Academic literature on the topic 'Life cycle assessment'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Life cycle assessment.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Life cycle assessment"

1

Zagursky, O. M., and E. А. Teslenko. "Length of life cycle assessment of vehicle." Naukovij žurnal «Tehnìka ta energetika» 10, no. 1 (February 7, 2019): 61–66. http://dx.doi.org/10.31548/machenergy2019.01.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pérez-Hernández, A., H. A. López-Aguilar, E. A. Huerta-Reynoso, J. A. Gómez, J. M. Olivarez-Ramírez, and A. Duarte-Moller. "Life cycle assessment of regional brick manufacture." Materiales de Construcción 66, no. 322 (April 15, 2016): e085. http://dx.doi.org/10.3989/mc.2016.02315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Anex, Robert, and Reid Lifset. "Life Cycle Assessment." Journal of Industrial Ecology 18, no. 3 (May 2014): 321–23. http://dx.doi.org/10.1111/jiec.12157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

White, Allen, and Karen Shapiro. "Life Cycle Assessment." Environmental Science & Technology 27, no. 6 (June 1993): 1016–17. http://dx.doi.org/10.1021/es00043a614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Šenitková, Ingrid, and Petra Bednárová. "LIFE CYCLE ASSESSMENT." JP Journal of Heat and Mass Transfer 11, no. 1 (February 27, 2015): 29–42. http://dx.doi.org/10.17654/jphmtfeb2015_029_042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rebitzer, G., T. Ekvall, R. Frischknecht, D. Hunkeler, G. Norris, T. Rydberg, W. P. Schmidt, S. Suh, B. P. Weidema, and D. W. Pennington. "Life cycle assessment." Environment International 30, no. 5 (July 2004): 701–20. http://dx.doi.org/10.1016/j.envint.2003.11.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Duda, Mark, and Jane S. Shaw. "Life cycle assessment." Society 34, no. 6 (November 1997): 38–43. http://dx.doi.org/10.1007/s12115-997-1022-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Duda, Mark, and Jane S. Shaw. "Life cycle assessment." Society 35, no. 1 (November 1997): 38–43. http://dx.doi.org/10.1007/s12115-997-1054-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baumann, Henrikke, and Tomas Rydberg. "Life cycle assessment." Journal of Cleaner Production 2, no. 1 (January 1994): 13–20. http://dx.doi.org/10.1016/0959-6526(94)90020-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klöpffer, Walter. "Life cycle assessment." Environmental Science and Pollution Research 4, no. 4 (December 1997): 223–28. http://dx.doi.org/10.1007/bf02986351.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Life cycle assessment"

1

Wiik, Marianne, and Mikaela Sahlin. "Life Cycle Assessment : Life cycle assessment of a high speed centrifugal separator." Thesis, KTH, Industriell ekologi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-32798.

Full text
Abstract:
The main objective is to perform a life cycle assessment (LCA) on a hot milk high-speed centrifugal separator (HMRPX 918-HGV-74C, product number 881275 01 01. The purpose of a life cycle assessment (LCA) is to provide a picture of a product’s total environmental impact during its lifecycle. The study is carried out according to ISO 14 040, i.e. all methods, data and assumptions are accounted for in order to make an external review possible. An LCA could provide the basis for an Environmental Product Declaration (EPD). The LCA clearly shows that the main environmental impact of the separator is caused by CIP and electricity used during operation. The major part of the impact from the CIP chemicals is due to the energy needed for their manufacture. Fossil fuels account for most of the impact for both operation and manufacture of chemicals. Therefore customers should be encouraged to use environmentally friendly electricity and chemicals, such as renewable energy sources and sodium hydroxide made with membrane technology. It is also important to use as little as possible of cleaning agents and make sure that waste is treated properly.
www.ima.kth.se
APA, Harvard, Vancouver, ISO, and other styles
2

Raynolds, Marlo. "Advancing life-cycle assessment techniques." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0026/NQ46908.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wright, Lucy. "Product life cycle management." Thesis, University of Surrey, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mueller, Karl G. "Life cycle assessment in engineering design." Thesis, Imperial College London, 2000. http://hdl.handle.net/10044/1/8049.

