Journal articles on the topic 'LIE ALGEBRAS, REPRESENTATION THEORY'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'LIE ALGEBRAS, REPRESENTATION THEORY.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cheng, Yongsheng, and Huange Qi. "Representations of Bihom-Lie Algebras." Algebra Colloquium 29, no. 01 (January 13, 2022): 125–42. http://dx.doi.org/10.1142/s1005386722000104.
Full textRouquier, Raphaël. "Quiver Hecke Algebras and 2-Lie Algebras." Algebra Colloquium 19, no. 02 (May 3, 2012): 359–410. http://dx.doi.org/10.1142/s1005386712000247.
Full textFriedlander, Eric M., and Brian J. Parshall. "Modular Representation Theory of Lie Algebras." American Journal of Mathematics 110, no. 6 (December 1988): 1055. http://dx.doi.org/10.2307/2374686.
Full textBARANOV, A. A., and A. E. ZALESSKII. "PLAIN REPRESENTATIONS OF LIE ALGEBRAS." Journal of the London Mathematical Society 63, no. 3 (June 2001): 571–91. http://dx.doi.org/10.1017/s0024610701002101.
Full textLiu, Shanshan, Lina Song, and Rong Tang. "Representations and cohomologies of regular Hom-pre-Lie algebras." Journal of Algebra and Its Applications 19, no. 08 (August 8, 2019): 2050149. http://dx.doi.org/10.1142/s0219498820501492.
Full textMirković, I., and D. Rumynin. "Geometric representation theory of restricted Lie algebras." Transformation Groups 6, no. 2 (June 2001): 175–91. http://dx.doi.org/10.1007/bf01597136.
Full textGoodwin, Simon M., Gerhard Röhrle, and Glenn Ubly. "On 1-dimensional representations of finite W-algebras associated to simple Lie algebras of exceptional type." LMS Journal of Computation and Mathematics 13 (September 2, 2010): 357–69. http://dx.doi.org/10.1112/s1461157009000205.
Full textKasjan, Stanisław, and Justyna Kosakowska. "On Lie algebras associated with representation-directed algebras." Journal of Pure and Applied Algebra 214, no. 5 (May 2010): 678–88. http://dx.doi.org/10.1016/j.jpaa.2009.07.012.
Full textBrown, Kenneth A., and Fokko Du Cloux. "On the Representation Theory of Solvable Lie Algebras." Proceedings of the London Mathematical Society s3-57, no. 2 (September 1988): 284–300. http://dx.doi.org/10.1112/plms/s3-57.2.284.
Full textCasas, J. M. "Obstructions to Lie–Rinehart Algebra Extensions." Algebra Colloquium 18, no. 01 (March 2011): 83–104. http://dx.doi.org/10.1142/s1005386711000046.
Full textCapparelli, Stefano, Arne Meurman, Andrej Primc, and Mirko Primc. "New partition identities from \(C^{(1)}_\ell\)-modules." Glasnik Matematicki 57, no. 2 (December 30, 2022): 161–84. http://dx.doi.org/10.3336/gm.57.2.01.
Full textXia, Limeng, and Dong Liu. "Finite Dimensional Simple Modules over Some GIM Lie Algebras." Mathematics 10, no. 15 (July 28, 2022): 2658. http://dx.doi.org/10.3390/math10152658.
Full textBANICA, TEODOR, and JULIEN BICHON. "HOPF IMAGES AND INNER FAITHFUL REPRESENTATIONS." Glasgow Mathematical Journal 52, no. 3 (August 25, 2010): 677–703. http://dx.doi.org/10.1017/s0017089510000510.
Full textIM, BOKHEE, and JONATHAN D. H. SMITH. "REPRESENTATION THEORY FOR VARIETIES OF COMTRANS ALGEBRAS AND LIE TRIPLE SYSTEMS." International Journal of Algebra and Computation 21, no. 03 (May 2011): 459–72. http://dx.doi.org/10.1142/s0218196711006315.
Full textAdamoviĆ, Draen. "A construction of some ideals in affine vertex algebras." International Journal of Mathematics and Mathematical Sciences 2003, no. 15 (2003): 971–80. http://dx.doi.org/10.1155/s0161171203201058.
Full textAugarten, Tal. "Representation growth of the classical Lie algebras." Communications in Algebra 48, no. 7 (May 12, 2020): 3099–108. http://dx.doi.org/10.1080/00927872.2020.1729364.
Full textROWE, D. J. "BOSON AND ROTOR EXPANSIONS OF LIE ALGEBRAS IN VECTOR COHERENT STATE THEORY." International Journal of Modern Physics E 02, supp01 (January 1993): 119–35. http://dx.doi.org/10.1142/s0218301393000510.
Full textMartin, Paul P., and David Woodcock. "Generalized Blob Algebras and Alcove Geometry." LMS Journal of Computation and Mathematics 6 (2003): 249–96. http://dx.doi.org/10.1112/s1461157000000450.
Full textLemay, Joel. "Valued Graphs and the Representation Theory of Lie Algebras." Axioms 1, no. 2 (July 4, 2012): 111–48. http://dx.doi.org/10.3390/axioms1020111.
Full textTJIN, T. "INTRODUCTION TO QUANTIZED LIE GROUPS AND ALGEBRAS." International Journal of Modern Physics A 07, no. 25 (October 10, 1992): 6175–213. http://dx.doi.org/10.1142/s0217751x92002805.
Full textAniello, P., C. Lupo, and M. Napolitano. "Exploring Representation Theory of Unitary Groups via Linear Optical Passive Devices." Open Systems & Information Dynamics 13, no. 04 (December 2006): 415–26. http://dx.doi.org/10.1007/s11080-006-9023-1.
Full textFARNSTEINER, ROLF, and DETLEF VOIGT. "SCHEMES OF TORI AND THE STRUCTURE OF TAME RESTRICTED LIE ALGEBRAS." Journal of the London Mathematical Society 63, no. 3 (June 2001): 553–70. http://dx.doi.org/10.1017/s0024610701002010.
Full textCampoamor-Stursberg, Rutwig. "Some Remarks Concerning the Invariants of Rank One Solvable Real Lie Algebras." Algebra Colloquium 12, no. 03 (September 2005): 497–518. http://dx.doi.org/10.1142/s1005386705000465.
Full textLosev, Ivan, and Victor Ostrik. "Classification of finite-dimensional irreducible modules over -algebras." Compositio Mathematica 150, no. 6 (April 7, 2014): 1024–76. http://dx.doi.org/10.1112/s0010437x13007604.
Full textAdamović, Dražen, Victor G. Kac, Pierluigi Möseneder Frajria, Paolo Papi, and Ozren Perše. "An Application of Collapsing Levels to the Representation Theory of Affine Vertex Algebras." International Mathematics Research Notices 2020, no. 13 (October 22, 2018): 4103–43. http://dx.doi.org/10.1093/imrn/rny237.
Full textSun, Qinxiu, and Zhixiang Wu. "Cohomologies of n-Lie Algebras with Derivations." Mathematics 9, no. 19 (October 2, 2021): 2452. http://dx.doi.org/10.3390/math9192452.
Full textCATTANEO, U., and W. F. WRESZINSKI. "CONTRACTIONS OF LIE ALGEBRA REPRESENTATIONS." Reviews in Mathematical Physics 11, no. 10 (November 1999): 1179–207. http://dx.doi.org/10.1142/s0129055x99000374.
Full textBoutonnet, Rémi, and Cyril Houdayer. "Stationary characters on lattices of semisimple Lie groups." Publications mathématiques de l'IHÉS 133, no. 1 (March 2, 2021): 1–46. http://dx.doi.org/10.1007/s10240-021-00122-8.
Full textCox, Ben. "-Categories and -Functors in the Representation Theory of Lie Algebras." Transactions of the American Mathematical Society 343, no. 1 (May 1994): 433. http://dx.doi.org/10.2307/2154540.
Full textLeznov, A. N. "Graded Lie algebras, representation theory, integrable mappings, and integrable systems." Theoretical and Mathematical Physics 122, no. 2 (February 2000): 211–28. http://dx.doi.org/10.1007/bf02551198.
Full textFeger, Robert, and Thomas W. Kephart. "LieART—A Mathematica application for Lie algebras and representation theory." Computer Physics Communications 192 (July 2015): 166–95. http://dx.doi.org/10.1016/j.cpc.2014.12.023.
Full textMAJID, SHAHN. "SOLUTIONS OF THE YANG-BAXTER EQUATIONS FROM BRAIDED-LIE ALGEBRAS AND BRAIDED GROUPS." Journal of Knot Theory and Its Ramifications 04, no. 04 (December 1995): 673–97. http://dx.doi.org/10.1142/s0218216595000284.
Full textWu, Henan. "Finite irreducible representations of map Lie conformal algebras." International Journal of Mathematics 28, no. 01 (January 2017): 1750002. http://dx.doi.org/10.1142/s0129167x17500021.
Full textCampoamor-Stursberg, Rutwig. "On some algebraic formulations within universal enveloping algebras related to superintegrability." Acta Polytechnica 62, no. 1 (February 28, 2022): 16–22. http://dx.doi.org/10.14311/ap.2022.62.0016.
Full textFalcón, Óscar J., Raúl M. Falcón, Juan Núñez, Ana M. Pacheco, and M. Trinidad Villar. "Classification of Filiform Lie Algebras up to dimension 7 Over Finite Fields." Analele Universitatii "Ovidius" Constanta - Seria Matematica 24, no. 2 (June 1, 2016): 185–204. http://dx.doi.org/10.1515/auom-2016-0036.
Full textHadasz, Leszek, and Błażej Ruba. "Airy Structures for Semisimple Lie Algebras." Communications in Mathematical Physics 385, no. 3 (June 24, 2021): 1535–69. http://dx.doi.org/10.1007/s00220-021-04142-7.
Full textda Silva Macedo, David Levi, and Plamen Koshlukov. "Codimension growth for weak polynomial identities, and non-integrality of the PI exponent." Proceedings of the Edinburgh Mathematical Society 63, no. 4 (July 20, 2020): 929–49. http://dx.doi.org/10.1017/s0013091520000243.
Full textStrade, H. "Representations of finitary Lie algebras." Journal of Algebra 257, no. 1 (November 2002): 13–36. http://dx.doi.org/10.1016/s0021-8693(02)00129-1.
Full textLoday, Jean-Louis, and Teimuraz Pirashvili. "Leibniz Representations of Lie Algebras." Journal of Algebra 181, no. 2 (April 1996): 414–25. http://dx.doi.org/10.1006/jabr.1996.0127.
Full textDu, Jie, and Bin Shu. "Representations of finite Lie algebras." Journal of Algebra 321, no. 11 (June 2009): 3197–225. http://dx.doi.org/10.1016/j.jalgebra.2008.06.016.
Full textJING, NAIHUAN, KAILASH C. MISRA, and CARLA D. SAVAGE. "ON MULTI-COLOR PARTITIONS AND THE GENERALIZED ROGERS–RAMANUJAN IDENTITIES." Communications in Contemporary Mathematics 03, no. 04 (November 2001): 533–48. http://dx.doi.org/10.1142/s0219199701000482.
Full textIbraev, Sh Sh, A. Zh Seitmuratov, and L. S. Kainbayeva. "On simple modules with singular highest weights for so2l+1(K)." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 105, no. 1 (March 30, 2022): 52–65. http://dx.doi.org/10.31489/2022m1/52-65.
Full textLeznov, A. N. "A new approach to the representation theory of semisimple Lie algebras and quantum algebras." Theoretical and Mathematical Physics 123, no. 2 (May 2000): 633–50. http://dx.doi.org/10.1007/bf02551396.
Full textFeger, Robert, Thomas W. Kephart, and Robert J. Saskowski. "LieART 2.0 – A Mathematica application for Lie Algebras and Representation Theory." Computer Physics Communications 257 (December 2020): 107490. http://dx.doi.org/10.1016/j.cpc.2020.107490.
Full textBillig, Yuly. "Representation theory of $$\mathbb {Z}^n$$ Z n -graded Lie algebras." São Paulo Journal of Mathematical Sciences 11, no. 1 (July 11, 2016): 53–58. http://dx.doi.org/10.1007/s40863-016-0044-6.
Full textZhelobenko, D. P. "On quantum methods in the representation theory of reductive Lie algebras." Functional Analysis and Its Applications 28, no. 2 (1994): 114–16. http://dx.doi.org/10.1007/bf01076498.
Full textJiang, Cuipo, and Song Wang. "Extension of Vertex Operator Algebra $V_{\widehat{H}_{4}}(\ell,0)$." Algebra Colloquium 21, no. 03 (June 24, 2014): 361–80. http://dx.doi.org/10.1142/s1005386714000327.
Full textDipper, Richard, and Jochen Gruber. "Generalized q-Schur algebras and modular representation theory of finite groups with split (BN)-pairs." Journal für die reine und angewandte Mathematik (Crelles Journal) 1999, no. 511 (June 25, 1999): 145–91. http://dx.doi.org/10.1515/crll.1999.511.145.
Full textWU, YONG-SHI, and KENGO YAMAGISHI. "CHERN-SIMONS THEORY AND KAUFFMAN POLYNOMIALS." International Journal of Modern Physics A 05, no. 06 (March 20, 1990): 1165–95. http://dx.doi.org/10.1142/s0217751x90000556.
Full textGĂRĂJEU, DANIELA, and MIHAIL GĂRĂJEU. "MATHEMATICA™ PACKAGES FOR COMPUTING PRINCIPAL DECOMPOSITIONS OF SIMPLE LIE ALGEBRAS AND APPLICATIONS IN EXTENDED CONFORMAL FIELD THEORIES." International Journal of Modern Physics C 14, no. 01 (January 2003): 1–27. http://dx.doi.org/10.1142/s012918310300419x.
Full text