Journal articles on the topic 'Lieb-Robinson bound'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lieb-Robinson bound.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Matsuta, Takuro, Tohru Koma, and Shu Nakamura. "Improving the Lieb–Robinson Bound for Long-Range Interactions." Annales Henri Poincaré 18, no. 2 (October 20, 2016): 519–28. http://dx.doi.org/10.1007/s00023-016-0526-1.
Full textWoods, M. P., and M. B. Plenio. "Dynamical error bounds for continuum discretisation via Gauss quadrature rules—A Lieb-Robinson bound approach." Journal of Mathematical Physics 57, no. 2 (February 2016): 022105. http://dx.doi.org/10.1063/1.4940436.
Full textMahoney, Brendan J., and Craig S. Lent. "The Value of the Early-Time Lieb-Robinson Correlation Function for Qubit Arrays." Symmetry 14, no. 11 (October 26, 2022): 2253. http://dx.doi.org/10.3390/sym14112253.
Full textStrasberg, Philipp, Kavan Modi, and Michalis Skotiniotis. "How long does it take to implement a projective measurement?" European Journal of Physics 43, no. 3 (March 28, 2022): 035404. http://dx.doi.org/10.1088/1361-6404/ac5a7a.
Full textMoosavian, Ali Hamed, Seyed Sajad Kahani, and Salman Beigi. "Limits of Short-Time Evolution of Local Hamiltonians." Quantum 6 (June 27, 2022): 744. http://dx.doi.org/10.22331/q-2022-06-27-744.
Full textVershynina, Anna, and Elliott Lieb. "Lieb-Robinson bounds." Scholarpedia 8, no. 9 (2013): 31267. http://dx.doi.org/10.4249/scholarpedia.31267.
Full textDoyon, Benjamin. "Hydrodynamic Projections and the Emergence of Linearised Euler Equations in One-Dimensional Isolated Systems." Communications in Mathematical Physics 391, no. 1 (January 27, 2022): 293–356. http://dx.doi.org/10.1007/s00220-022-04310-3.
Full textIslambekov, Umar, Robert Sims, and Gerald Teschl. "Lieb–Robinson Bounds for the Toda Lattice." Journal of Statistical Physics 148, no. 3 (August 2012): 440–79. http://dx.doi.org/10.1007/s10955-012-0554-2.
Full textNACHTERGAELE, BRUNO, BENJAMIN SCHLEIN, ROBERT SIMS, SHANNON STARR, and VALENTIN ZAGREBNOV. "ON THE EXISTENCE OF THE DYNAMICS FOR ANHARMONIC QUANTUM OSCILLATOR SYSTEMS." Reviews in Mathematical Physics 22, no. 02 (March 2010): 207–31. http://dx.doi.org/10.1142/s0129055x1000393x.
Full textNachtergaele, Bruno, and Robert Sims. "Lieb-Robinson Bounds and the Exponential Clustering Theorem." Communications in Mathematical Physics 265, no. 1 (March 22, 2006): 119–30. http://dx.doi.org/10.1007/s00220-006-1556-1.
Full textNachtergaele, Bruno, Hillel Raz, Benjamin Schlein, and Robert Sims. "Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems." Communications in Mathematical Physics 286, no. 3 (September 23, 2008): 1073–98. http://dx.doi.org/10.1007/s00220-008-0630-2.
Full textDamanik, David, Marius Lemm, Milivoje Lukic, and William Yessen. "On anomalous Lieb–Robinson bounds for the Fibonacci XY chain." Journal of Spectral Theory 6, no. 3 (2016): 601–28. http://dx.doi.org/10.4171/jst/133.
Full textSweke, Ryan, Jens Eisert, and Michael Kastner. "Lieb–Robinson bounds for open quantum systems with long-ranged interactions." Journal of Physics A: Mathematical and Theoretical 52, no. 42 (September 24, 2019): 424003. http://dx.doi.org/10.1088/1751-8121/ab3f4a.
Full textGebert, Martin, and Marius Lemm. "On Polynomial Lieb–Robinson Bounds for the XY Chain in a Decaying Random Field." Journal of Statistical Physics 164, no. 3 (June 10, 2016): 667–79. http://dx.doi.org/10.1007/s10955-016-1558-0.
Full textNachtergaele, Bruno, Robert Sims, and Amanda Young. "Quasi-locality bounds for quantum lattice systems. I. Lieb-Robinson bounds, quasi-local maps, and spectral flow automorphisms." Journal of Mathematical Physics 60, no. 6 (June 2019): 061101. http://dx.doi.org/10.1063/1.5095769.
Full textBachmann, Sven, Wojciech Dybalski, and Pieter Naaijkens. "Lieb–Robinson Bounds, Arveson Spectrum and Haag–Ruelle Scattering Theory for Gapped Quantum Spin Systems." Annales Henri Poincaré 17, no. 7 (October 23, 2015): 1737–91. http://dx.doi.org/10.1007/s00023-015-0440-y.
Full textBentsen, Gregory, Yingfei Gu, and Andrew Lucas. "Fast scrambling on sparse graphs." Proceedings of the National Academy of Sciences 116, no. 14 (March 21, 2019): 6689–94. http://dx.doi.org/10.1073/pnas.1811033116.
Full textGebert, Martin, Bruno Nachtergaele, Jake Reschke, and Robert Sims. "Lieb–Robinson Bounds and Strongly Continuous Dynamics for a Class of Many-Body Fermion Systems in $${\mathbb {R}}^d$$." Annales Henri Poincaré 21, no. 11 (September 24, 2020): 3609–37. http://dx.doi.org/10.1007/s00023-020-00959-5.
Full textKennett, Malcolm P. "Out-of-Equilibrium Dynamics of the Bose-Hubbard Model." ISRN Condensed Matter Physics 2013 (June 12, 2013): 1–39. http://dx.doi.org/10.1155/2013/393616.
Full textHinrichs, Benjamin, Marius Lemm, and Oliver Siebert. "On Lieb–Robinson Bounds for a Class of Continuum Fermions." Annales Henri Poincaré, July 12, 2024. http://dx.doi.org/10.1007/s00023-024-01453-y.
Full textHuang, Zhiqiang, and Xiao-Kan Guo. "Lieb-Robinson bound at finite temperatures." Physical Review E 97, no. 6 (June 18, 2018). http://dx.doi.org/10.1103/physreve.97.062131.
Full textRanard, Daniel, Michael Walter, and Freek Witteveen. "A Converse to Lieb–Robinson Bounds in One Dimension Using Index Theory." Annales Henri Poincaré, July 26, 2022. http://dx.doi.org/10.1007/s00023-022-01193-x.
Full textFu, Hao, Mingqiu Luo, and Peiqing Tong. "Lieb-Robinson bound in one-dimensional inhomogeneous quantum systems." Physica B: Condensed Matter, April 2022, 413958. http://dx.doi.org/10.1016/j.physb.2022.413958.
Full textFu, Hao, Mingqiu Luo, and Peiqing Tong. "Lieb-Robinson bound in one-dimensional inhomogeneous quantum systems." Physica B: Condensed Matter, April 2022, 413958. http://dx.doi.org/10.1016/j.physb.2022.413958.
Full textFu, Hao, Peiqing Tong, and Mingqiu Luo. "Lieb-Robinson Bound in One-Dimensional Inhomogeneous Quantum Systems." SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4053161.
Full textWang, Zhiyuan, and Kaden R. A. Hazzard. "Tightening the Lieb-Robinson Bound in Locally Interacting Systems." PRX Quantum 1, no. 1 (September 3, 2020). http://dx.doi.org/10.1103/prxquantum.1.010303.
Full textPoulin, David. "Lieb-Robinson Bound and Locality for General Markovian Quantum Dynamics." Physical Review Letters 104, no. 19 (May 11, 2010). http://dx.doi.org/10.1103/physrevlett.104.190401.
Full textBraida, Arthur, Simon Martiel, and Ioan Todinca. "Tight Lieb–Robinson Bound for approximation ratio in quantum annealing." npj Quantum Information 10, no. 1 (April 17, 2024). http://dx.doi.org/10.1038/s41534-024-00832-x.
Full textKuwahara, Tomotaka, Tan Van Vu, and Keiji Saito. "Effective light cone and digital quantum simulation of interacting bosons." Nature Communications 15, no. 1 (March 21, 2024). http://dx.doi.org/10.1038/s41467-024-46501-7.
Full textRoberts, Daniel A., and Brian Swingle. "Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories." Physical Review Letters 117, no. 9 (August 23, 2016). http://dx.doi.org/10.1103/physrevlett.117.091602.
Full textAbeling, Nils O., Lorenzo Cevolani, and Stefan Kehrein. "Analysis of the buildup of spatiotemporal correlations and their bounds outside of the light cone." SciPost Physics 5, no. 5 (November 26, 2018). http://dx.doi.org/10.21468/scipostphys.5.5.052.
Full textJameson, Casey, Bora Basyildiz, Daniel Moore, Kyle Clark, and Zhexuan Gong. "Time optimal quantum state transfer in a fully-connected quantum computer." Quantum Science and Technology, October 26, 2023. http://dx.doi.org/10.1088/2058-9565/ad0770.
Full textGebert, Martin, Alvin Moon, and Bruno Nachtergaele. "A Lieb–Robinson bound for quantum spin chains with strong on-site impurities." Reviews in Mathematical Physics, January 15, 2022. http://dx.doi.org/10.1142/s0129055x22500076.
Full textKuwahara, Tomotaka, and Keiji Saito. "Lieb-Robinson Bound and Almost-Linear Light Cone in Interacting Boson Systems." Physical Review Letters 127, no. 7 (August 13, 2021). http://dx.doi.org/10.1103/physrevlett.127.070403.
Full textElse, Dominic V., Francisco Machado, Chetan Nayak, and Norman Y. Yao. "Improved Lieb-Robinson bound for many-body Hamiltonians with power-law interactions." Physical Review A 101, no. 2 (February 26, 2020). http://dx.doi.org/10.1103/physreva.101.022333.
Full textNickelsen, Daniel, and Michael Kastner. "Classical Lieb-Robinson Bound for Estimating Equilibration Timescales of Isolated Quantum Systems." Physical Review Letters 122, no. 18 (May 10, 2019). http://dx.doi.org/10.1103/physrevlett.122.180602.
Full textGong, Zongping, Tommaso Guaita, and J. Ignacio Cirac. "Long-Range Free Fermions: Lieb-Robinson Bound, Clustering Properties, and Topological Phases." Physical Review Letters 130, no. 7 (February 17, 2023). http://dx.doi.org/10.1103/physrevlett.130.070401.
Full textShiraishi, Naoto, and Hiroyasu Tajima. "Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound." Physical Review E 96, no. 2 (August 16, 2017). http://dx.doi.org/10.1103/physreve.96.022138.
Full textChen, Xiao, Yingfei Gu, and Andrew Lucas. "Many-body quantum dynamics slows down at low density." SciPost Physics 9, no. 5 (November 12, 2020). http://dx.doi.org/10.21468/scipostphys.9.5.071.
Full textGong, Zongping, and Ryusuke Hamazaki. "Bounds in nonequilibrium quantum dynamics." International Journal of Modern Physics B, September 26, 2022. http://dx.doi.org/10.1142/s0217979222300079.
Full textAgeev, Dmitry S., Andrey A. Bagrov, Aleksandr I. Belokon, Askar Iliasov, Vasilii V. Pushkarev, and Femke Verheijen. "Local quenches in fracton field theory: Lieb-Robinson bound, noncausal dynamics and fractal excitation patterns." Physical Review D 110, no. 6 (September 13, 2024). http://dx.doi.org/10.1103/physrevd.110.065011.
Full textBraida, Arthur, Simon Martiel, and Ioan Todinca. "On constant-time quantum annealing and guaranteed approximations for graph optimization problems." Quantum Science and Technology, September 1, 2022. http://dx.doi.org/10.1088/2058-9565/ac8e91.
Full textAmpelogiannis, Dimitrios, and Benjamin Doyon. "Long-Time Dynamics in Quantum Spin Lattices: Ergodicity and Hydrodynamic Projections at All Frequencies and Wavelengths." Annales Henri Poincaré, May 5, 2023. http://dx.doi.org/10.1007/s00023-023-01304-2.
Full textPonnaganti, Ravi Teja, Matthieu Mambrini, and Didier Poilblanc. "Tensor network variational optimizations for real-time dynamics: Application to the time-evolution of spin liquids." SciPost Physics 15, no. 4 (October 12, 2023). http://dx.doi.org/10.21468/scipostphys.15.4.158.
Full textAmpelogiannis, Dimitrios, and Benjamin Doyon. "Almost Everywhere Ergodicity in Quantum Lattice Models." Communications in Mathematical Physics, October 30, 2023. http://dx.doi.org/10.1007/s00220-023-04849-9.
Full textWilming, Henrik, and Albert H. Werner. "Lieb-Robinson bounds imply locality of interactions." Physical Review B 105, no. 12 (March 2, 2022). http://dx.doi.org/10.1103/physrevb.105.125101.
Full textDamanik, David, Marius Lemm, Milivoje Lukic, and William Yessen. "New Anomalous Lieb-Robinson Bounds in QuasiperiodicXYChains." Physical Review Letters 113, no. 12 (September 18, 2014). http://dx.doi.org/10.1103/physrevlett.113.127202.
Full textPrémont-Schwarz, Isabeau, Alioscia Hamma, Israel Klich, and Fotini Markopoulou-Kalamara. "Lieb-Robinson bounds for commutator-bounded operators." Physical Review A 81, no. 4 (April 27, 2010). http://dx.doi.org/10.1103/physreva.81.040102.
Full textBaldwin, Christopher L., Adam Ehrenberg, Andrew Y. Guo, and Alexey V. Gorshkov. "Disordered Lieb-Robinson Bounds in One Dimension." PRX Quantum 4, no. 2 (June 22, 2023). http://dx.doi.org/10.1103/prxquantum.4.020349.
Full textFaupin, Jérémy, Marius Lemm, and Israel Michael Sigal. "On Lieb–Robinson Bounds for the Bose–Hubbard Model." Communications in Mathematical Physics, June 29, 2022. http://dx.doi.org/10.1007/s00220-022-04416-8.
Full text