Full text
Abstract:
Making correct design decisions during the early stages of the engineering design process is increasingly seen to be important, as changes during the later stage can be costly. Life Cycle Assessment (LCA) is used as a method to evaluate the design from 'cradle to grave'. In concept design, decisions are made that have a most significant influence on the life cycle, but at this stage the lack of detail makes LCA very difficult if not impossible. This thesis introduces a method that enables an 'order-of-magnitude' life cycle assessment during the concept stage of the design process. This is achieved by modelling the life cycle inventory as a function of design parameters for complete product families used in engineering design. The hypothesis is that relatively few so-called life cycle parameters determine the largest part of the life cycle inventory. Furthermore, design parameters are related to life cycle parameters, which are mathematically modelled. Design parameters are chosen so that they can be estimated early during the design process. The models of the life cycle parameters are expressed in terms of upper and lower limits, summarising data from many product families. More detailed models describe the relationships of single product families. The method is suitable for software implementation, which will especially aid the handling of sensitivity analysis. Two case studies (sealed lead acid batteries, three-phase asynchronous motors) are used to illustrate how the life cycle parameters are related to the design parameters. An overall outline of how the method is implemented into the overall design process completes the thesis (evaluation of parallel and series configuration hybrid electric vehicle).
APA, Harvard, Vancouver, ISO, and other styles
5

Jiménez-González, Concepción. "Life Cycle Assessment in Pharmaceutical Applications." NCSU, 2002. http://www.lib.ncsu.edu/theses/available/etd-20020207-155355.

Full text
Abstract:

In the present work, life cycle information is developed to provide environmental input into process development and chemical selection within the pharmaceutical industry. The evaluation at various stages of the development process for Sertraline Hydrochloride, an effective chiral antidepressant, was conducted. This evaluation included the Life Cycle Inventory (LCI) and further Life Cycle Assessment (LCA) to compare several synthetic routes and production processes of this pharmaceutical product. To complete the Sertraline analysis, a methodology to generate gate-to-gate life cycle information of chemical substances was developed based on a transparent methodology of chemical engineering process design (an ab initio approach). In the broader concept of an LCI, the information of each gate-to-gate module can be linked accordingly in a production chain, including the extraction of raw materials, transportation, disposal, reuse, etc. to provide a full cradle-to-gate evaluation. Furthermore, the refinery, energy and treatment sub-modules were developed to assess the environmental burdens related to energy requirements and waste treatment. Finally, the concept of a Á¤lean/Green Technology GuideÃ?was also proposed as an expert system that would provide the scientists with comparative environmental and safety performance information on available technologies for commonly performed unit operations in the pharmaceutical industry. With the expected future application of computer-aid techniques for combinatorial synthesis, an increase of the number of parallel routes to be evaluated in the laboratory scale might be predicted. Life cycle information might also be added to this combinatorial synthesis approach for R&D. This input could be introduced in the earlier stages of process design in order to select cleaner materials or processes using a holistic perspective. This life cycle approach in pharmaceutical synthesis is intended to facilitate the evaluation, comparison, and selection of alternative synthesis routes, by incorporating the overall environmental impact of routes.

APA, Harvard, Vancouver, ISO, and other styles
6

Schueler, Maximilian. "Using Life Cycle Assessment in Agriculture." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19867.

