV system is the most energy demanding process in both categories of renewable and non-renewable energy source. Moreover, the analysis illustrates that the DC-microgrid has still higher environmental impacts in all impact categories compared to the average electricity mix in Sweden. This is due to the electricity production in Sweden relies on hydropower and nuclear power with around 83 % of the total electricity production in the year 2017 which causes a lower environmental burden. Although the DC microgrid system shows a higher environmental impact compared to PV system, it is still a proper option to generate electricity since DC-microgrid system allows to achieve some indirect advantages such as energy saving due to an increase in own usage rate and self-sufficiency rate compared to the PV system. It should be noted that the end-of-life procedures becomes very important especially when crediting back for the recycling of materials. The collection and recycling of the PV panels at their end-of-life should be considered for future work as soon as reliable data are available.
Användningen av solpaneler har de senaste åren kommit att öka markant i Sverige. Ökningen beror på det statliga bidraget för installation av solceller som lanserades 2009. Kungsbacka kommun installerade solcellssystem i två olika typer av byggnader, ny och äldre befintlig byggnad. Den nya byggnaden anslöts till direkt mikronät (DC-mikcrogrid) och den äldre byggnaden utrustades med solcellssystem. Detta projekt utför en ’från vaggan till porten’ livscykelanalys (LCA) för energisystemet direkt mikronät. Syftet är i huvudsak att fastställa vilka delar och processer av det direkta mikronätet som bidrar till störst miljöpåverkan genom dess livslängd, det vill säga från vaggan till porten. Vidare undersöker studien återbetalningstiden (Energy PayBack Time, EPBT) och den ackumulerade energianvändningen (Cumulative Energy Demand, CED) för det direkta mikronätet. Studien utför två komparativa LCA varpå det direkta mikronätet först jämförs med solcellssystemet i syfte att fastställa vilket av systemen har större miljöpåverkan. Studien ämnar också jämföra det direkta mikronätet med den genomsnittliga energimixen i Sverige, också avseende miljöpåverkan. LCA metoden följer ISO 14040-ramverket. Studien är baserad på två funktionella enheter vilka består av installerad kilowatt peak (kWp) kapacitet vilken används för att jämföra solcellssystemet och det direkta mikromåttet. Den andra funktionella enheten är 1 kWh levererad elektricitet till bostäder som producerats genom det direkta mikronätet. Denna funktionella enhet används för en ’stand-alone’ analys av det direkta mikronätet i syfte att göra det jämförbart med andra mikrosystem eller system med olika energikällor så som vatten-, vind- och kärnkraft. Resultaten från ‘stand-alone’ livscykelanalysen av det direkta mikronätet visar på att batteriet har en större effekt på mänsklig toxicitet terrestrisk ekotoxicitet, varpå systemet för energihubb bidrar främst till övergödning, abiotisk utarmning, vattenlevande ekotoxicitet och havslevande ekotoxicitet. Monokristallin solpanel har större påverkan på global uppvärmning och övergödning (fossilabränslen). I övrigt är EPBT för det direkta mikronätet cirka 3,7 år vilket innebär att energin beräknas kostnadsfri i cirka 26,5 år, givet att det kan antas att systemets livslängd är 30 år. CED-resultat visar på att microkristallin solpanel är en intensiv energiprocess som kräver mer icke-förnybar energi jämfört med resterande delar av det direkta mikronätet. Jämförelsen mellan det direkta mikronätet och solcellssystemet visar på att det direkta mikronätet har större miljöpåverkan i de flesta kategorier. Detta beror i huvudsak på batterier och växelriktare som har tydlig effekt på resultatet. Av resultatet från CED-analysen framgår att produktion av multikristallin solpanel av solcellssystemet är det mest energikrävande processen i båda kategorierna för förnybar och icke-förnybar energikälla. Vidare framgår av analysen att det direkta mikronätet har en större miljöpåverkan i alla kategorier, jämfört med påverkan från genomsnittet av energimixen i Sverige. Detta beror på att elproduktionen i Sverige mestadels består av vatten- och kärnkraft som tillsammans 2017 utgjorde 83 procent av den totala energiproduktionen. Denna produktion orsakaren mindre miljöbelastning. Trots att det direkta mikronätet påvisar en högre miljöpåverkan än solcellssystemet, är det fortfarande ett alternativ till att generera elektricitet eftersom det direkta mikronätet bidrar till indirekta fördelar såsom energibesparing. Energibesparingen i det direkta mikronnätet sker således genom ökad användning av den egenproducerade energin samt självförsörjning. Det ska vidare tilläggas att ’end-of-life’ procedurerna blir viktiga i synnerhet när de återvunna materialet återanvänds. Vidare bör solpaneler återanvändas vid ’end-of-life’ vilket bör finnas i åtanke för vidarestudier och i samband med att data tillgängliggörs.
APA, Harvard, Vancouver, ISO, and other styles
14

Cooper, Jasmin. "Life cycle sustainability assessment of shale gas in the UK." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/life-cycle-sustainability-assessment-of-shale-gas-in-the-uk(692252b3-faab-4428-899c-afbcdeec787a).html.

Full text
Abstract:
This research assesses the impacts of developing shale gas in the UK, with the focus of determining whether or not it is possible to develop it sustainably and how it could affect the electricity and gas mix. There is much uncertainty on the impacts of developing shale gas in the UK, as the country is currently in the early stages of exploration drilling and the majority of studies which have been carried out to analyse the effects of shale gas development have been US specific. To address these questions, the environmental, economic and social sustainability have been assessed and the results integrated to evaluate the overall sustainability. The impacts of shale gas electricity have been assessed so that it can be compared with other electricity generation technologies (coal, nuclear, renewables etc.), to ascertain its impacts on the UK electricity mix. Life cycle assessment is used to evaluate the environmental sustainability of shale gas electricity (and other options), while life cycle costing and social sustainability assessment have been used to evaluate the economic and social sustainability. Multi-criteria decision analysis has been used to combine the results of three to evaluate the overall sustainability. The incorporation of shale gas into the UK electricity mix is modelled in two future scenarios for the year 2030. The scenarios compare different levels of shale gas penetration: low and high. The results show that shale gas will have little effect on improving the environmental sustainability and energy security of the UK’s electricity mix, but could help ease energy prices. In comparison with other options, shale gas is not a sustainable option, as it has higher environmental impacts than the non-fossil fuels and conventional gas and liquefied natural gas: 460 g CO2-Eq. is emitted from the shale gas electricity life cycle, while conventional gas emits 420 g CO2-Eq. and wind 12 g CO2-Eq. The power plant and drilling fluid are the main impact hot spots in the life cycle, while hydraulic fracturing contributes a small amount (5%). In addition to this, there are a number of social barriers which need to be addressed, notably: traffic volume and congestion could increase by up to 31%, public support is low and wastewater produced from hydraulic fracturing could put strain on wastewater treatment facilities. However, the results indicate that shale gas is economically viable, as the cost of electricity is cheaper than solar photovoltaic, biomass and hydroelectricity (9.59 p/kWh vs 16.90, 11.90 and 14.40 p/kWh, respectively). The results of this thesis show that there is a trade-off in the impacts, but because of its poor environmental and social ratings shale gas is not the best option for UK electricity. The results also identify areas for improvement which should be targeted, as well as policy recommendations for best practice and regulation if shale gas were to be developed in the UK.
APA, Harvard, Vancouver, ISO, and other styles
15

Schueler, Maximilian. "Using Life Cycle Assessment in Agriculture." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19867.

Full text
Abstract:
Mit Ökobilanzen werden Umwelteigenschaften von Produkten und Dienstleistungen analysiert und zunehmend bei der Bewertung von Milchproduktionssystemen eingesetzt. Um konsistente Berichterstattung und Vergleichbarkeit von produktbezogenen Treibhausgasemissionen im Milchsektor zu gewährleisten hat die International Dairy Federation (IDF) Berechnungsgrundlagen publiziert. Allerdings werden die Effekte von Variabilität betrieblicher Kennzahlen und Unsicherheit von Emissionsfaktoren unzureichend betrachtet. Diese Arbeit hat es zum Ziel diese Lücke zu schließen. In der ersten Studie wurden verschiedene Definitions- und Berechnungsmöglichkeiten des Referenzflusses und der funktionellen Einheit für die Klimabilanz von Milchproduktion verglichen. Eine hohe Bandbreite an möglichen Ergebnissen – bei gleichen Eingangsdaten – ermöglicht eine große Ergebnisunsicherheit. Die Voraussetzungen für zeitliche Repräsentativität wurden in der zweiten Studie untersucht. Über 6 aufeinanderfolgende Jahre wurde auf einem ökologischen Milchviehbetrieb in Norddeutschland die Klimabilanz mit einem detaillierten Stoffflussmodel analysiert. Dabei zeigte es sich, dass für den untersuchten Betrieb mindestens 4 aufeinanderfolgende Jahre untersucht werden müssen um belastbare Ergebnisse zu erzielen. Die dritte Studie befasst sich mit der Forderung mindestens ein Stufe 2 Verfahren der Methodik des IPCC zu verwenden. Mit Daten von 20 norwegischen Milchviehbetrieben wurde die Unsicherheit der Klimabilanz auf Basis von Tier 1 Berechnungen bei bodenbürtigen Emissionen mit dem FARM Modell ermittelt. Von allen 190 direkten Vergleichen von zwei Betrieben miteinander waren 78 % signifikant unterschiedlich Aus den drei Studien wird geschlossen, dass die existierenden Regeln zur Erstellung von Klimabilanzen von Milchproduktion teilweise zu unpräzise und teilweise zu streng sind, und damit sowohl Erstellung als auch Interpretation von betrieblichen Klimabilanzen in der Milchproduktion erschwert werden.
Life cycle assessment (LCA) analyses the environmental performance of products and services and has become increasingly important also for the environmental assessment of dairy systems. In order to create consistent results for communication, declaration and comparison, the International Dairy Federation (IDF) provides a guideline for the calculation of product-related greenhouse gas (GHG) emissions in the dairy sector. However, the effects of farm data variability and emission factor uncertainty on the comparability of GHG assessments on the farming level are seldom considered. This thesis aims to fill this gap. In the first study, different settings in the definition of energy corrected milk (ECM) and the reference flows were compared in a calculation example based on average farming data. A high bandwidth of the carbon footprint result indicated a severe uncertainty when calculation procedures are not well documented. The second case study examined the production data from six consecutive milk years in an organic dairy farm in northern Germany and its effect on the estimation of product-related GHG emissions. It was shown that data from at least four years is needed to provide reliable results for that farm. The third study dealt with the demand of the IDF guidelines to use at least Tier 2 in the methodology of the Intergovernmental Panel on Climate Change (IPCC). Using data from 20 Norwegian dairy farms, the uncertainty of the carbon footprint using Tier 1 of the IPCC guidelines within the FARM model was assessed. From all 190 direct comparisons of two farms in the study, 78 % of the comparisons were significantly different with a relative difference of 8.7 % being enough to establish significance of the difference. From the three studies it was concluded that existing rules may partly not be precise enough to allow for comparison of farms or farming systems, or partly too strict and thereby hindering the execution of carbon footprint studies.
APA, Harvard, Vancouver, ISO, and other styles
16

Stephan, André. "Towards a comprehensive energy assessment of residential buildings: a multi-scale life cycle energy analysis framework." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209465.

