Academic literature on the topic 'Lie groups'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lie groups.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lie groups"
Hiraga, Kaoru. "Lie groups." Duke Mathematical Journal 85, no. 1 (October 1996): 167–81. http://dx.doi.org/10.1215/s0012-7094-96-08507-5.
Full textAlekseevskii, D. V. "Lie groups." Journal of Soviet Mathematics 28, no. 6 (March 1985): 924–49. http://dx.doi.org/10.1007/bf02105458.
Full textNi, Xiang, and Chengming Bai. "Special symplectic Lie groups and hypersymplectic Lie groups." manuscripta mathematica 133, no. 3-4 (June 30, 2010): 373–408. http://dx.doi.org/10.1007/s00229-010-0375-z.
Full textHOFMANN, K. H., and K. H. NEEB. "Pro-Lie groups which are infinite-dimensional Lie groups." Mathematical Proceedings of the Cambridge Philosophical Society 146, no. 2 (March 2009): 351–78. http://dx.doi.org/10.1017/s030500410800128x.
Full textWüstner, Michael. "Splittable Lie Groups and Lie Algebras." Journal of Algebra 226, no. 1 (April 2000): 202–15. http://dx.doi.org/10.1006/jabr.1999.8162.
Full textHofmann, Karl H., Sidney A. Morris, and Markus Stroppel. "Locally compact groups, residual Lie groups, and varieties generated by Lie groups." Topology and its Applications 71, no. 1 (June 1996): 63–91. http://dx.doi.org/10.1016/0166-8641(95)00068-2.
Full textHoward, Eric. "Theory of groups and symmetries: Finite groups, Lie groups and Lie algebras." Contemporary Physics 60, no. 3 (July 3, 2019): 275. http://dx.doi.org/10.1080/00107514.2019.1663933.
Full textPressley, Andrew N. "LIE GROUPS AND ALGEBRAIC GROUPS." Bulletin of the London Mathematical Society 23, no. 6 (November 1991): 612–14. http://dx.doi.org/10.1112/blms/23.6.612b.
Full textWojtyński, Wojciech. "Lie groups as quotient groups." Reports on Mathematical Physics 40, no. 2 (October 1997): 373–79. http://dx.doi.org/10.1016/s0034-4877(97)85935-6.
Full textDoran, C., D. Hestenes, F. Sommen, and N. Van Acker. "Lie groups as spin groups." Journal of Mathematical Physics 34, no. 8 (August 1993): 3642–69. http://dx.doi.org/10.1063/1.530050.
Full textDissertations / Theses on the topic "Lie groups"
Eddy, Scott M. "Lie Groups and Lie Algebras." Youngstown State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1320152161.
Full textAhluwalia, Kanwardeep Singh. "Lie bialgebras and Poisson lie groups." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388758.
Full textpl, tomasz@uci agh edu. "A Lie Group Structure on Strict Groups." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1076.ps.
Full textHarkins, Andrew. "Combining lattices of soluble lie groups." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341777.
Full textÖhrnell, Carl. "Lie Groups and PDE." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420706.
Full textBurroughs, Nigel John. "The quantisation of Lie groups and Lie algebras." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358486.
Full textKrook, Jonathan. "Overview of Lie Groups and Their Lie Algebras." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275722.
Full textLiegrupper kan ses som grupper som även är glatta. Målet med den här rapporten är att definiera Liegrupper som glatta mångfalder, och att undersöka några av liegruppernas egenskaper. Till varje Liegrupp kan man relatera ett vektorrum, som kallas Liegruppens Liealgebra. Vi kommer undersöka vilka egenskaper hos en Liegrupp som kan härledas från dess Liealgebra. Som tillämpning kommer vi karaktärisera alla unitära irreducibla ändligtdimensionella representationer av Liegruppen SO(3).
Ray, Jishnu. "Iwasawa algebras for p-adic Lie groups and Galois groups." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS189/document.