Full text
Abstract:
Mit Ökobilanzen werden Umwelteigenschaften von Produkten und Dienstleistungen analysiert und zunehmend bei der Bewertung von Milchproduktionssystemen eingesetzt. Um konsistente Berichterstattung und Vergleichbarkeit von produktbezogenen Treibhausgasemissionen im Milchsektor zu gewährleisten hat die International Dairy Federation (IDF) Berechnungsgrundlagen publiziert. Allerdings werden die Effekte von Variabilität betrieblicher Kennzahlen und Unsicherheit von Emissionsfaktoren unzureichend betrachtet. Diese Arbeit hat es zum Ziel diese Lücke zu schließen. In der ersten Studie wurden verschiedene Definitions- und Berechnungsmöglichkeiten des Referenzflusses und der funktionellen Einheit für die Klimabilanz von Milchproduktion verglichen. Eine hohe Bandbreite an möglichen Ergebnissen – bei gleichen Eingangsdaten – ermöglicht eine große Ergebnisunsicherheit. Die Voraussetzungen für zeitliche Repräsentativität wurden in der zweiten Studie untersucht. Über 6 aufeinanderfolgende Jahre wurde auf einem ökologischen Milchviehbetrieb in Norddeutschland die Klimabilanz mit einem detaillierten Stoffflussmodel analysiert. Dabei zeigte es sich, dass für den untersuchten Betrieb mindestens 4 aufeinanderfolgende Jahre untersucht werden müssen um belastbare Ergebnisse zu erzielen. Die dritte Studie befasst sich mit der Forderung mindestens ein Stufe 2 Verfahren der Methodik des IPCC zu verwenden. Mit Daten von 20 norwegischen Milchviehbetrieben wurde die Unsicherheit der Klimabilanz auf Basis von Tier 1 Berechnungen bei bodenbürtigen Emissionen mit dem FARM Modell ermittelt. Von allen 190 direkten Vergleichen von zwei Betrieben miteinander waren 78 % signifikant unterschiedlich Aus den drei Studien wird geschlossen, dass die existierenden Regeln zur Erstellung von Klimabilanzen von Milchproduktion teilweise zu unpräzise und teilweise zu streng sind, und damit sowohl Erstellung als auch Interpretation von betrieblichen Klimabilanzen in der Milchproduktion erschwert werden.
Life cycle assessment (LCA) analyses the environmental performance of products and services and has become increasingly important also for the environmental assessment of dairy systems. In order to create consistent results for communication, declaration and comparison, the International Dairy Federation (IDF) provides a guideline for the calculation of product-related greenhouse gas (GHG) emissions in the dairy sector. However, the effects of farm data variability and emission factor uncertainty on the comparability of GHG assessments on the farming level are seldom considered. This thesis aims to fill this gap. In the first study, different settings in the definition of energy corrected milk (ECM) and the reference flows were compared in a calculation example based on average farming data. A high bandwidth of the carbon footprint result indicated a severe uncertainty when calculation procedures are not well documented. The second case study examined the production data from six consecutive milk years in an organic dairy farm in northern Germany and its effect on the estimation of product-related GHG emissions. It was shown that data from at least four years is needed to provide reliable results for that farm. The third study dealt with the demand of the IDF guidelines to use at least Tier 2 in the methodology of the Intergovernmental Panel on Climate Change (IPCC). Using data from 20 Norwegian dairy farms, the uncertainty of the carbon footprint using Tier 1 of the IPCC guidelines within the FARM model was assessed. From all 190 direct comparisons of two farms in the study, 78 % of the comparisons were significantly different with a relative difference of 8.7 % being enough to establish significance of the difference. From the three studies it was concluded that existing rules may partly not be precise enough to allow for comparison of farms or farming systems, or partly too strict and thereby hindering the execution of carbon footprint studies.
APA, Harvard, Vancouver, ISO, and other styles
7

Solberg-Johansen, Bente. "Environmental life cycle assessment of the nuclear fuel cycle." Thesis, University of Surrey, 1998. http://epubs.surrey.ac.uk/772/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Petrovic, Bojana. "Life cycle assessment and life cycle cost analysis of a single-family house." Licentiate thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-36901.