Full text
Abstract:
Buildings are directly responsible for 40% of the final energy use in most developed economies and for much more if indirect requirements are considered. This results in huge impacts which affect the environmental balance of our planet.

However, most current building energy assessments focus solely on operational energy overlooking other energy uses such as embodied and transport energy. Embodied energy comprises the energy requirements for building materials production, construction and replacement. Transport energy represents the amount of energy required for the mobility of building users.

Decisions based on partial assessments might result in an increased energy demand during other life cycle stages or at different scales of the built environment. Recent studies have shown that embodied and transport energy demands often account for more than half of the total lifecycle energy demand of residential buildings. Current assessment tools and policies therefore overlook more than 50% of the life cycle energy use.

This thesis presents a comprehensive life cycle energy analysis framework for residential buildings. This framework takes into account energy requirements at the building scale, i.e. the embodied and operational energy demands, and at the city scale, i.e. the embodied energy of nearby infrastructures and the transport energy of its users. This framework is implemented through the development, verification and validation of an advanced software tool which allows the rapid analysis of the life cycle energy demand of residential buildings and districts. Two case studies, located in Brussels, Belgium and Melbourne, Australia, are used to investigate the potential of the developed framework.

Results show that each of the embodied, operational and transport energy requirements represent a significant share of the total energy requirements and associated greenhouse gas emissions of a residential building, over its useful life. The use of the developed tool will allow building designers, town planners and policy makers to reduce the energy demand and greenhouse gas emissions of residential buildings by selecting measures that result in overall savings. This will ultimately contribute to reducing the environmental impact of the built environment.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
17

Tawatsin, Anuda. "Environmental assessment of waste to energy processes, specifically incineration and anaerobic digestion, using life cycle assessment." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/366530/.

Full text
Abstract:
Municipal solid waste is an issue every community in the world has to be concerned with. Without any management, municipal solid waste poses environmental and health risks to the community such as from water and air pollution. In selecting methods to deal with the waste, environmental impacts considerations are important to reduce these risks. Environmentally sustainable waste management processes should also decrease greenhouse gases contributing to global warming and climate change. Waste to energy (WtE) processes lessens and replaces the use of fossil fuels reducing greenhouse gases. The research aims to assess the environmental impacts and energy recovery of WtE processes, specifically incineration or energy recovery facilities (ERF) and anaerobic digestion (AD) to select suitable options or any combinations thereof as part of an integrated waste management system for different locations and conditions by using life cycle assessment (LCA) methods. WRATE (Waste and Resources Assessment Tool for the Environment) an LCA model is used to assess scenarios designed systematically with different combinations of incineration/ERF and AD. The study also varies other factors such as different recycling schemes and recycling rate, household waste composition and population density to determine the suitable combinations for different local conditions. Results for both UK and Thailand confirm the need to reduce disposal of waste into landfills. The scenario with Incineration/ERF for heat recovery and a post collection recycling scheme and the combination scenario with Incineration/ERF for heat recovery and Anaerobic Digestion for vehicle fuel a post collection recycling scheme lead the ranking for most energy recovery and less environmental impacts. The parameter exerting the greatest influence on LCIA of these set of scenarios is WtE technology. Second is recycling scheme with recycling rate as a subset. Third is energy recovery type. Population density also affects the outcome slightly by the magnitude of the values.
APA, Harvard, Vancouver, ISO, and other styles
18

Du, Guangli. "Life cycle assessment of bridges, model development and case studies." Doctoral thesis, KTH, Bro- och stålbyggnad, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161196.

Full text
Abstract:
In recent decades, the environmental issues from the construction sector have attracted increasing attention from both the public and authorities. Notably, the bridge construction is responsible for considerable amount of energy and raw material consumptions. However, the current bridges are still mainly designed from the economic, technical, and safety perspective, while considerations of their environmental performance are rarely integrated into the decision making process. Life Cycle Assessment (LCA) is a comprehensive, standardized and internationally recognized approach for quantifying all emissions, resource consumption and related environmental and health impacts linked to a service, asset or product. LCA has the potential to provide reliable environmental profiles of the bridges, and thus help the decision-makers to select the most environmentally optimal designs. However, due to the complexity of the environmental problems and the diversity of bridge structures, robust environmental evaluation of bridges is far from straightforward. The LCA has rarely been studied on bridges till now. The overall aim of this research is to implement LCA on bridge, thus eventually integrate it into the decision-making process to mitigate the environmental burden at an early stage. Specific objectives are to: i) provide up-to-date knowledge to practitioners; ii) identify associated obstacles and clarify key operational issues; iii) establish a holistic framework and develop computational tool for bridge LCA; and iv) explore the feasibility of combining LCA with life cycle cost (LCC). The developed tool (called GreenBridge) enables the simultaneous comparison and analysis of 10 feasible bridges at any detail level, and the framework has been utilized on real cases in Sweden. The studied bridge types include: railway bridge with ballast or fix-slab track, road bridges of steel box-girder composite bridge, steel I-girder composite bridge, post tensioned concrete box-girder bridge, balanced cantilever concrete box-girder bridge, steel-soil composite bridge and concrete slab-frame bridge. The assessments are detailed from cradle to grave phases, covering thousands of types of substances in the output, diverse mid-point environmental indicators, the Cumulative Energy Demand (CED) and monetary value weighting. Some analyses also investigated the impact from on-site construction scenarios, which have been overlooked in the current state-of-the-art. The study identifies the major structural and life-cycle scenario contributors to the selected impact categories, and reveals the effects of varying the monetary weighting system, the steel recycling rate and the material types. The result shows that the environmental performance can be highly influenced by the choice of bridge design. The optimal solution is found to be governed by several variables. The analyses also imply that the selected indicators, structural components and life-cycle scenarios must be clearly specified to be applicable in a transparent procurement. This work may provide important references for evaluating similar bridge cases, and identification of the main sources of environmental burden. The outcome of this research may serve as recommendation for decision-makers to select the most LCA-feasible proposal and minimize environmental burdens.

QC 20150311

APA, Harvard, Vancouver, ISO, and other styles
19

Lambert, Janine. "A Life Cycle Assessment of a Uranium Mine in Namibia." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6291.

Full text
Abstract:
Uranium mining and nuclear power is a controversial topic as of late, especially in light of the recent Fukushima event. Although the actual use of nuclear fuel has minimal environmental impact, its issues come at the very beginning and end of the fuel’s life cycle in both the mining and fuel disposal process. This paper focuses on a life cycle analysis (LCA) of uranium mine in the desert nation of Namibia in Southern Africa. The goal of this LCA is to evaluate the environmental effects of uranium mining. The LCA focuses on water and energy embodiment such that they can then be compared to other mines. The functional unit of the analysis is 1kg of yellowcake (uranium oxide). The processes considered include mining and milling at Langer Heinrich Uranium (LHU). The impact categories evaluated include the categories in ReCiPe assessment method with a focus of water depletion, and cumulative energy demand. It was found that the major environmental impacts are marine ecotoxicity, human toxicity, freshwater eutrophication, and freshwater ecotoxicity. These mainly came from electricity consumption in the mining and milling process, especially electricity generated from hard coal. Milling tailings was also a contributor, especially for marine ecotoxicity and human toxicity. The other electricity generation types, including nuclear, hydro, natural gas, and diesel contribute to marine exotoxicity and human toxicity as well. Hydro-electricity, tailings form milling, sodium carbonate, and nuclear electricity also cause freshwater eutrophication at the LHU mine. The major contributor of the water depletion was hard coal generated electricity consumption as well. Tailings also led to a level of water depletion that was significant but much smaller than that of the coal-based electricity. In terms of energy, weighting portrayed the main energy used to be nuclear power, in terms of MJ equivalents. Nuclear power was then followed by fossil fuels and finally hydropower. Most of the energy used was for the uranium mining process rather than the milling process. As expected, the direct water, and energy values, 0.5459 m3 and 97.34 kWh per kg of yellowcake, were much lower than the LCA embodiment values of 282.67 m3 and 76,479 kWh per kg of yellowcake. When compared to other mines, the water use at LHU was found to be much lower while the energy use was found to be much higher.
APA, Harvard, Vancouver, ISO, and other styles
20

Butt, Ali Azhar. "Life Cycle Assessment of Asphalt Pavements including the Feedstock Energy and Asphalt Additives." Licentiate thesis, KTH, Väg- och banteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-102763.

Full text
Abstract:
Roads are assets to the society and an integral component in the development of a nation’s infrastructure. To build and maintain roads; considerable amounts of materials are required which consume quite an amount of electrical and thermal energy for production, processing and laying. The resources (materials and the sources of energy) should be utilized efficiently to avoid wastes and higher costs in terms of the currency and the environment. In order to enable quantification of the potential environmental impacts due to the construction, maintenance and disposal of roads, an open life cycle assessment (LCA) framework for asphalt pavements was developed. Emphasis was given on the calculation and allocation of energy used for the binder and the additives. Asphalt mixtures properties can be enhanced against rutting and cracking by modifying the binder with additives. Even though the immediate benefits of using additives such as polymers and waxes to modify the binder properties are rather well documented, the effects of such modification over the lifetime of a road are seldom considered. A method for calculating energy allocation in additives was suggested. The different choices regarding both the framework design and the case specific system boundaries were done in cooperation with the asphalt industry and the construction companies in order to increase the relevance and the quality of the assessment. Case-studies were performed to demonstrate the use of the LCA framework. The suggested LCA framework was demonstrated in a limited case study (A) of a typical Swedish asphalt pavement. Sensitivity analyses were also done to show the effect and the importance of the transport distances and the use of efficiently produced electricity mix. It was concluded that the asphalt production and materials transportation were the two most energy consuming processes that also emit the most GreenHouse Gases (GHG’s). The GHG’s, however, are largely depending on the fuel type and the electricity mix. It was also concluded that when progressing from LCA to its corresponding life cycle cost (LCC) the feedstock energy of the binder becomes highly relevant as the cost of the binder will be reflected in its alternative value as fuel. LCA studies can help to develop the long term perspective, linking performance to minimizing the overall energy consumption, use of resources and emissions. To demonstrate this, the newly developed open LCA framework was used for an unmodified and polymer modified asphalt pavement (Case study B). It was shown how polymer modification for improved performance affects the energy consumption and emissions during the life cycle of a road. From the case study (C) it was concluded that using bitumen with self-healing capacity can lead to a significant reduction in the GHG emissions and the energy usage.  Furthermore, it was concluded that better understanding of the binder would lead to better optimized pavement design and thereby to reduced energy consumption and emissions. Production energy limits for the wax and polymer were determined which can assist the additives manufacturers to modify their production procedures and help road authorities in setting ‘green’ limits to get a real benefit from the additives over the lifetime of a road.

