Academic literature on the topic 'Lie transformation groups'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lie transformation groups.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lie transformation groups"
Miao, Xu, and Rajesh P. N. Rao. "Learning the Lie Groups of Visual Invariance." Neural Computation 19, no. 10 (October 2007): 2665–93. http://dx.doi.org/10.1162/neco.2007.19.10.2665.
Full textAl-Shomrani, M. M. "Lie Groups Analysis and Contact Transformations for Ito System." Abstract and Applied Analysis 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/342680.
Full textFIGUEROA-O’FARRILL, JOSÉ M., and SONIA STANCIU. "POISSON LIE GROUPS AND THE MIURA TRANSFORMATION." Modern Physics Letters A 10, no. 36 (November 30, 1995): 2767–73. http://dx.doi.org/10.1142/s0217732395002908.
Full textCariñena, Jose F., Mariano A. Del Olmo, and Mariano Santander. "Locally operating realizations of transformation Lie groups." Journal of Mathematical Physics 26, no. 9 (September 1985): 2096–106. http://dx.doi.org/10.1063/1.526974.
Full textLin, Feng, Haohang Xu, Houqiang Li, Hongkai Xiong, and Guo-Jun Qi. "Auto-Encoding Transformations in Reparameterized Lie Groups for Unsupervised Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (May 18, 2021): 8610–17. http://dx.doi.org/10.1609/aaai.v35i10.17044.
Full textGarcía‐Prada, Oscar, Mariano A. del Olmo, and Mariano Santander. "Locally operating realizations of nonconnected transformation Lie groups." Journal of Mathematical Physics 29, no. 5 (May 1988): 1083–90. http://dx.doi.org/10.1063/1.527946.
Full textNesterenko, Maryna O. "Transformation groups on real plane and their differential invariants." International Journal of Mathematics and Mathematical Sciences 2006 (2006): 1–17. http://dx.doi.org/10.1155/ijmms/2006/17410.
Full textNikonov, V. I. "The application of Lie algebras and groups to the solution of problems of partial stability of dynamical systems." Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva 20, no. 3 (September 6, 2018): 295–303. http://dx.doi.org/10.15507/2079-6900.20.201802.295-303.
Full textNikonov, Vladimir I. "The application of Lie algebras and groups to the solution of problems of partial stability of dynamical systems." Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva 20, no. 3 (September 6, 2018): 295–303. http://dx.doi.org/10.15507/2079-6900.20.201803.295-303.
Full textRussell, Thomas. "Gorman demand systems and lie transformation groups: A reply." Economics Letters 51, no. 2 (May 1996): 201–4. http://dx.doi.org/10.1016/0165-1765(96)00806-3.
Full textDissertations / Theses on the topic "Lie transformation groups"
Günther, Janne-Kathrin. "The C*-algebras of certain Lie groups." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0118/document.
Full textIn this doctoral thesis, the C*-algebras of the connected real two-step nilpotent Lie groups and the Lie group SL(2,R) are characterized. Furthermore, as a preparation for an analysis of its C*-algebra, the topology of the spectrum of the semidirect product U(n) x H_n is described, where H_n denotes the Heisenberg Lie group and U(n) the unitary group acting by automorphisms on H_n. For the determination of the group C*-algebras, the operator valued Fourier transform is used in order to map the respective C*-algebra into the algebra of all bounded operator fields over its spectrum. One has to find the conditions that are satisfied by the image of this C*-algebra under the Fourier transform and the aim is to characterize it through these conditions. In the present thesis, it is proved that both the C*-algebras of the connected real two-step nilpotent Lie groups and the C*-algebra of SL(2,R) fulfill the same conditions, namely the “norm controlled dual limit” conditions. Thereby, these C*-algebras are described in this work and the “norm controlled dual limit” conditions are explicitly computed in both cases. The methods used for the two-step nilpotent Lie groups and the group SL(2,R) are completely different from each other. For the two-step nilpotent Lie groups, one regards their coadjoint orbits and uses the Kirillov theory, while for the group SL(2,R) one can accomplish the calculations more directly
Ramgulam, Usha. "Lie groups and Bäcklund transformations : application to nonlinear physical models." Thesis, Loughborough University, 1991. https://dspace.lboro.ac.uk/2134/26895.
Full textZahir, Hamid. "Produits STAR et représentation des groupes de Lie." Metz, 1991. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1991/Zahir.Hamid.SMZ9116.pdf.
Full textMizony, Michel. "Semi-groupes de Lie et fonctions de Jacobi de deuxième espèce." Lyon 1, 1987. http://www.theses.fr/1987LYO19015.
Full textZahir, Hamid Arnal Didier. "Produits star et représentation des groupes de lie." [S.l.] : [s.n.], 1991. ftp://ftp.scd.univ-metz.fr/pub/Theses/1991/Zahir.Hamid.SMZ9116.pdf.