Full textA key tool in p-adic representation theory is the Iwasawa algebra, originally constructed by Iwasawa in 1960's to study the class groups of number fields. Since then, it appeared in varied settings such as Lazard's work on p-adic Lie groups and Fontaine's work on local Galois representations. For a prime p, the Iwasawa algebra of a p-adic Lie group G, is a non-commutative completed group algebra of G which is also the algebra of p-adic measures on G. It is a general principle that objects coming from semi-simple, simply connected (split) groups have explicit presentations like Serre's presentation of semi-simple algebras and Steinberg's presentation of Chevalley groups as noticed by Clozel. In Part I, we lay the foundation by giving an explicit description of certain Iwasawa algebras. We first find an explicit presentation (by generators and relations) of the Iwasawa algebra for the principal congruence subgroup of any semi-simple, simply connected Chevalley group over Z_p. Furthermore, we extend the method to give a set of generators and relations for the Iwasawa algebra of the pro-p Iwahori subgroup of GL(n,Z_p). The base change map between the Iwasawa algebras over an extension of Q_p motivates us to study the globally analytic p-adic representations following Emerton's work. We also provide results concerning the globally analytic induced principal series representation under the action of the pro-p Iwahori subgroup of GL(n,Z_p) and determine its condition of irreducibility. In Part II, we do numerical experiments using a computer algebra system SAGE which give heuristic support to Greenberg's p-rationality conjecture affirming the existence of "p-rational" number fields with Galois groups (Z/2Z)^t. The p-rational fields are algebraic number fields whose Galois cohomology is particularly simple and they offer ways of constructing Galois representations with big open images. We go beyond Greenberg's work and construct new Galois representations of the absolute Galois group of Q with big open images in reductive groups over Z_p (ex. GL(n, Z_p), SL(n, Z_p), SO(n, Z_p), Sp(2n, Z_p)). We are proving results which show the existence of p-adic Lie extensions of Q where the Galois group corresponds to a certain specific p-adic Lie algebra (ex. sl(n), so(n), sp(2n)). This relates our work with a more general and classical inverse Galois problem for p-adic Lie extensions
Jimenez, William. "Riemannian submersions and Lie groups." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2648.
Full textThesis research directed by: Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Hindeleh, Firas Y. "Tangent and Cotangent Bundles, Automorphism Groups and Representations of Lie Groups." University of Toledo / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1153933389.
Full textBooks on the topic "Lie groups"
Duistermaat, J. J. Lie groups. Berlin: Springer, 2000.
Find full textDuistermaat, J. J., and J. A. C. Kolk. Lie Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56936-4.
Full textBump, Daniel. Lie Groups. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8024-2.
Full textBump, Daniel. Lie Groups. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4094-3.
Full textSan Martin, Luiz A. B. Lie Groups. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61824-7.
Full textBourbaki, Nicolas. Lie Groups and Lie Algebras. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-89394-3.
Full textKomrakov, B. P., I. S. Krasil’shchik, G. L. Litvinov, and A. B. Sossinsky, eds. Lie Groups and Lie Algebras. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5258-7.
Full textSerre, Jean-Pierre. Lie Algebras and Lie Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-70634-2.
Full textBourbaki, Nicolas. Lie groups and Lie algebras. Berlin: Springer, 2004.
Find full textNicolas Bourbaki. Lie groups and Lie algebras. Berlin: Springer-Verlag, 1989.
Find full textBook chapters on the topic "Lie groups"
Duistermaat, J. J., and J. A. C. Kolk. "Lie Groups and Lie Algebras." In Lie Groups, 1–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56936-4_1.
Full textSan Martin, Luiz A. B. "Lie Groups and Lie Algebras." In Lie Groups, 87–116. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61824-7_5.
Full textJeevanjee, Nadir. "Groups, Lie Groups, and Lie Algebras." In An Introduction to Tensors and Group Theory for Physicists, 109–86. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14794-9_4.
Full textJeevanjee, Nadir. "Groups, Lie Groups, and Lie Algebras." In An Introduction to Tensors and Group Theory for Physicists, 87–143. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-4715-5_4.
Full textOnishchik, Arkadij L., and Ernest B. Vinberg. "Lie Groups." In Lie Groups and Algebraic Groups, 1–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74334-4_1.
Full textBaker, Andrew. "Lie Groups." In Springer Undergraduate Mathematics Series, 181–209. London: Springer London, 2002. http://dx.doi.org/10.1007/978-1-4471-0183-3_7.