QC 20120926

APA, Harvard, Vancouver, ISO, and other styles
21

Almsalati, Hussam. "Life cycle assessment of villas made by Fiskarhedenvillan, comparison between wood and brick facade." Thesis, Högskolan Dalarna, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:du-28672.

Full text
Abstract:
Awareness of climate change has resulted in enormous challenges for developed and developing countries. The frightening truth about our environmental situation has led to investigations of the causes of these changes and to obstruct these sources gradually but quickly. The alarming increase of average temperature of the earth has caused much worry around the world. Gas emissions in the atmosphere greatly affect the environment, where CO 2 emissions is one of the most serious factors contributing to the global warming potential. As the building sector emits 40% of global energy use and one-third of global greenhouse gas emissions, engineers must be educated to choose the best materials that lead to reducing CO 2 emissions. This means selecting materials that have less negative impact on the environment and are more “environmentally friendly”. This study shows how much CO 2e emissions are released into the atmosphere from a wooden structure villa that consists of two stories, a storage and a garage, with a total area of 229.6m2. The results of this case will be compared to a second case, where the external wooden siding is replaced with brick veneer. This result of this comparison provides us with a guideline in for how the selected materials impact the environment, illuminating the importance in choosing the right materials according to their CO 2e emission levels. In this way, the building sector can actively work to reduce the environmental impact. To achieve these goals, this study performed via life cycle assessment LCA methodology by using the One-Click LCA program. LCA is identified as a technique to assess the environmental impact and resources used through a product’s life cycle. This study utilized the LCA methodology (cradle to grave), which means starting from the extraction of raw materials, to product production, manufacturing, product usage and its end of life. The study lifespan was estimated to be 50 years. The results of the study verify that the wooden villa is more environmentally friendly than the villa made of brick, where carbon dioxide equivalent emission can be reduced to more than half by utilizing wood. Implementing the life cycle assessment study to any building aids in making the decision to choose the right materials for building according to CO 2e emission. And in this way, the environmental impact caused by the building sector will be greatly reduced.
APA, Harvard, Vancouver, ISO, and other styles
22

Baboulet, Olivier. "Path Exchange Method for Hybrid Life-Cycle Assessment." Thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9930.

Full text
Abstract:

To keep process-specificity while extending system boundaries hybrid techniques were developed allowing the micro structure of the important parts of a system to be revealed at the same time the entire economic system in which the system is embedded to be covered. Despite the substantial improvements bestowed by hybrid techniques some downsides still hold. Tiered hybrid LCA first does not model feedbacks whereas the relationship between the process-based system and the input-output based system is interactive and second it may suffer from double counting incidents as a process may be instigated in both the IO and LCI data. Integrated hybrid LCA overcomes those aforementioned pitfalls but only at a price of high labor and data intensity. This work aims to elaborate a new hybridisation method that avoids previously mentioned drawbacks. This technique is designed to not operate anymore at the matrix level as is the case for current hybridisation techniques but at the structural path level, per se the finest level of detail possible for the disaggregation of the Leontief inverse, and as such an ad hoc basis to carry out an hybrid analysis. It is argued that the method presented here constitutes a culmination amongst hybridization techniques. Its operability and capabilities are demonstrated before an interpretation from an input-output vantage point is carried out on a case-study not to be found in the literature, a comparison across the faculties of a university.

APA, Harvard, Vancouver, ISO, and other styles
23

Miliutenko, Sofiia. "Life Cycle Impacts of Road Infrastructure : Assessment of energy use and greenhouse gas emissions." Licentiate thesis, KTH, Miljöstrategisk analys, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-89885.

Full text
Abstract:
Road infrastructure is essential in the development of human society, but has both negative and positive impacts. Large amounts of money and natural resources are spent each year on its construction, operation and maintenance. Obviously, there is potentially significantenvironmental impact associated with these activities. Thus the need for integration of life cycle environmental impacts of road infrastructure into transport planning is currently being widely recognised on international and national level. However certain issues, such as energy use and greenhouse gas (GHG) emissions from the construction, maintenance and operation of road infrastructure, are rarely considered during the current transport planning process in Sweden and most other countries.This thesis examined energy use and GHG emissions for the whole life cycle (construction, operation, maintenance and end-of-life) of road infrastructure, with the aim of improving transport planning on both strategic and project level. Life Cycle Assessment (LCA) was applied to two selected case studies: LCA of a road tunnel and LCA of three methods for asphalt recycling and reuse: hot in-plant, hot in-place and reuse as unbound material. The impact categories selected for analysis were Cumulative Energy Demand (CED) and Global Warming Potential (GWP). Other methods used in the research included interviews and a literature review.The results of the first case study indicated that the operational phase of the tunnel contributed the highest share of CED and GWP throughout the tunnel’s life cycle. Construction of concrete tunnels had much higher CED and GWP per lane-metre than construction of rocktunnels. The results of the second case study showed that hot in-place recycling of asphalt gave slightly more net savings of GWP and CED than hot in-plant recycling. Asphalt reuse was less environmentally beneficial than either of these alternatives, resulting in no net savings of GWP and minor net savings of CED. Main sources of data uncertainty identified in the two case-studies included prediction of future electricity mix and inventory data for asphalt concrete.This thesis contributes to methodological development which will be useful to future infrastructure LCAs in terms of inventory data collection. It presents estimated amounts of energy use and GHG emissions associated with road infrastructure, on the example of roadtunnel and asphalt recycling. Operation of road infrastructure and production of construction materials are identified as the main priorities for decreasing GHG emissions and energy use during the life cycle of road infrastructure. It was concluded that the potential exists for significant decreases in GHG emissions and energy use associated with the road transport system if the entire life cycle of road infrastructure is taken into consideration from the very start of the policy-making process.
QC 20120229
APA, Harvard, Vancouver, ISO, and other styles
24

Melbye, Anne-Marit. "Life Cycle Assessment of Norwegian Bioenergy Heat and Power Systems." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20382.

Full text
Abstract:
This thesis assesses several value chains for bioenergy production in Norway and combines these representing two Norwegian scenarios. The environmental impacts are assessed using the methodology of life cycle assessment (LCA). A complete assessment of climate change impact has been a core task, and biogenic CO2 emissions are accounted for throughout the value chains investigated. Surface albedo effects are included in the assessment of forest resources. In addition to global warming potential, the value chains are assessed for three other impact categories; acidification potential, particulate matter formation potential and terrestrial ecotoxicity potential. Life cycle inventories are constructed for a set of six feedstocks, seven treatment options, ten energy conversion options and three energy distribution choices. The different options are then combined to 80 feasible value chains. Transport is included throughout all the value chains. All inventories are assembled to represent Norwegian conditions. Energy flows for the different value chains investigated are found to represent the current bioenergy system, with a potential increase for each value chain towards 2020 - representing the alternative scenario. Results are generated for the individual value chains, the reference scenario and the alternative scenario. The results show large differences between the different value chains. Energy wood and waste wood are the most beneficial feedstocks for bioenergy production, highly dependent on both the GWPbio factors utilised and inclusion of surface albedo effects. Pelletising is the pre-treatment option resulting in the lowest GWP, while integrated torrefaction and pelletising results in the highest GWP. Overall, a CHP plant with electricity demand is the most advantageous conversion route. A stand-alone thermal electricity plant has the definite highest impact, mainly because of low conversion efficiency. Heat distribution shows high impacts compared to electricity and steam distribution, and the resources resulting in lower impacts is therefore recommended as inputs for such units. Generally, handling of biogenic CO2 emissions is of high importance. The same is the case for surface albedo effects, changing the GWP for forest resources considerably. CHP plants are recommended for electricity production from biomass, and use of TOP, forest residues and stemwood are recommended to take place in the same conversion technology. The environmental impacts from a CHP plant is low, and TOP, forest residues and stemwood show high GWP. The GWP from energy wood, wood waste and pellets are low, and are therefore recommended for use in district heating plants. As stand-alone electricity production is not recommended, the GWP from a district heating plant is limited with the use of the mentioned resources. Pelletising is recommended for pre-treatment of Norwegian biomass because of low climate change impacts. The Norwegian Government has put forth ambitious goals to reduce the GHG emissions substantially towards 2020 and become climate neutral by 2030. The reference scenario assessed show a GWP of 134 grams CO2-equivalents per kWh, while the scenario for 2020 results in a climate change impact of 136 grams CO2-equivalents per kWh. Based on this, Norwegian bioenergy can offer a means to reduce the GHG emissions towards 2020, but because of considerable GWP from biogenic CO2 emissions, bioenergy should not be pursued for a goal of becoming climate neutral by 2030.
APA, Harvard, Vancouver, ISO, and other styles
25

Wangen, Dan Jakob. "Life Cycle Assessment of Power Generation Technologies with CO2 Capture." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19393.

Full text
Abstract:
Carbon Capture and Storage has large a potential to mitigating the CO2 emissions caused by fossil fuel powered power plants. CCS reduces the energy efficiency of the plant and increases the demand on chemicals and infrastructure. It is though not only the direct emissions from the power plants that have an impact on the environment. The entire supply chain of the power plant has an impact, and it is therefore necessary to evaluate the entire life cycle of the plant. This thesis consists of a full process LCA of post-combustion absorption based carbon capture and storage (CCS) technologies for both coal power plants and natural gas power plants. The assessed CCS technologies are based on the solvents MEA, MDEA and chilled ammonia. MEA is the most commonly used solvent in post-combustion capture, while MDEA and chilled ammonia represents novel CCS technologies that are still under development. It was shown that a 90% capture rate was possible for all of the assessed capture technologies. It was further shown that the total global warming potential (GWP) could be decreased with above 60%. 90% reduction is not possible because of indirect emissions in the supply chain. The reduction in GWP comes at a cost of decreasing energy efficiency, which further leads to an increase in consumption of materials and infrastructure. This causes the non-GHG related impacts to increase, compared to a base scenario without CCS. CCS technology based on MDEA was calculated to be the technology with the lowest impact, mainly because it has the lowest energy requirement. Chilled ammonia was assessed as the technology with the largest impacts. The reason for this is that the chilling process is very energy intensive and therefore decreases the efficiency more, compared to the other technologies assessed. Also the large emissions of ammonia have a large impact on the acidification potential and the marine eutrophication potential.
APA, Harvard, Vancouver, ISO, and other styles
26

Brown, Nils. "Better Low-energy Buildings : The Contribution of Environmental Rating Tools and Life-Cycle Approaches." Licentiate thesis, KTH, Miljöstrategisk analys (fms), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Paulsen, Jacob. "Life Cycle Assessment for Building Products - The significanse of the usage phase." Doctoral thesis, KTH, Building Sciences and Engineering, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Menoufi, Karim Ali Ibrahim. "Life Cycle Assessment of novel Building Integrated Concentrating Photovoltaic systems through environmental and energy evaluations." Doctoral thesis, Universitat de Lleida, 2014. http://hdl.handle.net/10803/131056.

