Academic literature on the topic 'LIE ALGEBRAS, REPRESENTATION THEORY'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LIE ALGEBRAS, REPRESENTATION THEORY.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "LIE ALGEBRAS, REPRESENTATION THEORY"
Cheng, Yongsheng, and Huange Qi. "Representations of Bihom-Lie Algebras." Algebra Colloquium 29, no. 01 (January 13, 2022): 125–42. http://dx.doi.org/10.1142/s1005386722000104.
Full textRouquier, Raphaël. "Quiver Hecke Algebras and 2-Lie Algebras." Algebra Colloquium 19, no. 02 (May 3, 2012): 359–410. http://dx.doi.org/10.1142/s1005386712000247.
Full textFriedlander, Eric M., and Brian J. Parshall. "Modular Representation Theory of Lie Algebras." American Journal of Mathematics 110, no. 6 (December 1988): 1055. http://dx.doi.org/10.2307/2374686.
Full textBARANOV, A. A., and A. E. ZALESSKII. "PLAIN REPRESENTATIONS OF LIE ALGEBRAS." Journal of the London Mathematical Society 63, no. 3 (June 2001): 571–91. http://dx.doi.org/10.1017/s0024610701002101.
Full textLiu, Shanshan, Lina Song, and Rong Tang. "Representations and cohomologies of regular Hom-pre-Lie algebras." Journal of Algebra and Its Applications 19, no. 08 (August 8, 2019): 2050149. http://dx.doi.org/10.1142/s0219498820501492.
Full textMirković, I., and D. Rumynin. "Geometric representation theory of restricted Lie algebras." Transformation Groups 6, no. 2 (June 2001): 175–91. http://dx.doi.org/10.1007/bf01597136.
Full textGoodwin, Simon M., Gerhard Röhrle, and Glenn Ubly. "On 1-dimensional representations of finite W-algebras associated to simple Lie algebras of exceptional type." LMS Journal of Computation and Mathematics 13 (September 2, 2010): 357–69. http://dx.doi.org/10.1112/s1461157009000205.
Full textKasjan, Stanisław, and Justyna Kosakowska. "On Lie algebras associated with representation-directed algebras." Journal of Pure and Applied Algebra 214, no. 5 (May 2010): 678–88. http://dx.doi.org/10.1016/j.jpaa.2009.07.012.
Full textBrown, Kenneth A., and Fokko Du Cloux. "On the Representation Theory of Solvable Lie Algebras." Proceedings of the London Mathematical Society s3-57, no. 2 (September 1988): 284–300. http://dx.doi.org/10.1112/plms/s3-57.2.284.
Full textCasas, J. M. "Obstructions to Lie–Rinehart Algebra Extensions." Algebra Colloquium 18, no. 01 (March 2011): 83–104. http://dx.doi.org/10.1142/s1005386711000046.
Full textDissertations / Theses on the topic "LIE ALGEBRAS, REPRESENTATION THEORY"
Carr, Andrew Nickolas. "Lie Algebras and Representation Theory." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/1988.
Full textLemay, Joel. "Valued Graphs and the Representation Theory of Lie Algebras." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20168.
Full textCao, Mengyuan. "Representation Theory of Lie Colour Algebras and Its Connection with the Brauer Algebras." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38125.
Full textMuth, Robert. "Representations of Khovanov-Lauda-Rouquier algebras of affine Lie type." Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20432.
Full textLampetti, Enrico. "Nilpotent orbits in semisimple Lie algebras." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23595/.
Full textRakotoarisoa, Andriamananjara Tantely. "The Bala-Carter Classification of Nilpotent Orbits of Semisimple Lie Algebras." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36058.
Full textO'Dell, Connor. "Non-Resonant Uniserial Representations of Vec(R)." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1157650/.
Full textMeinel, Joanna [Verfasser]. "Affine nilTemperley-Lieb algebras and generalized Weyl algebras: Combinatorics and representation theory / Joanna Meinel." Bonn : Universitäts- und Landesbibliothek Bonn, 2016. http://d-nb.info/1122193874/34.
Full textLemay, Joel. "Geometric Realizations of the Basic Representation of the Affine General Linear Lie Algebra." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32866.
Full textLeonardi, Davide. "Kac-Moody algebras and representations of quivers." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20796/.
Full textBooks on the topic "LIE ALGEBRAS, REPRESENTATION THEORY"
Humphreys, James E. Introduction to Lie algebras and representation theory. 7th ed. New York: Springer, 1997.
Find full textIntroduction to Lie algebras and representation theory. 6th ed. New York: Springer-Verlag, 1994.
Find full textGeometric representation theory and extended affine Lie algebras. Providence, R.I: American Mathematical Society, 2011.
Find full textNeher, Erhard. Geometric representation theory and extended affine Lie algebras. Providence, R.I: American Mathematical Society, 2011.
Find full textWilliam, Fulton. Representation theory: A first course. New York: Springer-Verlag, 1991.
Find full textYoshiyuki, Koga, ed. Representation theory of the Virasoro algebra. London: Springer, 2011.
Find full text1918-, Coleman A. John, Futorny V, and Pollack Richard D, eds. Modern trends in Lie algebra representation theory: Conference proceedings. Kingston, Ont: Queen's University Press, 1994.
Find full textWilliam, Fulton. Representation theory: A first course. 3rd ed. New York: Springer, 1996.
Find full textFuji-Kawaguchiko Conference on Representation Theory of Lie Groups and Lie Algebras. (1990 Fuji-Kawaguchiko, Japan). Representation theory of Lie groups and Lie algebras: The proceedings of Fuji-Kawaguchiko Conference on Representation Theory of Lie Groups and Lie Algebras, Fuji-Kawaguchiko, Aug 31-Sep 3, 1990. Edited by Kawazoe T, Oshima T, and Sano S. Singapore: World Scientific, 1992.
Find full text1936-, Kirillov A. A., and Olshanskiǐ G. I, eds. Kirillov's seminar on representation theory. Providence, R.I: American Mathematical Society, 1998.
Find full textBook chapters on the topic "LIE ALGEBRAS, REPRESENTATION THEORY"
Woit, Peter. "Lie Algebras and Lie Algebra Representations." In Quantum Theory, Groups and Representations, 55–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64612-1_5.
Full textHilgert, Joachim, and Karl-Hermann Neeb. "Representation Theory of Lie Algebras." In Springer Monographs in Mathematics, 167–226. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-0-387-84794-8_7.
Full textLal, Ramji. "Representation Theory of Lie Algebras." In Algebra 4, 127–79. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0475-1_3.
Full textBernstein, Joseph. "Lectures on Lie Algebras." In Representation Theory, Complex Analysis, and Integral Geometry, 97–132. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-4817-6_6.
Full textHayashi, Masahito. "Representations of Typical Lie Groups and Typical Lie Algebras." In Group Representation for Quantum Theory, 113–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44906-7_4.
Full textHayashi, Masahito. "Representation of General Lie Groups and General Lie Algebras." In Group Representation for Quantum Theory, 201–29. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44906-7_6.
Full textEnright, Thomas. "Representation theory of semisimple Lie algebras." In Mathematical Surveys and Monographs, 21–28. Providence, Rhode Island: American Mathematical Society, 1987. http://dx.doi.org/10.1090/surv/024/02.
Full textMeinrenken, Eckhard. "The spin representation." In Clifford Algebras and Lie Theory, 49–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36216-3_3.
Full textCasselman, Bill. "Structure constants of Kac–Moody Lie algebras." In Symmetry: Representation Theory and Its Applications, 55–83. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1590-3_4.
Full textLakshmibai, V., and Justin Brown. "Representation Theory of Complex Semisimple Lie Algebras." In Texts and Readings in Mathematics, 103–14. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1393-6_8.
Full textConference papers on the topic "LIE ALGEBRAS, REPRESENTATION THEORY"
Kawazoe, T., T. Oshima, and S. Sano. "Representation Theory of Lie Groups and Lie Algebras." In Fuji-Kawaguchiko Conference on Representation Theory of Lie Groups and Lie Algebras. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814537162.
Full textLESLIE, JOSHUA A. "ON A SOLUTION TO A GLOBAL INVERSE PROBLEM WITH RESPECT TO CERTAIN GENERALIZED SYMMETRIZABLE KAC-MOODY ALGEBRAS." In Infinite Dimensional Lie Groups in Geometry and Representation Theory. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777089_0003.
Full textPatera, J. "Graded contractions of Lie algebras, representations and tensor products." In Group Theory in Physics: Proceedings of the international symposium held in honor of Professor Marcos Moshinsky. AIP, 1992. http://dx.doi.org/10.1063/1.42858.
Full textKUBO, F. "COMPATIBLE ALGEBRA STRUCTURES OF LIE ALGEBRAS." In 5th China–Japan–Korea International Ring Theory Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812818331_0020.
Full textSmirnov, Yu F. "Projection operators for Lie algebras, duperalgebras, and quantum algebras." In The XXX Latin American school of physics ELAF: Group theory and its applications. AIP, 1996. http://dx.doi.org/10.1063/1.50219.
Full textLeclerc, Bernard. "Cluster Algebras and Representation Theory." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0154.
Full textPoletaeva, Elena, and Vladimir Dobrev. "On Exceptional Superconformal Algebras." In LIE THEORY AND ITS APPLICATIONS IN PHYSICS: VIII International Workshop. AIP, 2010. http://dx.doi.org/10.1063/1.3460169.
Full textCampoamor-Stursberg, R., M. Rausch de Traubenberg, and Vladimir Dobrev. "Parafermions, Ternary Algebras and Their Associated Superspace." In LIE THEORY AND ITS APPLICATIONS IN PHYSICS: VIII International Workshop. AIP, 2010. http://dx.doi.org/10.1063/1.3460167.
Full textRajan, G. Susinder, and B. Sundar Rajan. "STBCs from Representation of Extended Clifford Algebras." In 2007 IEEE International Symposium on Information Theory. IEEE, 2007. http://dx.doi.org/10.1109/isit.2007.4557141.
Full textARAKAWA, TOMOYUKI. "REPRESENTATION THEORY OF W-ALGEBRAS AND HIGGS BRANCH CONJECTURE." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0096.
Full textReports on the topic "LIE ALGEBRAS, REPRESENTATION THEORY"
Berceanu, Stefan. A Holomorphic Representation of the Semidirect Sum of Symplectic and Heisenberg Lie Algebras. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-5-2006-5-13.
Full text