Full textCogliati, A. "CONTINUOUS GROUPS OF TRANSFORMATIONS: ELIE CARTAN'S STRUCTURAL APPROACH." Doctoral thesis, Università degli Studi di Milano, 2012. http://hdl.handle.net/2434/214787.
Full textDhieb, Semi. "Transformée de Fourier adaptée et convoluteurs de Schwartz sur les groupes de Lie nilpotents." Metz, 1995. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1995/Dhieb.Semi.SMZ9510.pdf.
Full textThe adapted Fourier transform, so-called nilpotent Fourier transform, was first introduced by D. Arnal and J. C. Cortet as a generalisation of the usual abelian Fourier transform. This definition was limited at the orbits of the group under the coadjont action. We define in this thesis new adapted Fourier transforms on the dual of the Lie algebra and the product of this dual space with the set of all Malcev bases. Then, we study Schwartz multipliers for nilpotent Lie groups and we give an idea to prove Howe conjecture that characterizes the bi-invariant Schwartz multipliers on nilpotent Lie groups. Such characterization is given as the following : a tempered distribution on a nilpotent group Lie is a bi-invariant Schwartz multiplier if and only if its Fourier transform as a distribution is a smooth, Ad*-invariant function on the dual of the Lie algebra and all of its derivatives have polynomial bounds. Finally, we define Schwartz multipliers for variable nilpotent Lie groups and we characterize them as a bove
Garimella, Venkatalakshmi Gayatri. "Théorèmes de Paley-Wiener - opérateurs differentiels invariants sur les groupes de Lie nilpotents." Poitiers, 1997. http://www.theses.fr/1997POIT2277.
Full textMaillard, Jean-Marie. "Intégrabilité, série discrète des groupes de Lorentz et transformation de Weyl des distributions tempérées." Dijon, 1986. http://www.theses.fr/1986DIJOS025.
Full textLanzmann, Emmanuel. "Le théorème d'annulation dans le cadre des super-algèbres de lie complètement réductibles et de leurs groupes quantiques." Paris 6, 2000. http://www.theses.fr/2000PA066260.
Full textBooks on the topic "Lie transformation groups"
L, Onishchik A., and Vinberg Ė B, eds. Foundations of Lie theory and Lie transformation groups. Berlin: Springer, 1997.
Find full textTransformation groups. Berlin: W. de Gruyter, 1987.
Find full textStraume, Eldar. Compact connected Lie transformation groups on spheres with low cohomogeneity, II. Providence, R.I: American Mathematical Society, 1997.
Find full textOnishchik, A. L. Topology of transitive transformation groups. Leipzig: Johann Ambrosius Barth, 1994.
Find full textAnthony, Bak, Morimoto Masaharu, and Ushitaki Fumihiro, eds. Current trends in transformation groups. Dordrecht: Kluwer, 2002.
Find full textCompact connected lie transformation groups on spheres with low cohomogeneity, I. Providence, R.I: American Mathematical Society, 1996.
Find full textSophus Lie and Felix Klein: The Erlangen program and its impact in mathematics and physics. Providence: European Mathematical Society, 2015.
Find full textBilinear control systems: Matrices in action. Dordrecht: Springer, 2009.
Find full textB, Carrell James, and McGovern William M. 1959-, eds. Algebraic quotients: Torus actions and cohomology / J.B. Carrell. The adjoint representation and the adjoint action / W.M. McGovern. Berlin: Springer, 2002.
Find full textDynamical systems and group actions. Providence, R.I: American Mathematical Society, 2012.
Find full textBook chapters on the topic "Lie transformation groups"
Barndorff-Nielsen, Ole E., Preben Blæsild, and Poul Svante Eriksen. "Matrix Lie groups." In Decomposition and Invariance of Measures, and Statistical Transformation Models, 15–27. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3682-5_3.
Full textKawakubo, Katsuo. "G-s-cobordism theorems do not hold in general for many compact lie groups G." In Transformation Groups, 183–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0085608.
Full textHsiang, Wu-Yi. "Lie transformation groups and differential geometry." In Lecture Notes in Mathematics, 34–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077679.
Full textHelgason, Sigurdur. "Lie Transformation Groups and Differential Operators." In Integral Geometry and Radon Transforms, 253–63. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6055-9_8.
Full textIllman, Sören. "The isomorphism class of a representation of a compact lie group is determined by the equivariant simple-homotopy type of the representation." In Transformation Groups, 98–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0085602.
Full textIbragimov, Nail H. "Equations with Infinite Lie-Bäcklund Groups." In Transformation Groups Applied to Mathematical Physics, 253–313. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5243-0_5.
Full textLie, Sophus. "Three Principles of Thought Governing the Theory of Lie." In Theory of Transformation Groups I, 3–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46211-9_1.
Full textIbragimov, Nail H. "Introduction to the Theory of Lie-Bäcklund Groups." In Transformation Groups Applied to Mathematical Physics, 190–252. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5243-0_4.