Full text
Abstract:
The building industry is responsible for 35% of final energy use and 38% of CO2 emissions at a global level. The European Union aims to reduce CO2 emissions in the building industry by up to 90% by the year 2050. Therefore, it is important to consider the environmental impacts buildings have. The purpose of this thesis was to investigate the environmental impacts and costs of a single-family house in Sweden. In the study, the life cycle assessment (LCA) and the life cycle cost (LCC) methods have been used by following the “cradle to grave” life cycle perspective.  This study shows a significant reduction of global warming potential (GWP), primary energy (PE) use and costs when the lifespan of the house is shifted from 50 to 100 years. The findings illustrate a total decrease in LCA outcome, of GWP to 27% and PE to 18%. Considering the total LCC outcome, when the discount rate increases from 3% to 5% and then 7%, the total costs decrease significantly (60%, 85% to 95%). The embodied carbon, PE use and costs from the production stage/construction stage are significantly reduced, while the maintenance/replacement stage displays the opposite trend. Operational energy use, water consumption and end-of-life, however, remain largely unchanged. Furthermore, the findings emphasize the importance of using wood-based building materials due to its lower carbon-intensive manufacturing process compared to non-wood choices.   The results of the LCA and LCC were systematically studied and are presented visually. Low carbon and cost-effective materials and installations have to be identified in the early stage of a building design so that the appropriate investment choices can be made that will reduce a building’s total environmental and economic impact in the long run. Findings from this thesis provide a greater understanding of the environmental and economic impacts that are relevant for decision-makers when building single-family houses.
Byggbranschen svarar för 35% av den slutliga energianvändningen och 38 % av koldioxidutsläppen på global nivå. Europeiska unionen strävar efter att minska koldioxidutsläppen i byggnadsindustrin med upp till 90% fram till 2050. Därför är det viktigt att beakta byggnaders miljöpåverkan. Syftet med denna avhandling var att undersöka miljöpåverkan och kostnader för ett enfamiljshus i Sverige. I studien har livscykelbedömningen (LCA) och livscykelkostnadsmetoderna (LCC) använts genom att tillämpa livscykelperspektivet ”vagga till grav”. Studien visar en stor minskning av global uppvärmningspotential (GWP), användning av primärenergi (PE) och kostnader vid växling från 50 till 100 års husets livslängd. Resultaten visar en årlig minskning med 27% för utsläpp av växthusgaser och med 18% för användningen av primärenergi. Med tanke på det totala LCC-utfallet, när diskonteringsräntan ökar från 3%, 5% till 7%, minskar de totala kostnaderna avsevärt (60%, 85% till 95%). Det noteras att klimatavtrycket, primärenergianvändningen och kostnaderna från produktionssteget/konstruktionssteget minskar avsevärt, medan underhålls- / utbytessteget visar den motsatta trenden när man byter från 50 till 100 års livslängd. Den operativa energianvändningen, vattenförbrukningen och avfallshanteringen är fortfarande nästan samma när man ändrar livslängden. Vidare betonar resultaten vikten av att använda träbaserade byggmaterial på grund av lägre klimatpåverkan från tillverkningsprocessen jämfört med alternativen. LCA- och LCC-resultaten studerades systematiskt och redovisades visuellt. De koldioxidsnåla och kostnadseffektiva materialen och installationerna måste identifieras i ett tidigt skede av en byggnadskonstruktion genom att välja lämpliga investeringsval som kommer att minska de totala miljö och ekonomiska effekterna på lång sikt. Resultaten från denna avhandling ger ökad förståelse för miljömässiga och ekonomiska konsekvenser som är relevanta för beslutsfattare vid byggnation av ett enfamiljshus.
APA, Harvard, Vancouver, ISO, and other styles
9

De, Sanctis Clarissa. "Life Cycle Assessment Method for PVC production." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
Partendo da un'analisi generale sull'importanza della plastica come materia prima a livello globale con le sue relative implicazioni ambientali e non, ci si è successivamente focalizzati sulla produzione del PVC. Si è applicata la metodologia "Life Cycle Assessment (LCA)" prendendo in considerazione tutti gli step necessari per la sintesi di un kilogrammo di PVC. L'utilizzo del GaBi software ha successivemente permesso di implemetare l'analisi ed ottenere risultati in termini di indici (eventualmente aggregati in indicatori), singoli valori che hanno permesso di valutare l'impatto ambientale dell'intero processo sull'ecosistema e le risorse naturali utilizzate. L'elaborato termina con l'analisi dei Costi e dei Benefici della produzione di un kilogrammo di PVC al fine di caratterizzare l'intero processo di sintesi dal punto di vista economico, se competitivo e benefico per la comunità oppure senza vantaggi economici, ambientali e sociali.
APA, Harvard, Vancouver, ISO, and other styles
10