Full text
Abstract:
La realització d'estudis de LCA per a sistemes fotovoltaics és una eina essencial per mesurar el seu nivell de sostenibilitat En aquest sentit, i després de la realització d' una anàlisi teòrica dels estudis publicats de LCA dels sistemes fotovoltaics, s'han trobat algunes llacunes. Aquestes llacunes es refereixen a la manca de varietat d'indicadors de LCA, on la majoria dels estudis depenen del temps de retorn energètic, sent aquest gairebé l'únic indicador (no es té en compte l'ús dels mètodes de perfil ambiental). A més, s'observen dues bretxes relatives a la manca d'estudis de LCA destacant la integració en edificis d'energia solar d'una banda, i l'ús de la tecnologia fotovoltaica de concentració per un altre. Per tant, en aquesta tesi, es presenta una nova aportació al camp dels estudis LCA dels sistemes fotovoltaics integrats en edificis. Això s'aconsegueix a través de l'avaluació ambiental i energètica dels sistemes de concentració fotovoltaica integrats en edificis (BICPV). Els resultats es presenten en termes de metodologies d'avaluació de l' impacte del cicle de vida (perfil mediambiental), així com el temps d'amortització de l'Energia i el Factor de Retorn (perfil energètic). Els resultats, amb el suport de les anàlisis de sensibilitat i la comparació amb un sistema convencional fotovoltaic per a integració en edificis (BIPV), mostren beneficis ambientals significatius que poden ser obtinguts a través de sistemes BICPV. A Finalment, es discuteixen les recomanacions per a treballs i millores futures.
Conducting LCA studies for PV systems is an essential tool for measuring the sustainability level of a corresponding system. In this sense, and after conducting a theoretical analysis of the LCA studies of PV systems in literature within the context of energy generation, some gaps have been found. These gaps are briefly represented in the lack of variety of LCA indicators, where most of the studies are dependent on the Energy Payback Time as almost the sole environmental indicator, disregarding the use of environmental profile methods. In addition, another two gaps are observed concerning the lack of LCA studies highlighting the building integration from one side, and the use of the concentrating PV technology from another side. Hence, in this thesis, a novel contribution to the field of LCA studies of PV systems is presented. This is achieved through environmentally and energetically evaluating novel Building Integrated Concentrating Photovoltaic (BICPV) systems. The results are presented in terms of Life Cycle Impact Assessment methodologies (environmental profile), as well as the Energy Payback Time and the Energy Return Factor (Energy profile). The results, supported by sensitivity analyses and comparison to a conventional Building Integrated Photovoltaic (BIPV) system, show the significant environmental benefits that can be acquired through BICPV systems. Finally, recommendations for future work and improvements are discussed as well.
La realización de estudios de LCA para sistemas fotovoltaicos es una herramienta esencial para medir su nivel de sostenibilidad. En este sentido, y después de la realización de un análisis teórico de los estudios de LCA de los sistemas fotovoltaicos en la literatura en el contexto de la generación de energía, se han encontrado algunas lagunas. Algunas de estas lagunas se refieren: la falta de variedad de indicadores de LCA, donde la mayoría de los estudios dependen del tiempo de retorno energético, siendo este casi el único indicador medioambiental (no se tiene en cuenta el uso de los métodos de perfil medioambiental). Además, se observan otras dos brechas relativas a la falta de estudios de LCA destacando la integración en edificios de energía solar por un lado, y el uso de la tecnología fotovoltaica de concentración por otro. Por lo tanto, en esta tesis, se presenta una nueva aportación al campo de los estudios LCA de los sistemas fotovoltaicos integrados en edificios. Esto se logra a través de la evaluación medioambiental y energética de los sistemas de concentración fotovoltaica integrados en edificios (BICPV). Los resultados se presentan en términos de metodologías de evaluación del impacto del ciclo de vida (perfil medioambiental), así como el tiempo de amortización de la Energía y su Factor de Retorno (perfil de la Energía). Los resultados, con el apoyo de los análisis de sensibilidad y la comparación con un sistema convencional fotovoltaico para integración en edificios (BIPV), muestran beneficios ambientales significativos que pueden ser obtenidos a través de sistemas BICPV. Finalmente, se discuten las recomendaciones para trabajos y mejoras futuros.
APA, Harvard, Vancouver, ISO, and other styles
29

Pektas, Deniz. "A comparative Life Cycle Assessment (LCA) study of centralized and decentralized wastewater heat recovery in Stockholm, Sweden." Thesis, KTH, Energiteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299856.

Full text
Abstract:
The cities bear a large role in the climate crisis. However, this also means that they have a big potential in the transition towards sustainable communities and a sustainable world. Up to 90 % of energy use within the urban water cycle is allocated to hot water heating for end users. A large portion of the heat that is provided to households in the form of hot water is lost through the drains. According to Schmid (2008), approximately 15 % of thermal energy supplied to conventional new buildings is lost through the sewers, while for new low-energy buildings, this number rises to 30 %. When buildings’ transmission, infiltration, and exfiltration losses decrease because of better building design, the share of losses to the drains can be expected to rise. In order to better utilize the heat still contained in the water that is flushed down the drains, wastewater heat recovery (WWHR) has been implemented and tested in various cities around the world. Wastewater (WW) is a reliable and renewable source of thermal energy with a relatively stable temperature throughout the year. Several techno-economi assessments, and a few lifecycle assessments have been conducted so far. However, no comparative lifecycle assessment of centralized and decentralized WWHR has been found. Bad or insufficient planning of WWHR can lead to competing technologies. Furthermore, uncoordinated decentralized WWHR can lead to the minimum influent temperature requirement of wastewater treatment plants (WWTPs) being jeopardized. Therefore, the environmental impact of centralized, and a future scenario with an increased amount of decentralized WWHR in Stockholm has been estimated and compared. This was achieved by systematically analyzing energy consumption, emissions, and natural resource extractions from manufacturing, transportation, operation, internal WWTP processes, biogas consumption, and disposal/recycling by developing a lifecycle assessment (LCA) model both in Excel and SimaPro. Centralized WWHR in Stockholm is compared with the case that 10, 20, …, 90, and 100 % of buildings installing shower wastewater heat exchanger (WWHEX). The decreased WW temperature and consequently the decreased centralized WWHR because of shower WWHR were estimated by calculating the resulting mixed WW temperature at the inlet of the sewer pipes, and adopting a simple model for the WW temperature decrease along the sewer pipes. The results of the lifecycle inventory (LCI), which was developed in Excel, were assigned to affected impact categories with the lifecycle impact assessment (LCIA). The midpoint and endpoint impact analyses of the ReCiPe2016 method showed that the centralized case has the lowest environmental impact per kWh WWHR. More specifically, the impacts of the centralized system were 0.131 kg CO2eq/kWh, 1.27×10-7 DALY/kWh, 3.73×10-10 terrestrial species years/kWh, 80.6 ktons CO2eqs, 1,780 DALYs, and 5.23 terrestrial species years. This can be-3-compared with the results of the 50 % decentralized case with 0.164 kg CO2eq/kWh, 1.59×10-7 DALY/kWh, 4.68×10-10 terrestrial species years/kWh, 82.8 ktons CO2eqs, 1,600 DALYs, and 4.72 terrestrial species years.The 100 % decentralized system had the biggest impact on all categories. The sensitivity of the model was inspected by varying major input parameters.
Städerna bär ett stort ansvar i klimatkrisen. Detta innebär också att städernas omställning är en nyckelfaktor för att uppnå hållbara samhällen och en hållbar värld. Upp till 90 % av energianvändningen inom den urbana vattencykeln går till varmvattenuppvärmning för slutanvändare. En stor andel av värmen som förses till hushållen i form av varmvatten går förlorad genom avloppen. Enligt Schmid (2008), går ungefär 15 % av värmeenergin som tillförs konventionella nya byggnader förlorad genom avloppen, medan för nya lågenergibyggnader är motsvarande andel 30 %. När byggnadernas transmission-, infiltration-, och exfiltrationsförluster minskar på grund av förbättrad byggdesign, kan man förvänta att andelen av avloppsvärmeförlusterna kommer att öka. För att bättre ta tillvara denna värme i vattnet som spolas ner i avloppen, har värmeåtervinning från avloppsvatten tillämpats och testats i flera städer runt om i världen. Avloppsvatten är en pålitlig och förnybar form av värmeenergi med en relativt stabil temperatur under hela året. Flera teknisk-ekonomiska bedömningar, och ett fåtal livscykelanalyser har utförts hittills. Däremot har ingen jämförande livscykelanalys av centraliserad och decentraliserad värmeåtervinning från avloppsvatten påträffats. Dålig eller otillräcklig planering av värmeåtervinning från avloppsvatten kan leda till konkurrerande teknik. Dessutom kan okoordinerad decentraliserad vårmeåtervinning från avloppsvatten resultera i att avloppsreningsverkens minimikrav på inkommande avloppsvattentemperatur till reningsverken äventyras. Därför har påverkan på miljön på grund av centraliserad, och ett framtida scenario med en ökande andel av decentraliserad värmeåtervinning från avloppsvatten i Stockholm uppskattats och jämförts. Detta utfördes genom att systematiskt analysera energianvändning, utsläpp, och utvinning av naturresurser från tillverkning, transport, drift, interna avloppsreningsverkprocesser, biogasförbrukning, och bortskaffande/återvinning genom att utveckla en livscykelanaysmodell i både Excel och SimaPro. Centraliserad värmeåtervinning från avloppsvatten i Stockholm jämfördes med decentraliserad värmeåtervinning där 10, 20, …, 90, och 100 % av hushållen installerar avloppsvattenvärmeväxlare för duschar. Den minskade avloppsvattentemperaturen och följaktligen den minskade centrala värmeåtervinningen på grund av vårmeåtervinning från duschar uppskattades genom att beräkna den resulterande blandtemperaturen på avloppsvattnet vid inloppet till avloppsrören, och därefter anta en enkel modell för temperaturminskningen på avloppsvattnet längs avloppsrören. Resultaten av livscykelinventeringen, som utvecklades i Excel, tilldelades till respektive miljöpåverkanskategori med miljöpåverkansbedömning. Miljöpåverkansbedömningen med ReCiPe2016 metoden vid mitt- och slutpunkterna visade att det centraliserade alternativet har lägst miljöpåverkan per kWh återvunnen värme från avloppsvatten. Mer specifikt, var miljöpåverkan av det centraliserade alternativet 0,131 kg CO2ekv/kWh, 1,27×10-7 Invaliditetsjusterade livsår/kWh, 3,73×10-10 markbundna artår/kWh, 80,6 kiloton CO2ekv, 1 780 Invaliditetsjusterade livsår, och 5,23 markbundna artår. Detta kan jämföras med resultaten av 50 % decentraliserad värmeåtervinning som var 0,164 kg CO2ekv/kWh, 1,59×10-7 Invaliditetsjusterade livsår/kWh, 4,68×10-10 markbundna artår/kWh, 82,8 kiloton CO2ekv, 1 600 Invaliditetsjusterade livsår, och 4,72 markbundna artår. Alternativet med 100 % decentralisering visade sig ha störst påverkan på alla kategorier. Känsligheten hos modellen undersöktes genom att variera viktiga parametrar.
APA, Harvard, Vancouver, ISO, and other styles
30

Butt, Ali Azhar. "Life Cycle Assessment of Asphalt Roads : Decision Support at the Project Level." Doctoral thesis, KTH, Väg- och banteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156016.

