Academic literature on the topic 'Lie Symmetry group of SDE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lie Symmetry group of SDE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lie Symmetry group of SDE"
Muniz, Michelle, Matthias Ehrhardt, and Michael Günther. "Approximating Correlation Matrices Using Stochastic Lie Group Methods." Mathematics 9, no. 1 (January 4, 2021): 94. http://dx.doi.org/10.3390/math9010094.
Full textYU, JUN, and HANWEI HU. "FINITE SYMMETRY GROUP AND COHERENT SOLITON SOLUTIONS FOR THE BROER–KAUP–KUPERSHMIDT SYSTEM." International Journal of Bifurcation and Chaos 23, no. 09 (September 2013): 1350156. http://dx.doi.org/10.1142/s0218127413501563.
Full textChen, Yong, and Xiaorui Hu. "Lie Symmetry Group of the Nonisospectral Kadomtsev-Petviashvili Equation." Zeitschrift für Naturforschung A 64, no. 1-2 (February 1, 2009): 8–14. http://dx.doi.org/10.1515/zna-2009-1-202.
Full textKötz, H. "A Technique to Classify the Similarity Solutions of Nonlinear Partial (Integro-)Differential Equations. I. Optimal Systems of Solvable Lie Subalgebras." Zeitschrift für Naturforschung A 47, no. 11 (November 1, 1992): 1161–74. http://dx.doi.org/10.1515/zna-1992-1114.
Full textSHIRKOV, DMITRIJ V. "RENORMALIZATION GROUP SYMMETRY AND SOPHUS LIE GROUP ANALYSIS." International Journal of Modern Physics C 06, no. 04 (August 1995): 503–12. http://dx.doi.org/10.1142/s0129183195000356.
Full textNadjafikhah, Mehdi, and Seyed-Reza Hejazi. "SYMMETRY ANALYSIS OF TELEGRAPH EQUATION." Asian-European Journal of Mathematics 04, no. 01 (March 2011): 117–26. http://dx.doi.org/10.1142/s1793557111000101.
Full textNadjafikhah, Mehdi, and Mehdi Jafari. "Some General New Einstein Walker Manifolds." Advances in Mathematical Physics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/591852.
Full textAlmutiben, Nouf, Ryad Ghanam, G. Thompson, and Edward L. Boone. "Symmetry analysis of the canonical connection on Lie groups: six-dimensional case with abelian nilradical and one-dimensional center." AIMS Mathematics 9, no. 6 (2024): 14504–24. http://dx.doi.org/10.3934/math.2024705.
Full textJohnpillai, Andrew G., Abdul H. Kara, and Anjan Biswas. "Exact Group Invariant Solutions and Conservation Laws of the Complex Modified Korteweg–de Vries Equation." Zeitschrift für Naturforschung A 68, no. 8-9 (September 1, 2013): 510–14. http://dx.doi.org/10.5560/zna.2013-0027.
Full textMehdi Nadjafikhah and Omid Chekini. "Invariant solutions of Barlett and Whitaker’s equations." Malaya Journal of Matematik 2, no. 02 (April 1, 2014): 103–7. http://dx.doi.org/10.26637/mjm202/002.
Full textDissertations / Theses on the topic "Lie Symmetry group of SDE"
Ouknine, Anas. "Μοdèles affines généralisées et symétries d'équatiοns aux dérivés partielles." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR085.
Full textThis thesis is dedicated to studying the Lie symmetries of a particular class of partialdifferential equations (PDEs), known as the backward Kolmogorov equation. This equa-tion plays a crucial role in financial modeling, particularly in relation to the Longstaff-Schwartz model, which is widely used for pricing options and derivatives.In a broader context, our study focuses on analyzing the Lie symmetries of thebackward Kolmogorov equation by introducing a nonlinear term. This generalization issignificant, as the modified equation is linked to a forward backward stochastic differ-ential equation (FBSDE) through the generalized (nonlinear) Feynman-Kac formula.We also examine the symmetries of this stochastic equation and how the symmetriesof the PDE are connected to those of the BSDE.Finally, we propose a recalculation of the symmetries of the BSDE and FBSDE,adopting a new approach. This approach is distinguished by the fact that the symme-try group acting on time itself depends also on the process Y , which is the solutionof the BSDE. This dependence opens up new perspectives on the interaction betweentemporal symmetries and the solutions of the equations
Nikolaishvili, George. "Investigation of the Equations Modelling Chemical Waves Using Lie Group Analysis." Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3996.