Full textSontz, Stephen Bruce. "Lie Groups." In Universitext, 93–103. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14765-9_7.
Full textSchneider, Peter. "Lie Groups." In Grundlehren der mathematischen Wissenschaften, 89–153. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21147-8_3.
Full textSelig, J. M. "Lie Groups." In Monographs in Computer Science, 9–24. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2484-4_2.
Full textRudolph, Gerd, and Matthias Schmidt. "Lie Groups." In Theoretical and Mathematical Physics, 219–67. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5345-7_5.
Full textConference papers on the topic "Lie groups"
Sarlette, Alain, Silvere Bonnabel, and Rodolphe Sepulchre. "Coordination on Lie groups." In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4739201.
Full textGalaviz, Imelda. "Introductory Lectures on Lie Groups and Lie Algebras." In ADVANCED SUMMER SCHOOL IN PHYSICS 2005: Frontiers in Contemporary Physics EAV05. AIP, 2006. http://dx.doi.org/10.1063/1.2160969.
Full textKawazoe, T., T. Oshima, and S. Sano. "Representation Theory of Lie Groups and Lie Algebras." In Fuji-Kawaguchiko Conference on Representation Theory of Lie Groups and Lie Algebras. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814537162.
Full textChauchat, Paul, Axel Barrau, and Silvere Bonnabel. "Invariant smoothing on Lie Groups." In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. http://dx.doi.org/10.1109/iros.2018.8594068.
Full textAguilar, M. A. "Lie groups and differential geometry." In The XXX Latin American school of physics ELAF: Group theory and its applications. AIP, 1996. http://dx.doi.org/10.1063/1.50217.
Full textSatici, Aykut C., and Mark W. Spong. "Connectivity control on Lie groups." In 2013 9th Asian Control Conference (ASCC). IEEE, 2013. http://dx.doi.org/10.1109/ascc.2013.6606252.
Full textKun, Gabor. "Differential games on Lie groups." In 2001 European Control Conference (ECC). IEEE, 2001. http://dx.doi.org/10.23919/ecc.2001.7075873.
Full textAkter, Sharmin, Md Monirul Islam, Md Rokunojjaman, and Salma Nasrin. "Operations of Lie Groups and Lie Algebras on Manifolds." In 2021 International Conference on Science & Contemporary Technologies (ICSCT). IEEE, 2021. http://dx.doi.org/10.1109/icsct53883.2021.9642569.
Full textMAKARENKO, N. YU. "GROUPS AND LIE RINGS WITH FROBENIUS GROUPS OF AUTOMORPHISMS." In Proceedings of the Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814350051_0017.
Full textGomez, X., and S. Majid. "Relating quantum and braided Lie algebras." In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-6.
Full textReports on the topic "Lie groups"
Arvanitoyeorgos, Andreas. Lie Transformation Groups and Geometry. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-11-35.
Full textAxford, R. A. Construction of Difference Equations Using Lie Groups. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/1172.
Full textGilmore, Robert. Relations Among Low-dimensional Simple Lie Groups. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-28-2012-1-45.
Full textClubok, Kenneth Sherman. Conformal field theory on affine Lie groups. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/260974.
Full textKrishnaprasad, P. S., and Dimitris P. Tsakiris. G-Snakes: Nonholonomic Kinematic Chains on Lie Groups. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada453004.
Full textCohen, Frederick R., Mentor Stafa, and V. Reiner. On Spaces of Commuting Elements in Lie Groups. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada606720.
Full textMcHardy, James David, Elias Davis Clark, Joseph H. Schmidt, and Scott D. Ramsey. Lie groups of variable cross-section channel flow. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1523203.
Full textSchmid, Rudolf. Infinite Dimentional Lie Groups With Applications to Mathematical Physics. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-1-2004-54-120.
Full textIkawa, Osamu. Motion of Charged Particles in Two-Step Nilpotent Lie Groups. GIQ, 2012. http://dx.doi.org/10.7546/giq-12-2011-252-262.
Full textBernatska, Julia. Geometry and Topology of Coadjoint Orbits of Semisimple Lie Groups. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-146-166.
Full text