Full text
Abstract:
Transport infrastructures such as roads are assets for the society as they not only ensure mobility but also strengthen society’s economy. Considerable amount of energy and materials, that include bitumen, aggregates and asphalt, are required to build and maintain roads. Improper utilization of energy and/or use of materials may lead to more waste and higher costs. The impact on the environment cannot be neglected either. Life cycle assessment (LCA) as a method can be used to assess the environmental impacts of a road system over its entire life time. Studying the life cycle perspective of roads can help us improve the technology in order to achieve a system that has a lower impact on the environment. There are number of LCA tools available. However, implementation of such tools is still unseen in real road projects. This clearly indicates that there are gaps which are needed to be filled in order to bring these tools into practice. An open road LCA framework was developed for the asphalt roads in order to help in decision support at the late project planning stage such as that related to the green procurement. The framework takes into account the construction, maintenance and end of life phases and focuses on energy and greenhouse gas (GHG) emissions. Threshold values for the production of some additives were also determined to show how LCA tools can help material suppliers to improve the road materials production processes and the road authorities to set limits on the use of different materials based on the environmental criteria. Additive consideration and feedstock energy in road LCAs were also identified as gaps that were looked in detail. The attributes that are important to consider in an asphalt road LCA that seeks to serve as a decision support in a procurement situation are described. A brief literature review was carried out that focused on project LCAs, and specifically those considering pavements, as this level is assumed to be appropriate for questions relevant in a procurement situation. Following the different standards; road LCAs developed all over the world have generated a lot of knowledge and the studies have been different from each other such as in terms of goals and system boundaries. Hence, the patterns observed have been very different from study to study. It was also difficult to assess the decision support level for which the various LCA frameworks or tools were developed. It is important to define system boundaries based on where in the system the decision support is needed. For LCA to be useful for decision support in a procurement situation, it is important to have a clear understanding of the attributes that constitute the life cycle phases and how data of high quality for them are obtained. The level of consistency and transparency of road LCAs becomes increasingly important in pre-procurement and procurement situations. The key attributes used in a road LCA should mirror the material properties used in a pavement design and therefore be closely linked to the performance of the road in its life cycle. From the different case studies, it was found that asphalt production and transportation of materials are usually highest in the energy and GHG emissions chain. It is highly favorable to have the quarry site, the asphalt plant and the construction site not far from each other and to use the electricity that has been produced in an efficient way. Based on the laboratory test results, it is shown that the effects of chemical warm mix asphalt additives (WMAA)s must be evaluated on a case by case basis since WMAA interaction with the aggregate surface mineralogy appears to play a significant role and thus affects its long term structural behavior. Using the material properties obtained from the Superpave indirect tensile test (IDT) results, pavement thickness design was done in which Arlanda aggregate based asphalt mixtures resulted in thinner pavements as compared to Skärlunda aggregate based asphalt mixtures for the same design life period. Energy (feedstock and expended) saving and reduction in GHG emissions were also seen with addition of WMAA, for both aggregate type cases, based on the data used. Importantly, the results presented illustrate the importance of a systems based LCA approach for evaluating the sustainability for different design and construction options. In this context, having actual pavement material properties as the key attributes in the LCA enables a pavement focused assessment of environmental costs associated with different design options.

QC 20141118

APA, Harvard, Vancouver, ISO, and other styles
31

Tveten, Åsa Grytli. "Life Cycle Assessment of Offshore Wind Electricity Generation in Scandinavia." Thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9981.

Full text
Abstract:

In this study a Multi Regional Input Output model has been developed for the base year 2000, and thereafter extended and hybridized to enable a study of offshore wind power generation in Scandinavia. Foremost the per-unit environmental impact of offshore wind power generation was calculated to an average of 16.5 grams of CO2-eq. per kWh. The MRIO model offers a broad system boundary, covering a complete set of background flows and enables in this way a thorough study of the inter-regional value chains and the corresponding emissions embodied in trade. Scenarios from 2000 to 2030 for future offshore wind power were developed on the basis of GDP projections and projections for future energy demand. One baseline scenario, assuming no further offshore wind power installation, was developed, together with a Medium and a High scenario of future offshore wind power installation. The installed wind power was assumed to replace non-renewable energy sources, primarily domestically and secondly in power importing countries. The Medium and High scenario resulted in a cumulative reduction of 220 Mtons CO2-equivalents and 308 Mtons by 2030, respectively. The Norwegian offshore wind power was by a large exported, while Denmark and Sweden experienced a substantial wind power implementation into their economies, resulting in considerable increase in the percentage share of renewable energy in their electricity mix. This shows that offshore wind power could have a vital role in reaching the European Union’s target of a 20% share of renewable energy by 2020, under the assumption that a substantial capacity of wind power is installed. The results from this study provide important guidance and a broad overview of the effect a large wind power implementation will have on the Scandinavian economy.

APA, Harvard, Vancouver, ISO, and other styles
32

Kummamuru, Venkata Bharadwaj. "Life cycle assessment and resource management options for bio-ethanol production from cane molasses in Indonesia." Thesis, KTH, Energi och klimatstudier, ECS, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127863.

Full text
Abstract:
The intent of this thesis is to analyse the sustainability of producing bio-ethanol from cane molasses in Indonesia and its potential to replace gasoline in the transportation sector. A field trip was conducted in East Java, Indonesia, and data was gathered for analysis. Life cycle assessment (LCA) was performed to analyse the net emissions and energy consumption in the process chain. The greenhouse gas (GHG) emissions of the life cycle are 17.45 gCO2e per MJ of ethanol produced. In comparison to gasoline, this results in a 78% reduction in GHG emissions in the complete process chain. Net Energy Value (NEV) and Net Renewable Energy Value (NREV) were 6.65 MJ/l and 24 MJ/l. Energy yield ratio (ER) was 9.43 MJ of ethanol per MJ of fossil energy consumed in the process. Economic allocation was chosen for allocating resources between sugar and molasses. Sensitivity analysis of various parameters was performed. The emissions and energy values are highly sensitive to sugarcane yield, ethanol yield and the price of molasses. Alternative management options were considered for optimizing the life cycle. Utilizing ethanol from all the mills in Indonesia has a potential to replace 2.3% of all motor gasoline imports. This translates in import savings of 2.3 trillion IDR per year. Use of anaerobic digestion or oxidation ponds for waste water treatment is unviable due to high costs and issues with gas leakage. Utilizing 15% of cane trash in the mill can enable grid independency. Environmental impacts due to land use change (Direct & Indirect) can be crucial in overall GHG calculations. Governmental regulation is necessary to remove current economic hurdles to aid a smoother transition towards bioethanol production and utilization.
Harnessing agricultural feedstock and residues for bioethanol production - towards a sustainable biofuel strategy in Indonesia
APA, Harvard, Vancouver, ISO, and other styles
33

Kelly, Katharine Anne. "An environmental life cycle assessment of energy systems leading to a pathway for a low carbon economy." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.629654.

Full text
Abstract:
In 2008, the UK Government enforced the target to reduce the UK carbon account for the year 2050 to at least 80% less than the 1990 baseline. In order to meet this ambitious target it is widely thought that the UK energy future should be ‘electrified’ as a suite of low carbon generation technologies provide ever increasing proportions of electricity supply. This work has identified and investigated two technologies that could make significant contributions to low carbon power supply in the UK; that of industrial combined heat and power, CHP, and tidal power. Life cycle case studies were completed on an existing UK CHP plant and the Severn Barrage scheme as it was proposed until 2010. The Severn Barrage assessment has shown that the lifetime environmental impact is dominated by the operation stage. This is contrary to previously published studies, which have underestimated (Parsons Brinckerhoff Ltd; Black and Veatch Ltd; 2010)(Roberts 1982)(Spevack, Jones and Hammond 2011) or even ignored (Black & Veatch 2007)(Woollcombe-Adams, Watson and Shaw 2009)the contribution from this life stage. Furthermore, the results have demonstrated that the impact intensity of power from the Barrage is almost entirely reliant on that of the National Grid mix which provides the operational power required. It has been shown a large improvement to the impact of the operation stage can be made by removing the electricity demand for ‘flood pumping’. However, even without ‘flood pumping’, the impact of the power demand for plant operation will dominate. Hence the greatest improvements to the schemes lifetime impact can be made via the National Grid mix itself. The industrial CHP assessment has shown that there are large impact savings available from widespread implementation against the current and the baseline National Grid mixes. However, even if it is assumed that units are exclusively bio-gas fuelled, the carbon intensity of the power generated is very likely to exceed that of the low carbon Grid mix by 2050. The discussion shows that the interactive roles that these two technologies could play, with each other and the evolving Grid mix, on the pathway to 2050 is, however, more complex than simply considering the isolated impact intensity. The commissioning of the Severn Barrage could mark the point at which the carbon intensity of the National Grid falls below that of CHP. However because the carbon intensity of the plant is reliant on the national power supply, it is argued that further CHP implementation should only be stopped if there is a suitable low carbon and low impact alternative that can fill the capacity gap. This thesis concludes that to fear that today’s CHP schemes could represent a technology ‘lock-in’ in the long term future is to underestimate the role the technology has in the current and more short term future Grid mix. The work presented demonstrates the importance of life cycle thinking in the development of a low impact energy strategy. The discussion has also shown the importance of scenarios in assessing the requirements for such an ambitious change. The pursuit of change implies that the future is necessarily dynamic. The work has illustrated that scenario thinking allows exploration of potential strategy decisions and hence, is essential to having confidence in the decisions made.
APA, Harvard, Vancouver, ISO, and other styles
34

Dowson, Mark. "Novel retrofit technologies incorporating silica aerogel for lower energy buildings." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/7075.

Full text
Abstract:
The aim of this Engineering Doctorate is to design, build and test novel environmental retrofit technologies to reduce energy consumption in existing buildings. Three contributions to knowledge are documented. The first contribution is the technical verification of a novel proof-of-principle prototype incorporating translucent silica aerogel granules to improve the thermal performance of existing windows without blocking out all of the useful natural light. The study demonstrates that a 10 mm thick prototype panel can reduce heat loss by 80 %, without detrimental reductions in light transmission. Payback periods of 3.5-9.5 years are predicted if applied as openable shutters or removable secondary glazing. The second contribution is a streamlined life cycle assessment of silica aerogel following the ISO 14000 standards. The study assesses the raw materials and electricity use associated with two of the three known methods of aerogel production. Despite being produced in a laboratory that had not been refined for mass manufacture, the production energy and CO2 burden from aerogel production can be recovered within 0-2 years when applied in a glazing application. The third contribution is the development and verification of a novel solar air heater incorporating granular aerogel, retrofitted to an external south facing wall, preheating the air in a mechanical ventilation system with heat recovery on a hard4to4 treat domestic property. During the 7-day in-situ test, peak outlet temperatures up to 45 °C were observed and validated to within 5 % of predictions, preheating the dwelling’s fresh air supply up to 30 °C, facilitating internal temperatures of 21-22 °C without auxiliary heating. The predicted financial and CO2 payback for a range of cover thicknesses is 7-13 years and 0-1 years, respectively. Efficiency up to 60 % and a financial payback of 4.5 years is predicted with an optimised design incorporating a 10 mm thick granular aerogel cover.
APA, Harvard, Vancouver, ISO, and other styles
35

Tatarchenko, Olena. "ASSESSMENT OF MACROALGAE HARVESTING FROM THE BALTIC SEA FROM AN ENERGY BALANCE PERSPECTIVE." Thesis, KTH, Industriell ekologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-108235.

Full text
Abstract:
Energy balance of large-scale and small-scale scenarios of macroalgae harvesting for biogas production was assessed from the energy balance perspective. Evaluation was based on primary energy Input Output (IO) ratio where all primary energy inputs into the stages of the process life-cycle were summarized and divided by the final energy output from the system. Estimations were made for three cases of possible methane yield from macroalgae as well as for different scenarios of macroalgae co-digestion with other feedstock. Anaerobic digestion of macroalgae as a single substrate both on a small- and large-scale is energy efficient only in case when their methane potential is at the average or high level with the IO ratio of 0.47 and 0.32 correspondently. In general co-digestion with other substrates is more preferable with respect to process condition and energy balance. Large-scale scenario is more stable and efficient than small-scale with the lowest IO ratio for co-digestion with crops. This is explained by the fact that biogas plant operation is among the most energy demanding stages which on the small-scale requires about 65 % of the input energy when this number for large-scale plant does not exceed 28 %. Energy inputs into digestate handling, feedstock pre-treatment and biogas upgrading, that are next most energy consuming stages, is greatly affected by the assumptions made about amount of substrate, produced biogas and transportation distance. When considering the maximal distance between macroalgae harvesting point and biogas production site and to which at which the energy balance remains positive then digestate handling becomes the most energy demanding process stage.
APA, Harvard, Vancouver, ISO, and other styles
36

Kong, Fanhe. "Chemical Looping Partial Oxidation and Hydrogen Production: Process Simulation, Exergy Analysis and Life Cycle Assessment." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587591727870495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Egeskog, Ylva, and Jannik Scheer. "Life Cycle and Water Footprint Assessment of Palm Oil Biodiesel Production in Indonesia." Thesis, KTH, Energi och klimatstudier, ECS, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ghose, Agneta. "Life Cycle Assessment of an Active House : Sustainability concepts by integrating energy, environment and well-being." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for bygg, anlegg og transport, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19316.

Full text
Abstract:
An emerging interest in constructing ultra low energy buildings, with low impact materials and maximizing the potential of using renewable energy reflects the potential in building industry to significantly contribute towards reducing environmental impacts. Life cycle assessments of the different green building prototypes provide a means to estimate the impacts of such buildings as well as provide suggestive improvements. The Active house in Stjørdal, Norway is one such prototype of a green building. This is a single family residence which is built with a concept of solar architecture in ultra low-energy buildings. It is challenging to harness solar energy at high latitudes. The Active house uses the fundamental construction details for a Passive house as mentioned in Norwegian regulatory standard, with specific changes in increasing the glazed surface to promote passive solar heat gain as well as increase daylighting , but also making it vulnerable to heat loss. The house is based on timber framework. Apart from electricity the house uses solar collectors which are connected to the hot water storage and hydronic floor heating. Space heating is also compensated by use of wood stoves. In the LCA results suggest that, based on the construction the Active house requires ten percent more energy than an equivalent Passive house which uses only electricity and wood. However, due to the effectivity of the solar collectors, it compensates for the need of the extra energy and in a lifetime of 60 years, it performs 15 % better , contributing to lesser environmental impacts than an equivalent Passive house. It is understood that extra embodied energy does not affect the environmental performance of a building if it results in better environmental performance (1). However, it is important to create demonstrable value of the building for the end user. Lifecycle assessment results from simulated operational use carries considerable error with respect to how the building actually performs. The results in this study have also been estimated with an approximate error factor derived from previous studies (2). There is a necessity to make every stakeholder of the building participative in the functioning of the building, inclusive of the end user, and maintaining the well-being. The case has also been scored in the basic categories of a sustainibility certification, with the results available from the lifecycle assessment and energy simulation.
APA, Harvard, Vancouver, ISO, and other styles
39

Milić, Vlatko. "Energy Renovation of an Historic Town Using Life Cycle Cost Optimization : An Assessment of Primary Energy Use and CO2 Emissions." Thesis, Linköpings universitet, Energisystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129367.

Full text
Abstract:
Historic buildings, buildings built before 1945, represent a third of the total building stock in Sweden. While implementing energy efficiency measures (EEMs) on historic buildings it is important to consider heritage values. This thesis aims to investigate impacts on primary energy use and CO2 emissions while using life cycle cost (LCC) optimization on historic buildings in three studied cases: reference case with no implemented EEMs (case 1), lowest possible LCC (case 2) and a decrease by 50% in energy use (case 3). As a case study 920 historic buildings divided into twelve typical buildings (6 wood buildings, 1w-6w, and 6 stone buildings, 1s-6s) in the downtown area of Visby, Sweden, are used. Within the scope of the thesis, how to achieve the most profitable EEMs and how the profitability of energy renovation varies between the typical buildings in the studied cases will be analyzed also. An interdisciplinary method is applied in the thesis that considers both heritage values and energy savings. However, the keystone of the thesis is the use of the program Optimal Energy Retrofit Advisory-Mixed Integer Linear Programming (OPERA-MILP), which is a part of the interdisciplinary method. With the use of OPERA-MILP, the cost-optimal energy renovation strategy is obtained for a building. The program takes into account all energy-related investment costs, as well as the investment and operation costs for the heating system, during a set time period. The results show unique packages of EEMs for each of the twelve typical buildings with a potential to lower the total LCC by between 4-11% in the building stock and simultaneously decrease the energy use by more than 50%. The thesis also shows a possible decrease in primary energy use from 24%-57%. The CO2 emissions vary significantly depending on what assumptions are made related to electricity production and biomass use; the results show increases up to 224% in CO2 emissions but also decreases up to 85%. All typical buildings are economically viable to energy renovate. The LCC savings are between 1.4-11.8 SEK with a life cycle set to 50 years for every annually saved kWh, except for case 3 where cost is incurred for every annually saved kWh, 10.0-17.2 SEK, for a number of the typical buildings.
Historiska byggnader, byggnader uppförda före 1945, utgör en tredjedel av det totala byggnadsbeståndet i Sverige. Historiska byggnader har ofta kulturhistoriska värden som måste beaktas vid energieffektiviseringar. Detta examensarbete syftar till att undersöka påverkan på primärenergianvändning och CO2-utsläpp genom optimering av livscykelkostnaderna (LCC) för historiska byggnader. Som fallstudie används 920 historiska byggnader i Visbys innerstad, indelade i tolv olika typbyggnader (6 träbyggnader, 1w-6w, och 6 stenbyggnader, 1s-6s). Tre fall undersöks: referensfall utan implementerade energieffektiviseringsåtgärder (fall 1), lägsta möjliga LCC (fall 2) och en minskning av energianvändningen med 50 % (fall 3). Inom examensarbetets kommer även de mest lönsamma energieffektiviseringsåtgärderna tas fram. Examensarbetet kommer också att visa hur lönsamheten för energirenovering varierar mellan de olika typbyggnaderna. Vid utförandet av examensarbetet tillämpas en tvärvetenskaplig metod som beaktar både kulturhistoriska värden och energibesparing. Tyngdpunkten ligger dock på användningen av programmet Optimal Energy Retrofit Advisory-Mixed Integer Linear Programming (OPERA-MILP), som är en del av den tvärvetenskapliga metoden. Med användningen av OPERA-MILP erhålls den kostnadsoptimala energieffektiviseringsstrategin för en byggnad. Programmet beaktar alla energirelaterade investeringskostnader, samt investering- och driftkostnader för värmetillförselsystem, under en bestämd tidsperiod. Resultaten visar unika energieffektiviseringspaket för de olika typbyggnaderna med en potential att sänka totala LCC för byggnadsbeståndet med 4-11 % och samtidigt minska energianvändningen med mer än 50 %. Examensarbetet visar också en möjlig minskning i primärenergianvändning med 24-57 %. CO2-utsläppen varierar mycket beroende på vilka antaganden görs relaterat till elektricitetsproduktion och användning av biomassa; resultaten visar ökningar upp till 224 % i CO2-utsläpp men också minskningar ned till 85 %. Samtliga typbyggnader är ekonomiskt lönsamma att energirenovera med LCC-besparingar på 1,4-11,8 SEK med en livscykel satt till 50 år för varje årligen sparad kWh, förutom i fall 3 då kostnader uppstår för varje årligen sparad kWh med 10,0-17,2 SEK, för ett antal av typbyggnaderna.
Potential and Policies for Energy Efficiency in Swedish Buildings Built Before 1945 (Stage II) - Energy Systems Analysis
APA, Harvard, Vancouver, ISO, and other styles
40

Merugula, Laura. "Supporting Sustainable Markets Through Life Cycle Assessment: Evaluating emerging technologies, incorporating uncertainty and the consumer perspective." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1373461844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nes, Rasmus Nikolai. "Life cycle assessment of an offshore electricity grid interconnecting Northern Europe." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19237.