Full textWiseman, Robin D. "The Jahn-Teller effect in icosahedral symmetry : unexpected lie group symmetries and their exploitation." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299385.
Full textLindman, Hornlund Josef. "Sigma-models and Lie group symmetries in theories of gravity." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209911.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Tempesta, Patricia. "Simmetries in binary differential equations." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072017-170308/.
Full textO objetivo desta tese é introduzir o estudo sistemático de simetrias em equações diferenciais binárias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a ação de um grupo de Lie compacto. Um dos principais resultados é uma fórmula que relaciona o efeito geométrico e algébrico das simetrias presentes no problema. Utilizando ferramentas da teoria invariante e de representação para grupos compactos deduzimos as formas gerais para EDBs equivariantes. Um estudo sobre o comportamento das retas invariantes na configuração de EDBs com coeficientes homogêneos de grau n é feito com ênfase nos casos de grau 0 e 1, ainda no caso de grau 1 são apresentadas suas formas normais. Simetrias de 1-formas lineares são também estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.
Correa, Diego Paolo Ferruzzo. "Symmetric bifurcation analysis of synchronous states of time-delay oscillators networks." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-29122014-180651/.
Full textNos últimos anos, tem havido um crescente interesse em estudar redes de osciladores acopladas com retardo de tempo uma vez que estes ocorrem em muitas aplicações da vida real. Em muitos casos, simetria e padrões podem surgir nessas redes; em consequência, uma parte do sistema pode repetir-se, e as propriedades deste subsistema simétrico representam a dinâmica da rede toda. Nesta tese é feita uma análise de uma rede de N nós de segunda ordem totalmente conectada com atraso de tempo. Este estudo é realizado utilizando grupos de simetria. É mostrada a existência de múltiplos valores próprios forçados por simetria, bem como a possibilidade de desacoplamento da linearização no equilíbrio, em representações irredutíveis. É também provada a existência de bifurcações de estado estacionário e Hopf em cada representação irredutível. São usados três modelos diferentes para analisar a dinâmica da rede: o modelo de fase completa, o modelo de fase, e o modelo de diferença de fase. É também determinado um conjunto finito de frequências ω, que pode corresponder a bifurcações de Hopf em cada caso, para valores críticos do atraso. Apesar de restringir a nossa atenção para nós de segunda ordem, os resultados podem ser estendido para redes de ordem superior, desde que o tempo de atraso nas conexões entre nós permanece igual.
Al, Sayed Nazir. "Modèles LES invariants par groupes de symétries en écoulements turbulents anisothermes." Phd thesis, Université de La Rochelle, 2011. http://tel.archives-ouvertes.fr/tel-00605655.
Full textAltafini, Claudio. "Geometric control methods for nonlinear systems and robotic applications." Doctoral thesis, Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3151.
Full textJohn, Tyson. "Set Stabilization for Systems with Lie Group Symmetry." Thesis, 2010. http://hdl.handle.net/1807/25642.
Full textMamboundou, Hermane Mambili. "Lie group analysis of equations arising in non-Newtonian fluids." Thesis, 2009. http://hdl.handle.net/10539/6879.
Full textBooks on the topic "Lie Symmetry group of SDE"
Robinson, Matthew B. Symmetry and the standard model: Mathematics and particle physics. New York: Springer, 2011.
Find full textOrtaçgil, Ercüment H. The Symmetry Group. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198821656.003.0016.
Full textVergados, J. D. Group and Representation Theory. World Scientific Publishing Co Pte Ltd, 2016.
Find full textO'Raifeartaigh, L. Group Structure of Gauge Theories. Cambridge University Press, 2012.
Find full textO'Raifeartaigh, L. Group Structure of Gauge Theories. Cambridge University Press, 2011.
Find full textWallach, Nolan R., and Roe Goodman. Symmetry, Representations, and Invariants. Springer, 2010.
Find full textSato, Ryuzo, and Rama V. Ramachandran. Symmetry and Economic Invariance. Springer London, Limited, 2013.
Find full textSato, Ryuzo, and Rama V. Ramachandran. Symmetry and Economic Invariance. Springer Japan, 2016.
Find full textSato, Ryuzo, and Rama V. Ramachandran. Symmetry and Economic Invariance. Springer, 2013.
Find full textSato, Ryuzo, and Rama V. Ramachandran. Symmetry and Economic Invariance. T Kobayashi, 2013.
Find full textBook chapters on the topic "Lie Symmetry group of SDE"
Baldeaux, Jan, and Eckhard Platen. "Lie Symmetry Group Methods." In Functionals of Multidimensional Diffusions with Applications to Finance, 101–40. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00747-2_4.
Full textSinger, Stephanie Frank. "Symmetries are Lie Group Actions." In Symmetry in Mechanics, 83–100. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0189-2_6.
Full textIbragimov, N. H. "Symbolic Software for Lie Symmetry Analysis." In CRC Handbook of Lie Group Analysis of Differential Equations, Volume III, 367–414. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003575221-16.
Full textYahalom, Asher. "A New Diffeomorphism Symmetry Group of Magnetohydrodynamics." In Lie Theory and Its Applications in Physics, 461–68. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54270-4_33.
Full textVassilev, Vassil M., Petar A. Djondjorov, and Ivaïlo M. Mladenov. "Lie Group Analysis of the Willmore and Membrane Shape Equations." In Similarity and Symmetry Methods, 365–76. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08296-7_7.
Full textIbragimov, N. H., W. F. Ames, R. L. Anderson, V. A. Dorodnitsyn, E. V. Ferapontov, R. K. Gazizov, N. H. Ibragimov, and S. R. Svirshchevskii. "Symmetry of Finite-Difference Equations." In CRC Handbook of Lie Group Analysis of Differential Equations, Volume I, 365–403. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003419808-22.
Full textIbragimov, N. H., W. F. Ames, R. L. Anderson, V. A. Dorodnitsyn, E. V. Ferapontov, R. K. Gazizov, N. H. Ibragimov, and S. R. Svirshchevskii. "Nonlocal Symmetry Generators via Bäcklund Transformations." In CRC Handbook of Lie Group Analysis of Differential Equations, Volume I, 68–73. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003419808-10.
Full textIbragimov, N. H. "Approximate Transformation Groups and Deformations of Symmetry Lie Algebras." In CRC Handbook of Lie Group Analysis of Differential Equations, Volume III, 31–68. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003575221-3.
Full textIbragimov, N. H. "Calculation of Symmetry Groups for Integro-Differential Equations." In CRC Handbook of Lie Group Analysis of Differential Equations, Volume III, 139–46. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003575221-6.
Full textMitropolsky, Yu A., and A. K. Lopatin. "Asymptotic Decomposition of Differential Systems with Small Parameter in the Representation Space of Finite-dimensional Lie Group." In Nonlinear Mechanics, Groups and Symmetry, 219–58. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8535-4_6.
Full textConference papers on the topic "Lie Symmetry group of SDE"
Pulov, Vladimir I., Ivan M. Uzunov, Edy J. Chacarov, and Valentin L. Lyutskanov. "Lie group symmetry classification of solutions to coupled nonlinear Schrodinger equations." In SPIE Proceedings, edited by Peter A. Atanasov, Tanja N. Dreischuh, Sanka V. Gateva, and Lubomir M. Kovachev. SPIE, 2007. http://dx.doi.org/10.1117/12.726994.
Full textLindgren, B., J. Osterlund, and A. Johansson. "Evaluation of scaling laws derived from lie group symmetry methods in turbulent boundary layers." In 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-1103.
Full textYu, Jingjun, Shouzhong Li, Shusheng Bi, and Guanghua Zong. "Symmetry Design in Flexure Systems Using Kinematic Principles." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12385.
Full textChangizi, M. Amin, Ali Abolfathi, and Ion Stiharu. "MEMS Wind Speed Sensor: Large Deflection of Curved Micro-Cantilever Beam Under Uniform Horizontal Force." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50560.
Full text