Full textHawkins, Thomas. "Lie’s Theory of Transformation Groups: 1874–1893." In Emergence of the Theory of Lie Groups, 75–99. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1202-7_3.
Full textAlekseevskij, D. V., V. V. Lychagin, and A. M. Vinogradov. "The Group Approach of Lie and Klein. The Geometry of Transformation Groups." In Geometry I, 92–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02712-7_4.
Full textConference papers on the topic "Lie transformation groups"
Tarama, Daisuke, and Jean-Pierre Françoise. "Dynamical Systems over Lie Groups Associated with Statistical Transformation Models." In MaxEnt 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/psf2022005021.
Full textWang, Ching Ming, Jascha Shol-Dickstein, Ivana Tosic, and Bruno A. Olshausen. "Lie Group Transformation Models for Predictive Video Coding." In 2011 Data Compression Conference (DCC). IEEE, 2011. http://dx.doi.org/10.1109/dcc.2011.93.
Full textGaur, Manoj, and K. Singh. "Lie group of transformations for time fractional Gardner equation." In DIDACTIC TRANSFER OF PHYSICS KNOWLEDGE THROUGH DISTANCE EDUCATION: DIDFYZ 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0080583.
Full textBru¨ls, Olivier, Martin Arnold, and Alberto Cardona. "Two Lie Group Formulations for Dynamic Multibody Systems With Large Rotations." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48132.
Full textMurakami, Hidenori. "A Moving Frame Method for Multi-Body Dynamics Using SE(3)." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51192.
Full textChiao, Raymond Y., Paul G. Kwiat, William A. Vareka, and Thomas F. Jordan. "Lorentz-group Berry phases in squeezed light." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.mr17.
Full textDjanelidze, M. G. "Territory Attractiveness for Human Capital and Innovative Development." In Problems of transformation and regulation of regional socio- economic systems. Saint Petersburg State University of Aerospace Instrumentation, 2021. http://dx.doi.org/10.52897/978-5-8088-1635-0-2021-49-25-37.
Full textPecherskaya, Nadezhda. "MENTAL COHESION AS A FACTOR OF POLITICAL CULTURE." In Globalistics-2020: Global issues and the future of humankind. Interregional Social Organization for Assistance of Studying and Promotion the Scientific Heritage of N.D. Kondratieff / ISOASPSH of N.D. Kondratieff, 2020. http://dx.doi.org/10.46865/978-5-901640-33-3-2020-189-195.
Full textChen, Genliang, Hao Wang, Yong Zhong, and Haidong Yu. "A Lie Group Formulation of the Newton-Euler Equations and its Application to Robot Dynamics." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47221.
Full textTakada, Takumi, Wataru Shimaya, Yoshiyuki Ohmura, and Yasuo Kuniyoshi. "Disentangling Patterns and Transformations from One Sequence of Images with Shape-invariant Lie Group Transformer." In 2022 IEEE International Conference on Development and Learning (ICDL). IEEE, 2022. http://dx.doi.org/10.1109/icdl53763.2022.9962232.
Full textReports on the topic "Lie transformation groups"
Arvanitoyeorgos, Andreas. Lie Transformation Groups and Geometry. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-11-35.
Full textJames P. Lewis. ?Structural Transformations in Ceramics: Perovskite-like Oxides and Group III, IV, and V Nitrides? Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/909138.
Full textTaherizadeh, Amir, and Cathrine Beaudry. Vers une meilleure compréhension de la transformation numérique optimisée par l’IA et de ses implications pour les PME manufacturières au Canada - Une recherche qualitative exploratoire. CIRANO, June 2021. http://dx.doi.org/10.54932/jdxb2231.
Full textHaider, Huma. Scalability of Transitional Justice and Reconciliation Interventions: Moving Toward Wider Socio-political Change. Institute of Development Studies (IDS), March 2021. http://dx.doi.org/10.19088/k4d.2021.080.
Full textDe Wit, Paul. Securing Land Tenure for Prosperity of the Planet and its Peoples. Rights and Resources Initiative, February 2023. http://dx.doi.org/10.53892/ogcw7082.
Full textLundgren, Anna, Alex Cuadrado, Mari Wøien Meijer, Hjördís Rut Sigurjónsdottir, Eeva Turunen, Viktor Salenius, Jukka Teräs, Jens Bjørn Gefke Grelck, and Stian Lundvall Berg. Skills Policies - Building Capacities for Innovative and Resilient Nordic Regions. Nordregio, November 2020. http://dx.doi.org/10.6027/r2020:17.1403-2503.
Full textSpecial Bulletin: NDC Invest: Supporting Transformational Climate Policy and Finance in Latin American and the Caribbean. Inter-American Development Bank, July 2021. http://dx.doi.org/10.18235/0003416.
Full text