Full text
Abstract:
There is a growing demand for increased electricity transfer capacities between the countries surrounding the North Sea. The increased capacities will enable easier integration of intermittent renewable energy sources, decrease the need for balancing power, increase power trade and competition, and increase security of supply across the region. Interregional offshore grid connections are required if large scale deployment of deep sea, far from shore offshore wind energy in the North Sea is to take place. The WINDSPEED research project has resulted in proposals of realistic scenarios for large scale deployment of offshore grid and wind energy in the North Sea. In this study the environmental impacts of an interregional meshed offshore grid as proposed by WINDSPEED have been assessed. Environmental impacts of the offshore wind farms, which may be connected to the grid, have been included in the assessment as well, completing the system boundaries.The methods used to quantify the environmental impacts are process-based life cycle assessment (LCA), input-output assessment (IOA) and tiered hybrid LCA, with main focus on the results of the latter. Four offshore grid scenarios have been assessed, with and without offshore wind farms connected. The offshore grid is primarily composed of 450 kV HVDC technology for long distance transmission, based on the HVDC cables used in the NorNed connection. Wind farms are deployed far from shore (requiring much sea transport and long distance grid connections) and at an average of 43.9 meters depth (requiring large bottom-mounted foundations for the wind turbines). These requirements make the environmental impacts of deep sea, far from shore offshore wind energy substantially higher than for both close to shore offshore wind energy and onshore wind energy.The environmental assessment of the interregional meshed offshore grid found that the largest contribution to environmental impacts is from manufacturing and installation of HVDC cables. Sea transport required for installation of components and operation and maintenance contributes between 5 and 25 percent to most impact categories. The electrical equipment (converters, breakers and switchgear) required by the grid has a quite varying contribution, from almost none to some impact categories to about 35 percent to climate change impact. The environmental assessment of the deep sea, far from shore offshore wind energy, finds that the largest contributors to environmental impacts are the wind turbines. But the other components required – deep sea foundations, offshore grid and sea transport for installation, operation and maintenance – makes the environmental impacts caused by it around twice as high as for onshore wind energy installations. Total climate change impacts were found to be 42.9 g CO2-Eq/kWh; the grid is responsible for 11, foundations 31 and sea transport 9 percent of that. The largest impacts of deep sea, far from shore offshore wind energy as compared to other relevant energy sources are to the impact categories freshwater ecotoxicity, human toxicity and metal depletion. The impacts to these categories are many times larger, up to almost 20 times, compared to other relevant fossil fueled energy sources. The impacts to the other impact categories are substantially lower.The results indicate that the environmental impacts caused by an interregional meshed offshore grid in the North Sea are substantial; it needs to be considered an important part of an environmental assessment of deep sea, far from shore offshore wind energy. On the other hand, the environmental costs are probably not so high that they outweigh the potential benefits of such offshore grid connections. It may in fact lead to net environmental gains because of a decreased demand for fossil balance power. As for large scale deployment of deep sea, far from shore offshore wind energy the environmental benefits as opposed to relevant fossil alternatives are obvious, but, including the significant disadvantages of intermittent energy supply and high monetary costs, overall gain to society is harder to predict.
APA, Harvard, Vancouver, ISO, and other styles
42

Carless, Travis Seargeoh Emile. "Framing a New Nuclear Renaissance Through Environmental Competitiveness, Community Characteristics, and Cost Mitigation Through Passive Safety." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1151.

Full text
Abstract:
The nuclear power sector has a history of challenges with its relative competitiveness against other forms of electricity generation. The availability of low cost low natural gas, the Fukushima accident, and the cancellation of the AP1000 V.C. Summer project has caused a considerable role in ending the short lived “Nuclear Renaissance.” Historically, the nuclear industry has focused on direct cost reduction through construction, increasing installed capacity, and improving efficiencies to capacity factors in the 1990s and 2000s as ways to maintain competitiveness against other forms of energy generation. With renewables serving as an emerging low-carbon competitor, an added focus needs to be placed on indirect methods to increase the competitiveness of nuclear power. This thesis focuses on establishing pathways where nuclear power can be competitive with other forms of electricity generation given its advantages environmentally with Small Modular Reactors (SMRs), socioeconomically with legacy nuclear power plants, and through passive safety with SMRs. In Chapter 2, I estimate the life cycle GHG emissions and examine the cost of carbon abatement when nuclear is used to replace fossil fuels for the Westinghouse SMR (W-SMR) and AP1000. I created LCA models using past literature and Monte Carlo simulation to estimate the mean (and 90% confidence interval) life cycle GHG emissions of the W-SMR to be 7.4 g of CO2-eq/kwh (4.5 to 11.3 g of CO2-eq/kwh) and the AP1000 to be 7.6 g of CO2-eq/kwh (5.0 to 11.3 g of CO2-eq/kwh). Within the analysis I find that the estimated cost of carbon abatement with an AP1000 against coal and natural gas is $2/tonne of CO2-eq (-$13 to $26/tonne of CO2-eq) and $35/tonne of CO2-eq ($3 to $86/tonne of CO2-eq), respectively. In comparison, a W-SMR the cost of carbon abatement against coal and natural gas is $3/tonne of CO2- eq (-$15 to $28/tonne of CO2-eq) and $37/tonne of CO2-eq (-$1 to $90/tonne of CO2-eq), respectively. I conclude, with the exception of hydropower, the Westinghouse SMR design and the AP1000 have a smaller footprint than all other generation technologies including renewables. Assigning a cost to carbon for natural gas plant or implementing zero-emission incentives can improve the economic competitiveness of nuclear power through environmental competitiveness. The retirement of small and medium-scale coal power plants due the availability of natural gas can provide an opportunity for SMRs to replace that missing capacity. This trade-off between higher costs but lower GHG emissions demonstrates that depending on the value placed on carbon, SMR technology could be economically competitive with fossil fuel technologies Following my environmental competitiveness analysis, I shift towards investigating socioeconomic competitiveness of legacy large scale nuclear power plants compared to baseload coal and natural gas plants. In Chapter 3, I utilize ANOVA models, Tukey’s, and t-tests to explore the socioeconomic characteristics and disparities that exist within counties and communities that contain baseload power plants. My results indicate, relative to the home counties of nuclear plants, communities closer to nuclear plants have higher home values and incomes than those further away. Conversely, communities near coal and natural gas have incomes and home values that increase with distance from the plant. Communities near coal plants are typically either in less wealthy parts of the county or have a similar socioeconomic makeup as county. It can be suggested that equity issues regarding the community characteristics could be included in the discussion of converting existing power plants to use other fuel sources. Communities near power plants are not created equally and have different needs. While communities near nuclear power plants may benefit from the added tax base and absence of emissions, this is not the case for communities near coal and natural gas. With the impending retirement of large scale coal plants, the conversion of these plants to natural gas or small modular reactors presents an opportunity where negative environmental externalities can be reduced while also retaining some of the economic benefits. In Chapter 4, I present a model for estimating environmental dose exposure in a post-accident scenario to support scalable emergency planning zones (EPZs). The model includes calculating radionuclide inventory; estimating the impact decontamination factors from the AP1000, NUREG-6189, and EPRI’s Experimental Verification of Post-Accident iPWR Aerosol Behavior test will have on radioactivity within containment; and estimate dose exposure using atmospheric dispersion models. This work aims to compare historical decontamination factors with updated decontamination factors to outline the impact on containment radioactivity and dose exposure relative to the Environmental Protection Agency’s Protective Action Guide (PAG) limits. On average, I have found the AP1000, Surry, and iPWR produces 139, 153, and 104 curies/ft3 75 minutes after a LOCA. The iPWR produces less radioactivity per volume in containment than the AP1000 and Surry 84% and 96% of the time, respectively. The AP1000 produces less radioactivity per volume than Surry 68% of the time. On average, the AP1000, Surry, and iPWR produces 84,000, 106,000, and 7,000 curies/MWth 75 minutes after a LOCA. The lower bound 5 rem PAG limit is never exceeded for and does not exceeds the 1 rem lower PAG limit for whole body exposure at the 5-mile EPZ using the mean value. Considering this analysis uses a simple worst case Gaussian Plume model for atmospheric dispersion, the findings can be used to in conjunction with the State-of-the-Art Reactor Consequence Analyses (SOARCA) to provide accurate and realistic estimates for exposure. I believe this analysis can help to develop a regulatory basis for technology-neutral, risk-based approach to EPZs for iPWRs. Finally, in Chapter 5 I discuss historical challenges facing the nuclear industry, policy implications, and recommendations. These policy implications and recommendations serve as pathways to frame an new nuclear renaissance. I also recommend future work where I details opportunities for improvements to nuclear competitiveness. Ultimately, this thesis can help policy and decision makers that can improve competitiveness and minimize risk as it relates to the expansion of nuclear power sector.
APA, Harvard, Vancouver, ISO, and other styles
43

Greening, Benjamin Paul. "Life cycle environmental and economic sustainability assessment of micro-generation technologies in the UK domestic sector." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/life-cycle-environmental-and-economic-sustainability-assessment-of-microgeneration-technologies-in-the-uk-domestic-sector(ed331530-598c-45bf-8f1f-4e142814bf20).html.

Full text
Abstract:
This research has assessed the environmental and economic sustainability of domestic micro-generation technologies under UK conditions as both individual technologies and as part of a range of future energy supply scenarios for the domestic sector extending to 2050. A life cycle approach has been used for both environmental and economic assessment considering the relevant sustainability impacts, which include global warming potential, the depletion of fossil fuels, human toxicity and life cycle cost. The micro-generation technologies studied were selected on the basis of their ability to contribute to current and future energy supply and also their suitability under UK conditions. These technologies were micro-wind, solar photovoltaics, micro-combined heat and power, heat pumps and solar thermal water heating. The technologies were compared with one another and with the incumbent technologies, which were grid electricity and natural gas condensing boilers. Three journal papers have been published as a result of this research. The evaluation of micro-generation technologies on a life cycle basis indicated that despite reducing certain environmental impacts, all technologies increased at least one and as many as eight environmental impacts compared to their current fossil-fuel alternatives. All micro-generation technologies would reduce global warming and fossil fuel depletion compared to conventional technologies, highlighting their potential to contribute to energy policy goals. However, they cannot currently compete with conventional technologies for capital cost, although their life cycle costs – taking into account incentives from schemes such as Feed-in Tariffs – can be competitive. Considering both environmental and economic implications suggested that Stirling engine micro-combined heat and power is one of the most sustainable options for heat and electricity generation. The results also suggested that heat pumps should not be receiving incentives from the Government due to their poor environmental performance. Four potential future energy supply scenarios for the UK domestic sector were studied extending to 2050. The scenarios varied in terms of the level of effort made to improve the environmental and economic sustainability of the sector. Scenario 1 involved no further implementation of micro-generation beyond 2009, increasing energy demand and a grid electricity dominated by fossil fuels. In contrast, Scenario 4 portrayed a future where there is 1 micro-generation technology per dwelling, a 50% reduction in demand and almost complete decarbonisation of the grid mix. The results indicated that a huge transformation of the sector is required to achieve the 80% reduction in CO2 emissions by 2050. This would include halving energy demand, almost complete decarbonisation of grid electricity and the installation of a micro-generation unit in every dwelling. To conclude, despite the level of interest micro-generation is currently receiving, this work suggested their usage may not necessarily be as beneficial as some believe. Their use does reduce greenhouse gas emissions and fossil fuel consumption; however, to have any influence on energy policy goals this use would have to be widespread. Furthermore, reduced emissions will come at the expense of other environmental impacts. Finally, with a number of the technologies not yet cost competitive – even with incentives – the Government focus on measures to reduce demand and decarbonise the grid may prove to be a better option as this work suggested that energy policy goals could be achieved without high penetration of micro-generation.
APA, Harvard, Vancouver, ISO, and other styles
44

Baumert, Sophia [Verfasser]. "Life cycle assessment of carbon and energy balances in Jatropha production systems of Burkina Faso / Sophia Baumert." Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1052652662/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Patterson, Tim. "Life cycle analysis of biomass derived hydrogen and methane as fuel vectors, and a critical analysis of their future development in the UK." Thesis, University of South Wales, 2013. https://pure.southwales.ac.uk/en/studentthesis/life-cycle-analysis-of-biomass-derived-hydrogen-and-methane-as-fuel-vectors-and-a-critical-analysis-of-their-future-development-in-the-uk(3a1ece33-8a70-435f-bb36-af55785b6003).html.