Flamini, Leonardo. "Life Cycle Assessment nella produzione di biogas." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
Il biogas che si forma nella pancia di una discarica è un fenomeno noto da sempre, ma solo da alcuni decenni si è iniziato a pensare ad esso come un processo che può portare ad una risorsa. A partire dalla direttiva 2009/28/CE il biometano viene inserito nella lista dei biocombustibili da incentivare, in seguito alla quale seguirà una stagione di grande diffusione di impianti di piccola taglia su tutto il territorio nazionale, alimentati principalmente a FORSU e scarti dell’industria agrozootecnica. Dopo qualche anno di stallo il recepimento della direttiva UE 2015/1513 mette le basi per un nuovo impulso all’apertura di impianti di nuova costruzione, i quali però devono certificare la propria sostenibilità. Questo elaborato, svolto presso la IGW srl di Calderara di Reno(BO), intende valutare la sostenibilità ai sensi della direttiva 2009/28/CE, operando dunque un’analisi del ciclo di vita, di tre differenti impianti di produzioni di biogas, che utilizzano due differenti tipologie di alimentazione e differenti soluzioni impiantistiche.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Life cycle assessment"

1

Borrion, Aiduan, Mairi J. Black, and Onesmus Mwabonje, eds. Life Cycle Assessment. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788016209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hauschild, Michael Z., Ralph K. Rosenbaum, and Stig Irving Olsen, eds. Life Cycle Assessment. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-56475-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Association, Canadian Standards. Life cycle assessment. Rexdale, Ont: Canadian Standards Association, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Muthu, Subramanian Senthilkannan, ed. Social Life Cycle Assessment. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-296-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muthu, Subramanian Senthilkannan, ed. Social Life Cycle Assessment. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3233-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Muthu, Subramanian Senthilkannan, ed. Social Life Cycle Assessment. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3236-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Klöpffer, Walter, and Birgit Grahl, eds. Life Cycle Assessment (LCA). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527655625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hauschild, Michael Z., and Mark A. J. Huijbregts, eds. Life Cycle Impact Assessment. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9744-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Foundation, World Resource. Life cycle analysis & assessment. Tonbridge, Kent: World Resource Foundation, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Muthu, Subramanian Senthilkannan, ed. Life Cycle Sustainability Assessment (LCSA). Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4562-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Life cycle assessment"

1

Hauschild, Michael Z., Alexandra Bonou, and Stig Irving Olsen. "Life Cycle Interpretation." In Life Cycle Assessment, 323–34. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56475-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bey, Niki. "Life Cycle Management." In Life Cycle Assessment, 519–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56475-3_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Madu, Christian N. "Life Cycle Assessment." In Handbook of Environmentally Conscious Manufacturing, 385–416. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1727-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cays, John. "Life Cycle Assessment." In An Environmental Life Cycle Approach to Design, 79–101. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63802-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hauschild, Michael Z. "Life Cycle Assessment." In CIRP Encyclopedia of Production Engineering, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_16814-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Clay, Sylvia M., and Stephen S. Fong. "Life Cycle Assessment." In Developing Biofuel Bioprocesses Using Systems and Synthetic Biology, 15–17. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5580-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Falano, Temitope, and Patricia Thornley. "Life Cycle Assessment." In Biomass Energy with Carbon Capture and Storage (BECCS): Unlocking Negative Emissions, 117–27. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119237716.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dones, Roberto, Xin Zhou, and Chunxiu Tian. "Life Cycle Assessment." In Integrated Assessment of Sustainable Energy Systems in China The China Energy Technology Program, 319–444. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0153-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nigge, Karl-Michael. "Life Cycle Assessment." In Life Cycle Assessment of Natural Gas Vehicles, 3–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59775-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Soukka, Risto, Sanni Väisänen, Kaisa Grönman, Ville Uusitalo, and Heli Kasurinen. "Life Cycle Assessment." In Encyclopedia of Sustainable Management, 1–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-02006-4_623-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Life cycle assessment"

1

Kobayashi, Osamu. "Car Life Cycle Inventory Assessment." In 1997 Total Life Cycle Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/971199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ha, Jongbae, Yeonju Kim, Heewook Cho, Jaehwan Kim, Tak Hur, and Kun M. Lee. "Life Cycle Assessment Study of a Bumper." In Total Life Cycle Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/982175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bushi, Lindita, Timothy Skszek, and David Wagner. "MMLV: Life Cycle Assessment." In SAE 2015 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2015. http://dx.doi.org/10.4271/2015-01-1616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Berkhout, Frans. "Life Cycle Assessment and Innovation in the Automotive Industry." In Total Life Cycle Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/982178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ha, Jongbae, Sung K. Min, Tak Hur, and Sungjin Kim. "Practical Life Cycle Assessment Methodology for a Whole Automobile." In Total Life Cycle Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/982188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Binder, Marc, Claudius Kaniut, Halil Cetiner, Hartmut Schröter, and Klaus Schmitt. "Life Cycle Assessment of a Truck Component - Air Deflection System." In Total Life Cycle Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/982173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vyas, Anant, Roy Cuenca, and Linda Gaines. "An Assessment of Electric Vehicle Life Cycle Costs to Consumers." In Total Life Cycle Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/982182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stephens, Robert D., Ronald L. Williams, Gregory A. Keoleian, Sabrina Spatari, and Robb Beal. "Comparative Life Cycle Assessment of Plastic and Steel Vehicle Fuel Tanks." In Total Life Cycle Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/982224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chun-Fa, Li, Wang Cai-Feng, and Li Jian. "Life Cycle Perspective and Life Cycle Assessment for Recycled Glass." In 2007 3rd International Conference on Wireless Communications, Networking, and Mobile Computing - WiCOM '07. IEEE, 2007. http://dx.doi.org/10.1109/wicom.2007.1235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Buxmann, Kurt, and Johannes Gediga. "Life Cycle Assessment of Different Recycling Scenarios of Aluminum Car Body Sheet." In Total Life Cycle Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/982176.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Life cycle assessment"

1

Sullivan, J. L., E. D. Frank, J. Han, A. Elgowainy, and M. Q. Wang. Geothermal life cycle assessment - part 3. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1118131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fox-Lent, Cate, Matthew Bates, and Margaret Kurth. Basics of life-cycle assessment for navigation. Engineer Research and Development Center (U.S.), December 2019. http://dx.doi.org/10.21079/11681/34856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mann, M. K., and P. L. Spath. Life cycle assessment of a biomass gasification combined-cycle power system. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/10106791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mann, M. K., and P. L. Spath. Life cycle assessment of a biomass gasification combined-cycle power system. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/567454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Spath, P. L., M. K. Mann, and D. R. Kerr. Life Cycle Assessment of Coal-fired Power Production. Office of Scientific and Technical Information (OSTI), September 1999. http://dx.doi.org/10.2172/12100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spath, P. L., and M. K. Mann. Life Cycle Assessment of a Natural Gas Combined Cycle Power Generation System. Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/776930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zimmerman, Arno, Johannes Wunderlich, Georg Buchner, Leonard Müller, Katy Armstrong, Stavros Michailos, Annika Marxen, et al. Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization. Global CO2 Initiative, University of Michigan, 2018. http://dx.doi.org/10.3998/2027.42/145436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tews, Iva J., Yunhua Zhu, Corinne Drennan, Douglas C. Elliott, Lesley J. Snowden-Swan, Kristin Onarheim, Yrjo Solantausta, and David Beckman. Biomass Direct Liquefaction Options. TechnoEconomic and Life Cycle Assessment. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1184983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dubreuil, Alain, Lindita Bushi, Sujit Das, Ambalavanar Tharumarajah, and Xianzheng Gong. A Comparative Life Cycle Assessment of Magnesium Front End Autoparts. Warrendale, PA: SAE International, April 2010. http://dx.doi.org/10.4271/2010-01-0275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gathorne-Hardy, Alfred. A Newcomer's Guide to Life Cycle Assessment - Baselines and Boundaries. Unknown, 2013. http://dx.doi.org/10.35648/20.500.12413/11781/ii209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography