Journal articles on the topic 'Li-Se Batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Li-Se Batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zeng, Lin-Chao, Wei-Han Li, Yu Jiang, and Yan Yu. "Recent progress in Li–S and Li–Se batteries." Rare Metals 36, no. 5 (March 15, 2017): 339–64. http://dx.doi.org/10.1007/s12598-017-0891-z.
Full textYe, Huan, Ya-Xia Yin, Shuai-Feng Zhang, and Yu-Guo Guo. "Advanced Se–C nanocomposites: a bifunctional electrode material for both Li–Se and Li-ion batteries." Journal of Materials Chemistry A 2, no. 33 (May 23, 2014): 13293. http://dx.doi.org/10.1039/c4ta02017k.
Full textJin, Jun, Xiaocong Tian, Narasimalu Srikanth, Ling Bing Kong, and Kun Zhou. "Advances and challenges of nanostructured electrodes for Li–Se batteries." Journal of Materials Chemistry A 5, no. 21 (2017): 10110–26. http://dx.doi.org/10.1039/c7ta01384a.
Full textLiu, Ting, Yan Zhang, Junke Hou, Shiyu Lu, Jian Jiang, and Maowen Xu. "High performance mesoporous C@Se composite cathodes derived from Ni-based MOFs for Li–Se batteries." RSC Advances 5, no. 102 (2015): 84038–43. http://dx.doi.org/10.1039/c5ra14979g.
Full textUm, Ji Hyun, Aihua Jin, Xin Huang, Jeesoo Seok, Seong Soo Park, Janghyuk Moon, Mihyun Kim, et al. "Competitive nucleation and growth behavior in Li–Se batteries." Energy & Environmental Science 15, no. 4 (2022): 1493–502. http://dx.doi.org/10.1039/d1ee03619j.
Full textYe, Ruijie, Chih-Long Tsai, Martin Ihrig, Serkan Sevinc, Melanie Rosen, Enkhtsetseg Dashjav, Yoo Jung Sohn, Egbert Figgemeier, and Martin Finsterbusch. "Water-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries." Green Chemistry 22, no. 15 (2020): 4952–61. http://dx.doi.org/10.1039/d0gc01009j.
Full textFeng, Nanxiang, Kaixiong Xiang, Li Xiao, Wenhao Chen, Yirong Zhu, Haiyang Liao, and Han Chen. "Se/CNTs microspheres as improved performance for cathodes in Li-Se batteries." Journal of Alloys and Compounds 786 (May 2019): 537–43. http://dx.doi.org/10.1016/j.jallcom.2019.01.348.
Full textLee, Suyeong, Jun Lee, Jaekook Kim, Marco Agostini, Shizhao Xiong, Aleksandar Matic, and Jang-Yeon Hwang. "Recent Developments and Future Challenges in Designing Rechargeable Potassium-Sulfur and Potassium-Selenium Batteries." Energies 13, no. 11 (June 1, 2020): 2791. http://dx.doi.org/10.3390/en13112791.
Full textZeng, Lingxing, Xi Chen, Renpin Liu, Liangxu Lin, Cheng Zheng, Lihong Xu, Fenqiang Luo, Qingrong Qian, Qinghua Chen, and Mingdeng Wei. "Green synthesis of a Se/HPCF–rGO composite for Li–Se batteries with excellent long-term cycling performance." Journal of Materials Chemistry A 5, no. 44 (2017): 22997–3005. http://dx.doi.org/10.1039/c7ta06884k.
Full textJin, Yang, Kai Liu, Jialiang Lang, Xin Jiang, Zhikun Zheng, Qinghe Su, Zeya Huang, et al. "High-Energy-Density Solid-Electrolyte-Based Liquid Li-S and Li-Se Batteries." Joule 4, no. 1 (January 2020): 262–74. http://dx.doi.org/10.1016/j.joule.2019.09.003.
Full textXia, Yang, Zheng Fang, Chengwei Lu, Zhen Xiao, Xinping He, Yongping Gan, Hui Huang, Guoguang Wang, and Wenkui Zhang. "A Facile Pre-Lithiated Strategy towards High-Performance Li2Se-LiTiO2 Composite Cathode for Li-Se Batteries." Nanomaterials 12, no. 5 (February 28, 2022): 815. http://dx.doi.org/10.3390/nano12050815.
Full textAboonasr Shiraz, Mohammad Hossein, Erwin Rehl, Hossein Kazemian, and Jian Liu. "Durable Lithium/Selenium Batteries Enabled by the Integration of MOF-Derived Porous Carbon and Alucone Coating." Nanomaterials 11, no. 8 (July 31, 2021): 1976. http://dx.doi.org/10.3390/nano11081976.
Full textYan, Rui, Fangchao Liu, and Zhengwen Fu. "Revealing the Electrochemistry of All-Solid-State Li-SeS2 Battery via Transmission Electron Microscopy." Inorganics 11, no. 6 (June 13, 2023): 257. http://dx.doi.org/10.3390/inorganics11060257.
Full textMukkabla, Radha, Sathish Deshagani, Praveen Meduri, Melepurath Deepa, and Partha Ghosal. "Selenium/Graphite Platelet Nanofiber Composite for Durable Li–Se Batteries." ACS Energy Letters 2, no. 6 (May 9, 2017): 1288–95. http://dx.doi.org/10.1021/acsenergylett.7b00251.
Full textYang, Zewen, Kunjie Zhu, Zihao Dong, Dandan Jia, and Lifang Jiao. "Stabilization of Li–Se Batteries by Wearing PAN Protective Clothing." ACS Applied Materials & Interfaces 11, no. 43 (October 3, 2019): 40069–77. http://dx.doi.org/10.1021/acsami.9b14215.
Full textKim, Mihyun, Ji Hyun Um, Aihua Jin, and Seung-Ho Yu. "Electrochemical Activation for Improved Cycle Life of Li-Se Batteries." ECS Meeting Abstracts MA2020-02, no. 2 (November 23, 2020): 432. http://dx.doi.org/10.1149/ma2020-022432mtgabs.
Full textChen, Xi, Lihong Xu, Lingxing Zeng, Yiyi Wang, Shihan Zeng, Hongzhou Li, Xinye Li, Qingrong Qian, Mingdeng Wei, and Qinghua Chen. "Synthesis of the Se-HPCF composite via a liquid-solution route and its stable cycling performance in Li–Se batteries." Dalton Transactions 49, no. 41 (2020): 14536–42. http://dx.doi.org/10.1039/d0dt03035j.
Full textSun, Fugen, Yahui Li, Zilong Wu, Yu Liu, Hao Tang, Xiaomin Li, Zhihao Yue, and Lang Zhou. "In situ reactive coating of metallic and selenophilic Ag2Se on Se/C cathode materials for high performance Li–Se batteries." RSC Advances 8, no. 57 (2018): 32808–13. http://dx.doi.org/10.1039/c8ra06484a.
Full textLi, Xiaona, Jianwen Liang, Xia Li, Changhong Wang, Jing Luo, Ruying Li, and Xueliang Sun. "High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes." Energy & Environmental Science 11, no. 10 (2018): 2828–32. http://dx.doi.org/10.1039/c8ee01621f.
Full textFan, Shan, Yong Zhang, Shu-Hua Li, Tian-Yu Lan, and Jian-Li Xu. "Hollow selenium encapsulated into 3D graphene hydrogels for lithium–selenium batteries with high rate performance and cycling stability." RSC Advances 7, no. 34 (2017): 21281–86. http://dx.doi.org/10.1039/c6ra28463a.
Full textZhang, Shumin, Feipeng Zhao, and Xueliang Andy Sun. "Interface Engineering Via Fluorinated Solid Electrolytes for All-Solid-State Li Batteries." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 159. http://dx.doi.org/10.1149/ma2022-012159mtgabs.
Full textFan, Qianqian, Baohua Li, Yubing Si, and Yongzhu Fu. "Lowering the charge overpotential of Li2S via the inductive effect of phenyl diselenide in Li–S batteries." Chemical Communications 55, no. 53 (2019): 7655–58. http://dx.doi.org/10.1039/c8cc09565e.
Full textGu, Xingxing, and Chao Lai. "One dimensional nanostructures contribute better Li–S and Li–Se batteries: Progress, challenges and perspectives." Energy Storage Materials 23 (December 2019): 190–224. http://dx.doi.org/10.1016/j.ensm.2019.05.013.
Full textWalker, Brandon, Vesselin Yamakov, Ji Su, Donald Dornbusch, Rocco P. Viggiano, James Wu, Sam-Shajing Sun, John Connell, and Yi Lin. "Fabrication and Performance of Li-S/Se Solid State Cathodes with Holey Graphene As a Conductive Scaffold and Binder." ECS Meeting Abstracts MA2022-01, no. 1 (July 7, 2022): 93. http://dx.doi.org/10.1149/ma2022-01193mtgabs.
Full textMasedi, M. C., and P. E. Ngoepe. "Multi-scale simulations and phase stability prediction of mixed Li2S1-xSex system." Journal of Physics: Conference Series 2298, no. 1 (August 1, 2022): 012003. http://dx.doi.org/10.1088/1742-6596/2298/1/012003.
Full textFang, Ruyi, Yang Xia, Chu Liang, Xinping He, Hui Huang, Yongping Gan, Jun Zhang, Xinyong Tao, and Wenkui Zhang. "Supercritical CO2-assisted synthesis of 3D porous SiOC/Se cathode for ultrahigh areal capacity and long cycle life Li–Se batteries." Journal of Materials Chemistry A 6, no. 48 (2018): 24773–82. http://dx.doi.org/10.1039/c8ta09758e.
Full textZhao, J., W. Guo, and Y. Fu. "Performance enhancement of Li–Se batteries by manipulating redox reactions pathway." Materials Today Energy 17 (September 2020): 100442. http://dx.doi.org/10.1016/j.mtener.2020.100442.
Full textEftekhari, Ali. "The rise of lithium–selenium batteries." Sustainable Energy & Fuels 1, no. 1 (2017): 14–29. http://dx.doi.org/10.1039/c6se00094k.
Full textHong, Young Jun, Kwang Chul Roh, and Yun Chan Kang. "Mesoporous graphitic carbon microspheres with a controlled amount of amorphous carbon as an efficient Se host material for Li–Se batteries." Journal of Materials Chemistry A 6, no. 9 (2018): 4152–60. http://dx.doi.org/10.1039/c7ta11112f.
Full textXie, Kunchen, Junpeng Sun, Jing Lian, Yongzhu Fu, and Wei Guo. "Tuning the electrochemical activity of Li–Se batteries by redox mediator additives." Applied Physics Letters 121, no. 13 (September 26, 2022): 133904. http://dx.doi.org/10.1063/5.0117219.
Full textAhmadian Hoseini, Amir Hosein, Mohammad Hossein Aboonasr Shiraz, Li Tao, Mohammad Arjmand, and Jian Liu. "Synthesizing Microporous Carbon from Soybean and Use It to Develop Cathode Material for High Performance Lithium-Selenium Batteries." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 337. http://dx.doi.org/10.1149/ma2022-012337mtgabs.
Full textSong, Jian-Ping, Liang Wu, Wen-Da Dong, Chao-Fan Li, Li-Hua Chen, Xin Dai, Chao Li, et al. "MOF-derived nitrogen-doped core–shell hierarchical porous carbon confining selenium for advanced lithium–selenium batteries." Nanoscale 11, no. 14 (2019): 6970–81. http://dx.doi.org/10.1039/c9nr00924h.
Full textHe, Jiarui, Yuanfu Chen, Weiqiang Lv, Kechun Wen, Pingjian Li, Zegao Wang, Wanli Zhang, Wu Qin, and Weidong He. "Three-Dimensional Hierarchical Graphene-CNT@Se: A Highly Efficient Freestanding Cathode for Li–Se Batteries." ACS Energy Letters 1, no. 1 (April 18, 2016): 16–20. http://dx.doi.org/10.1021/acsenergylett.6b00015.
Full textZhang, Fan, Xin Guo, Pan Xiong, Jinqiang Zhang, Jianjun Song, Kang Yan, Xiaochun Gao, Hao Liu, and Guoxiu Wang. "Interface Engineering of MXene Composite Separator for High‐Performance Li–Se and Na–Se Batteries." Advanced Energy Materials 10, no. 20 (April 16, 2020): 2000446. http://dx.doi.org/10.1002/aenm.202000446.
Full textJia, Min, Cuiping Mao, Yubin Niu, Junke Hou, Sangui Liu, Shujuan Bao, Jian Jiang, Maowen Xu, and Zhisong Lu. "A selenium-confined porous carbon cathode from silk cocoons for Li–Se battery applications." RSC Advances 5, no. 116 (2015): 96146–50. http://dx.doi.org/10.1039/c5ra19000b.
Full textTang, Shuwei, Chenchen Liu, Wen Sun, Jingyi Zhang, Shulin Bai, Xu Zhang, and Shaobin Yang. "Unraveling the superior anchoring of lithium polyselenides to the confinement bilayer C2N: an efficient host material for lithium–selenium batteries." Physical Chemistry Chemical Physics 23, no. 47 (2021): 26981–89. http://dx.doi.org/10.1039/d1cp03218f.
Full textCao, Yuqing, Feifei Lei, Yunliang Li, Shilun Qiu, Yan Wang, Wei Zhang, and Zongtao Zhang. "A MOF-derived carbon host associated with Fe and Co single atoms for Li–Se batteries." Journal of Materials Chemistry A 9, no. 29 (2021): 16196–207. http://dx.doi.org/10.1039/d1ta04529f.
Full textWang, Jun, Jing-Ping Ke, Zhen-Yi Wu, Xiao-Na Zhong, Song-Bai Zheng, Yong-Jun Li, and Wen-Hua Zhao. "Cationic Covalent Organic Framework as Separator Coating for High-Performance Lithium Selenium Disulfide Batteries." Coatings 12, no. 7 (June 30, 2022): 931. http://dx.doi.org/10.3390/coatings12070931.
Full textLi, Hongyan, Chao Li, Yingying Wang, Ming-Hui Sun, Wenda Dong, Yu Li, and Bao-Lian Su. "Selenium confined in ZIF-8 derived porous carbon@MWCNTs 3D networks: tailoring reaction kinetics for high performance lithium-selenium batteries." Chemical Synthesis 2, no. 2 (2022): 8. http://dx.doi.org/10.20517/cs.2022.04.
Full textSingh, Arvinder, and Vibha Kalra. "Electrospun nanostructures for conversion type cathode (S, Se) based lithium and sodium batteries." Journal of Materials Chemistry A 7, no. 19 (2019): 11613–50. http://dx.doi.org/10.1039/c9ta00327d.
Full textChatterjee, Debanjali, Kaustubh Girish Naik, Bairav Sabarish Vishnugopi, and Partha P. Mukherjee. "Coupled Effect of Pressure and Temperature on Interface Stability in Solid-State Batteries." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 474. http://dx.doi.org/10.1149/ma2022-024474mtgabs.
Full textJayan, Rahul, and Md Mahbubul Islam. "Functionalized MXenes as effective polyselenide immobilizers for lithium–selenium batteries: a density functional theory (DFT) study." Nanoscale 12, no. 26 (2020): 14087–95. http://dx.doi.org/10.1039/d0nr02296a.
Full textZhang, Shuai-Feng, Wen-Peng Wang, Sen Xin, Huan Ye, Ya-Xia Yin, and Yu-Guo Guo. "Graphitic Nanocarbon–Selenium Cathode with Favorable Rate Capability for Li–Se Batteries." ACS Applied Materials & Interfaces 9, no. 10 (March 3, 2017): 8759–65. http://dx.doi.org/10.1021/acsami.6b16708.
Full textKim, Soochan, Misuk Cho, and Youngkwan Lee. "High-Performance Li-Se Batteries Enabled Via All-in-One Designed Cathode." ECS Meeting Abstracts MA2020-01, no. 52 (May 1, 2020): 2923. http://dx.doi.org/10.1149/ma2020-01522923mtgabs.
Full textLee, Seungmin, Haeun Lee, Naram Ha, Jung Tae Lee, Jaehan Jung, and KwangSup Eom. "In Batteria Electrochemical Polymerization to Form a Protective Conducting Layer on Se/C Cathodes for High‐Performance Li–Se Batteries." Advanced Functional Materials 30, no. 19 (March 5, 2020): 2000028. http://dx.doi.org/10.1002/adfm.202000028.
Full textTang, Chunmei, Xiaoxu Wang, and Shengli Zhang. "Research on metallic chalcogen-functionalized monolayer-puckered V2CX2 (X = S, Se, and Te) as promising Li-ion battery anode materials." Materials Chemistry Frontiers 5, no. 12 (2021): 4672–81. http://dx.doi.org/10.1039/d1qm00422k.
Full textZhao, Xiaosen, Lichang Yin, Tong Zhang, Min Zhang, Zhibo Fang, Chunzhong Wang, Yingjin Wei, et al. "Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li–Se and Na–Se batteries." Nano Energy 49 (July 2018): 137–46. http://dx.doi.org/10.1016/j.nanoen.2018.04.045.
Full textXia, Yang, Chengwei Lu, Ruyi Fang, Hui Huang, Yongping Gan, Chu Liang, Jun Zhang, Xinping He, and Wenkui Zhang. "Freestanding layer-structure selenium cathodes with ultrahigh Se loading for high areal capacity Li-Se batteries." Electrochemistry Communications 99 (February 2019): 16–21. http://dx.doi.org/10.1016/j.elecom.2018.12.013.
Full textLuo, Chao, Jingjing Wang, Liumin Suo, Jianfeng Mao, Xiulin Fan, and Chunsheng Wang. "In situ formed carbon bonded and encapsulated selenium composites for Li–Se and Na–Se batteries." Journal of Materials Chemistry A 3, no. 2 (2015): 555–61. http://dx.doi.org/10.1039/c4ta04611k.
Full textCheng, Qiuxia, Luzhu Qin, Chunxian Ke, Jianen Zhou, Jia Lin, Xiaoming Lin, Gang Zhang, and Yuepeng Cai. "Four new Zn(ii) and Cd(ii) coordination polymers using two amide-like aromatic multi-carboxylate ligands: synthesis, structures and lithium–selenium batteries application." RSC Advances 9, no. 26 (2019): 14750–57. http://dx.doi.org/10.1039/c9ra02163a.
Full text