Full text
Abstract:
Concerns over environmental impacts and long term availability of liquid fossil fuels means that sourcing alternative, renewable transport fuels has increased in importance. To date, implemented approaches have concentrated on the production of liquid biofuels biodiesel and bioethanol from crops. Even though technology for implementation is readily available in the form of biogas production and upgrading, gaseous fuels have been largely overlooked in the UK. Research completed showed that if produced from indigenous crops using currently viable technology, it is energetically more favourable to produce gaseous fuels rather than biodiesel or bioethanol with gaseous fuels also delivering some emission benefits at end use. To date, the subsidy system supporting biofuel production has not functioned well. Research showed that if the subsidies approached the maximum allowable value, and when produced from waste materials, the production of gaseous fuels can be economic compared to liquid biofuels. Life cycle assessment has showed that utilising biomethane as a vehicle fuel could be an environmentally appropriate approach if the conventional use for biogas of combusting in a combined heat and power plant cannot utilise the majority of the excess heat produced. A two stage process to produce a hydrogen / methane blend was shown to be energetically favourable when utilising wheat feed, although hydrogen production was low. The process was not energetically favourable when food waste was utilised, indicating the importance of optimising process according to feedstock characteristics. Life cycle assessment of electrolytic hydrogen production using a range of energy sources found that electrolysis driven by renewable energy was a valid option for future deployment. However, given current feedstock availability, indigenous biofuel production, regardless of the fuel produced, could only make minor contributions to overall fuel requirements. As such, a range of fuel vectors, or a significantly greater commitment of land resources to fuel production, will be required in the future.
APA, Harvard, Vancouver, ISO, and other styles
46

Simon, Peter. "Assessment of Embodied Energy and Carbon Emissions of the Swansea Bay Tidal Lagoon from a Life Cycle Perspective." Thesis, Mittuniversitetet, Avdelningen för ekoteknik och hållbart byggande, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-25145.

Full text
Abstract:
In the pursuit of low-carbon, renewable energy sources one option with great potential in the UK is tidal energy. Specifically the proposed construction of the Swansea Bay Tidal Lagoon (SBTL) in South Wales has become one such discussed option. With a potential net annual output of 400 GWh and a 120-year lifetime the scheme represents a long-term and large-scale electricity production option. An assessment of carbon emissions and embodied energy (EE) of the lagoon’s life cycle was carried out. Total lifetime carbon emissions for the SBTL are in the region of 470,000 tCO2e and EE was found to be around 7,800 TJ. The assessment shows that the SBTL has significantly lower emissions per year than the existing National Grid mix and with emissions of around 0.01 kgCO2e/KWh is significantly lower than the UK emissions target of 0.07 kgCO2e/KWh. Energy payback of the SBTL was found to be in the region of 5.5 years. The use of dredged ballast infill sourced from within the area of the lagoon plays an important role in keeping emissions and energy use low; and is a key consideration when planning future tidal lagoon structures.
APA, Harvard, Vancouver, ISO, and other styles
47

Noori, Mehdi. "Sustainability Assessment of Wind Energy for Buildings." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5995.

Full text
Abstract:
Due to increasing concerns for global climate change, onshore and offshore wind energy technologies have stimulated a tremendous interest worldwide, and are considered as a viable solution to mitigate the environmental impacts related to electricity generation. Although wind energy technologies have been considered as one of the cleanest energy sources, they have a wide range of direct and indirect environmental impacts when the whole supply chain is considered. This study aims to quantify the direct and indirect environmental impacts of onshore and offshore wind power technologies by tracing all of the economy-wide supply chain requirements. To accomplish this goal, we developed a comprehensive hybrid life cycle assessment (LCA) model in which process-based LCA model is combined with the economic input-output (EIO) analysis. The analysis results show that on average, concrete and steel and their supply chains are responsible for 37% and 24% of carbon footprint, consequently. On average, offshore wind turbines produce 48% less greenhouse gas emissions per kWh produced electricity than onshore wind turbines. For the onshore wind turbines, concrete, aggregates, and crushed stone approximately consume 95% of total water in this construction phase. On the other hand, concrete, lead, copper, and aggregate are responsible for around 90% of total water for the offshore wind turbines. It is also found that the more capacity the wind turbine has, the less environmental impact the wind turbine generates per kWh electricity. Moreover, based on the economic and environmental impacts of studied wind turbines and also three more nonrenewable energy sources, this study develops a decision making framework to understand the best energy source mix for a building in the state of Florida. This framework accounts for the uncertainty in the input material by deploying a Monte Carlo simulation approach. The results of decision making framework show that natural gas is a better option among nonrenewable sources. On the other hand, V90-3.0 MW offshore wind turbine is the best source of energy among renewable energy sources for a building. The findings of this research are critical for policy makers to understand the direct and indirect environmental impacts of different onshore and offshore wind energy systems. Also this study furnishes the decision maker with a range of possible energy mixes based on different economic and environmental weights.
M.S.C.E.
Masters
Civil, Environmental, and Construction Engineering
Engineering and Computer Science
Civil Engineering
APA, Harvard, Vancouver, ISO, and other styles
48

Switala-Elmhurst, Katherine. "Life Cycle Assessment of Residential Windows: Analyzing the Environmental Impact of Window Restoration versus Window Replacement." Diss., Temple University Libraries, 2014. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/275743.

Full text
Abstract:
Civil Engineering
Ph.D.
New windows are rated based on their energy performance during the use phase. This rating neglects the overall environmental impact caused by raw material extraction, manufacturing, maintenance and disposal. Due to the number of residential window replacements occurring today in the United States, there is a growing need to quantify the sustainability of window preservation as an alternative to window replacement. This study assessed the environmental impact of historic wood window restoration versus window replacement for the entire "cradle to grave" life cycle of the window assembly. This study focused on a typical, mid-twentieth century housing development in the Northeast United States using four window configurations as follows: 1. Restored original wood window with a new exterior aluminum storm window; 2. PVC replacement window; 3. Aluminum-clad wood replacement window; 4. Wood replacement window. The dissertation assessed the life cycle of window configurations using GaBi Software. The life cycle inventories were analyzed using the TRACI 2.1 impact method which translated the environmental consequences of the life cycle assessment processes into quantifiable environmental impacts. The dissertation also considered window thermal performance and life cycle costs. When considering life cycle environmental impacts, thermal performance, energy savings and material costs, the results indicated that wood window restoration was the best option when compared to replacement windows considered in this study; however, the results indicated that building service life and window service life assumptions could impact results. Thermal performance testing of windows revealed that window restoration techniques undertaken in this study improved the window's overall thermal performance. The testing also indicated that the effects of air infiltration had minimal influence on the performance of the restored window assembly when compared to a high performance replacement window. The results of the energy model exhibited only a small annual energy savings between the restored window assembly and a high performance replacement window. The payback cost analysis revealed that, while there was an immediate financial benefit of window replacement with the PVC option, window replacement frequency and overall life cycle environmental impacts would favor the restored window option.
Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
49

Martinez, Pancorbo Pablo. "Cradle-to-gate life-cycle assessment of future materials for commercial lithium-ion batteries : Raw Materials issues." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-27987.

Full text
Abstract:
Current private transportation remains very harmful for the environment, especially the non-electric vehicles. This report proposes five novel type of nanomaterials-based Li-ion batteries to improve substantially the electric vehicle battery properties along with a substantial reduction of the environmental impact of its commercial counterparts. To address the problem, a cradle-to-gate life-cycle assessment has been performed in which the biggest emphasis has been focused on the energy and materials inputs and outputs during the raw materials extraction. We show how the analyzed Ni-doped graphene battery and Fe3O4-based Cu battery are the most environmentally friendly, stable, reliable and improved batteries among the five cases of study. These results can open new horizons for future advances in the implantation of an electromobility transportation.

I presented my work via Skype while sharing the screen.

APA, Harvard, Vancouver, ISO, and other styles
50

Miliutenko, Sofiia. "Consideration of life cycle energy use and greenhouse gas emissions for improved road infrastructure planning." Doctoral thesis, KTH, Miljöstrategisk analys (fms), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184163.

Full text
Abstract:
Global warming is one of the biggest challenges of our society. The road transport sector is responsible for a big share of Greenhouse Gas (GHG) emissions, which are considered to be the dominant cause of global warming. Although most of those emissions are associated with traffic operation, road infrastructure should not be ignored, as it involves high consumption of energy and materials during a long lifetime. The aim of my research was to contribute to improved road infrastructure planning by developing methods and models to include a life cycle perspective. In order to reach the aim, GHG emissions and energy use at different life cycle stages of road infrastructure were assessed in three case studies using Life Cycle Assessment (LCA). These case studies were also used for development of methodology for LCA of road infrastructure. I have also investigated the coupling of LCA with Geographic Information Systems (GIS) and the possibility to integrate LCA into Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA). The results of the first case study indicated that operation of the tunnel (mainly, lighting and ventilation) has the largest contribution in terms of energy use and GHG emissions throughout its life cycle. The second case study identified the main hotspots and compared two methods for asphalt recycling and asphalt reuse. The results of the third case study indicated that due to the dominant contribution of traffic to the total impact of the road transport system, the difference in road length plays a major role in choice of road alternatives during early planning of road infrastructure. However, infrastructure should not be neglected, especially in the case of similar lengths of road alternatives, for roads with low volumes of traffic or when they include bridges or tunnels. This thesis contributed in terms of foreground and background data collection for further LCA studies of road infrastructure. Preliminary Bill of Quantities (BOQ) was identified and used as a source for site-specific data collection. A new approach was developed and tested for using geological data in a GIS environment as a data source on earthworks for LCA. Moreover, this thesis demonstrated three possible ways for integrating LCA in early stages of road infrastructure planning.

QC 20160329

APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography