Journal articles on the topic 'LHTES SYSTEM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'LHTES SYSTEM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yanbing, Kang, Zhang Yinping, Jiang Yi, and Zhu Yingxin. "A General Model for Analyzing the Thermal Characteristics of a Class of Latent Heat Thermal Energy Storage Systems." Journal of Solar Energy Engineering 121, no. 4 (November 1, 1999): 185–93. http://dx.doi.org/10.1115/1.2888165.
Full textOni, Taiwo O., Jacob B. Awopetu, Samson A. Adeleye, Daniel C. Uguru-Okorie, Anthony A. Adeyanju, and Niyi E. Olukayode. "Development of a Latent Heat Thermal Energy Storage Material-Based Refrigeration System." International Journal of Heat and Technology 39, no. 2 (April 30, 2021): 469–76. http://dx.doi.org/10.18280/ijht.390216.
Full textModi, Nishant, Xiaolin Wang, and Michael Negnevitsky. "Solar Hot Water Systems Using Latent Heat Thermal Energy Storage: Perspectives and Challenges." Energies 16, no. 4 (February 16, 2023): 1969. http://dx.doi.org/10.3390/en16041969.
Full textChocontá Bernal, Daniel, Edmundo Muñoz, Giovanni Manente, Adriano Sciacovelli, Hossein Ameli, and Alejandro Gallego-Schmid. "Environmental Assessment of Latent Heat Thermal Energy Storage Technology System with Phase Change Material for Domestic Heating Applications." Sustainability 13, no. 20 (October 13, 2021): 11265. http://dx.doi.org/10.3390/su132011265.
Full textChocontá Bernal, Daniel, Edmundo Muñoz, Giovanni Manente, Adriano Sciacovelli, Hossein Ameli, and Alejandro Gallego-Schmid. "Environmental Assessment of Latent Heat Thermal Energy Storage Technology System with Phase Change Material for Domestic Heating Applications." Sustainability 13, no. 20 (October 13, 2021): 11265. http://dx.doi.org/10.3390/su132011265.
Full textZhang, Yinping, Yan Su, Yingxin Zhu, and Xianxu Hu. "A General Model for Analyzing the Thermal Performance of the Heat Charging and Discharging Processes of Latent Heat Thermal Energy Storage Systems*." Journal of Solar Energy Engineering 123, no. 3 (January 1, 2001): 232–36. http://dx.doi.org/10.1115/1.1374206.
Full textParoutoglou, Evdoxia, Peter Fojan, Leonid Gurevich, Simon Furbo, Jianhua Fan, Marc Medrano, and Alireza Afshari. "A Numerical Parametric Study of a Double-Pipe LHTES Unit with PCM Encapsulated in the Annular Space." Sustainability 14, no. 20 (October 17, 2022): 13317. http://dx.doi.org/10.3390/su142013317.
Full textShank, Kyle, Jessica Bernat, Ethan Regal, Joel Leise, Xiaoxu Ji, and Saeed Tiari. "Experimental Study of Varying Heat Transfer Fluid Parameters within a Latent Heat Thermal Energy Storage System Enhanced by Fins." Sustainability 14, no. 14 (July 21, 2022): 8920. http://dx.doi.org/10.3390/su14148920.
Full textParoutoglou, Evdoxia, Alireza Afshari, Niels Chr Bergsøe, Peter Fojan, and Göran Hultmark. "A PCM based cooling system for office buildings: a state of the art review." E3S Web of Conferences 111 (2019): 01026. http://dx.doi.org/10.1051/e3sconf/201911101026.
Full textMigla, Lana, Raimonds Bogdanovics, and Kristina Lebedeva. "Performance Improvement of a Solar-Assisted Absorption Cooling System Integrated with Latent Heat Thermal Energy Storage." Energies 16, no. 14 (July 11, 2023): 5307. http://dx.doi.org/10.3390/en16145307.
Full textMacPhee, David W., and Mustafa Erguvan. "Thermodynamic Analysis of a High-Temperature Latent Heat Thermal Energy Storage System." Energies 13, no. 24 (December 16, 2020): 6634. http://dx.doi.org/10.3390/en13246634.
Full textDugué, Antoine, Saed Raji, Paul Bonnamy, and Denis Bruneau. "E2VENT: An Energy Efficient Ventilated Façade Retrofitting System. Presentation of the Embedded LHTES System." Procedia Environmental Sciences 38 (2017): 121–29. http://dx.doi.org/10.1016/j.proenv.2017.03.093.
Full textShank, Kyle, and Saeed Tiari. "A Review on Active Heat Transfer Enhancement Techniques within Latent Heat Thermal Energy Storage Systems." Energies 16, no. 10 (May 18, 2023): 4165. http://dx.doi.org/10.3390/en16104165.
Full textTola, Vittorio, Simone Arena, Mario Cascetta, and Giorgio Cau. "Numerical Investigation on a Packed-Bed LHTES System Integrated into a Micro Electrical and Thermal Grid." Energies 13, no. 8 (April 18, 2020): 2018. http://dx.doi.org/10.3390/en13082018.
Full textPop, Octavian G., Lucian Fechete Tutunaru, Florin Bode, and Mugur C. Balan. "Preliminary investigation of thermal behaviour of PCM based latent heat thermal energy storage." E3S Web of Conferences 32 (2018): 01017. http://dx.doi.org/10.1051/e3sconf/20183201017.
Full textHOSHI, Akira, Takeo S. SAITOH, and David R. Mills. "Application of High-Temperature Latent Heat Thermal Energy Storage (LHTES) System to Solar Thermal Electricity Systems." Proceedings of The Computational Mechanics Conference 2004.17 (2004): 649–50. http://dx.doi.org/10.1299/jsmecmd.2004.17.649.
Full textYusup, Rifki, and Byan Wahyu Riyandwita. "Effects of Flow Rate and Inlet Temperature on Performance of Annulus Type Low-Temperature Latent Heat Thermal Energy Storages." Journal of Emerging Supply Chain, Clean Energy, and Process Engineering 1, no. 1 (September 6, 2022): 41–54. http://dx.doi.org/10.57102/jescee.v1i1.10.
Full textEl Mhamdi, Oussama, Soumia Addakiri, ElAlami Semma, and Mustapha El Alami. "Study of A Thermal Energy Storage System Using the Lattice Boltzmann Method." E3S Web of Conferences 321 (2021): 04003. http://dx.doi.org/10.1051/e3sconf/202132104003.
Full textMetin, Cagri, Servet Giray Hacipasaoglu, Ersin Alptekin, and Mehmet Akif Ezan. "Implementation of enhanced thermal conductivity approach to an LHTES system with in‐line spherical capsules." Energy Storage 1, no. 1 (February 2019): e39. http://dx.doi.org/10.1002/est2.39.
Full textYang, Jialin, Zhenlan Dou, Pengxiang Zhao, Xichao Zhou, Lin Cong, Na Li, and Chunyan Zhang. "Numerical studies on storage process of phase change material with metal foam for prefabricated cabin energy system." Journal of Physics: Conference Series 2474, no. 1 (April 1, 2023): 012084. http://dx.doi.org/10.1088/1742-6596/2474/1/012084.
Full textAlgarni, Mohammed, Mashhour A. Alazwari, and Mohammad Reza Safaei. "Optimization of Nano-Additive Characteristics to Improve the Efficiency of a Shell and Tube Thermal Energy Storage System Using a Hybrid Procedure: DOE, ANN, MCDM, MOO, and CFD Modeling." Mathematics 9, no. 24 (December 14, 2021): 3235. http://dx.doi.org/10.3390/math9243235.
Full textAntony Aroul Raj, V., C. Hariharan, R. Velraj, and R. V. Seeniraj. "Numerical Investigations of Outward Solidification in Cylindrical PCM Storage Unit." Applied Mechanics and Materials 787 (August 2015): 177–81. http://dx.doi.org/10.4028/www.scientific.net/amm.787.177.
Full textMa, Fei, Tianji Zhu, Yalin Zhang, Xinli Lu, Wei Zhang, and Feng Ma. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes." Energies 16, no. 1 (January 3, 2023): 545. http://dx.doi.org/10.3390/en16010545.
Full textPise, A. T., A. V. Waghmare, and V. G. Talandage. "Heat Transfer Enhancement by Using Nanomaterial in Phase Change Material for Latent Heat Thermal Energy Storage System." Asian Journal of Engineering and Applied Technology 2, no. 2 (November 5, 2013): 52–57. http://dx.doi.org/10.51983/ajeat-2013.2.2.667.
Full textTascioni, Roberto, Alessia Arteconi, Luca Del Zotto, and Luca Cioccolanti. "Fuzzy Logic Energy Management Strategy of a Multiple Latent Heat Thermal Storage in a Small-Scale Concentrated Solar Power Plant." Energies 13, no. 11 (May 29, 2020): 2733. http://dx.doi.org/10.3390/en13112733.
Full textSingh, Dileep, Taeil Kim, Weihuan Zhao, Wenhua Yu, and David M. France. "Development of graphite foam infiltrated with MgCl2 for a latent heat based thermal energy storage (LHTES) system." Renewable Energy 94 (August 2016): 660–67. http://dx.doi.org/10.1016/j.renene.2016.03.090.
Full textWang, Peilun, Pengxiang Song, Yun Huang, Zhijian Peng, and Yulong Ding. "Numerical Simulation of the Heat Transfer Behavior of a Zigzag Plate Containing a Phase Change Material for Combustion Heat Recovery and Power Generation." Journal of Combustion 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/3092508.
Full textGhalambaz, Mohammad, Hassan Shirivand, Kasra Ayoubi Ayoubloo, S. A. M. Mehryan, Obai Younis, Pouyan Talebizadehsardari, and Wahiba Yaïci. "The Thermal Charging Performance of Finned Conical Thermal Storage System Filled with Nano-Enhanced Phase Change Material." Molecules 26, no. 6 (March 14, 2021): 1605. http://dx.doi.org/10.3390/molecules26061605.
Full textTofani, Kassianne, and Saeed Tiari. "Nano-Enhanced Phase Change Materials in Latent Heat Thermal Energy Storage Systems: A Review." Energies 14, no. 13 (June 25, 2021): 3821. http://dx.doi.org/10.3390/en14133821.
Full textKoukou, Maria K., Michail Gr Vrachopoulos, George Dogkas, Christos Pagkalos, Kostas Lymperis, Luis Coelho, and Amandio Rebola. "Testing the performance of a prototype thermal energy storage tank working with organic phase change material for space heating application conditions." E3S Web of Conferences 116 (2019): 00038. http://dx.doi.org/10.1051/e3sconf/201911600038.
Full textSoudian, Shahrzad, and Umberto Berardi. "Assessing the effect of night ventilation on PCM performance in high-rise residential buildings." Journal of Building Physics 43, no. 3 (May 13, 2019): 229–49. http://dx.doi.org/10.1177/1744259119848128.
Full textWang, Huiru, Zhenyu Liu, and Huiying Wu. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array." Energy 138 (November 2017): 739–51. http://dx.doi.org/10.1016/j.energy.2017.07.089.
Full textSun, Xinguo, Jasim M. Mahdi, Hayder I. Mohammed, Hasan Sh Majdi, Wang Zixiong, and Pouyan Talebizadehsardari. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins." Energies 14, no. 21 (November 1, 2021): 7179. http://dx.doi.org/10.3390/en14217179.
Full textArena, Simone, Efisio Casti, Jaume Gasia, Luisa F. Cabeza, and Giorgio Cau. "Numerical simulation of a finned-tube LHTES system: influence of the mushy zone constant on the phase change behaviour." Energy Procedia 126 (September 2017): 517–24. http://dx.doi.org/10.1016/j.egypro.2017.08.237.
Full textPeng, Li, Hongjun Wu, Wenlong Cao, and Qianjun Mao. "Exergy Analysis of a Shell and Tube Energy Storage Unit with Different Inclination Angles." Energies 16, no. 11 (May 24, 2023): 4297. http://dx.doi.org/10.3390/en16114297.
Full textMao, Qianjun, Ning Liu, and Li Peng. "Recent Investigations of Phase Change Materials Use in Solar Thermal Energy Storage System." Advances in Materials Science and Engineering 2018 (December 12, 2018): 1–13. http://dx.doi.org/10.1155/2018/9410560.
Full textShaghaghi, Aidin, Reza Eskandarpanah, Siavash Gitifar, Rahim Zahedi, Hossein Pourrahmani, Mansour Keshavarzzade, and Abolfazl Ahmadi. "Energy consumption reduction in a building by free cooling using phase change material (PCM)." Future Energy 3, no. 2 (May 15, 2024): 31–36. http://dx.doi.org/10.55670/fpll.fuen.3.2.4.
Full textBehi, Hamidreza, Mohammadreza Behi, Ali Ghanbarpour, Danial Karimi, Aryan Azad, Morteza Ghanbarpour, and Masud Behnia. "Enhancement of the Thermal Energy Storage Using Heat-Pipe-Assisted Phase Change Material." Energies 14, no. 19 (September 28, 2021): 6176. http://dx.doi.org/10.3390/en14196176.
Full textEl ouali, Abdelmajid, Hajar Zennouhi, Wafaa Benomar, Najma Laaroussi, Tarik El rhafik, and Tarik Kousksou. "Energetic Analysis of Packed Bed Latent Heat Storage Systems." ITM Web of Conferences 46 (2022): 01001. http://dx.doi.org/10.1051/itmconf/20224601001.
Full textAkarsh, A., and Sumer Dirbude. "Effect of HTF flow direction, mass flow rate and fins on melting and solidification in a latent-heat-based thermal energy storage device." Journal of Physics: Conference Series 2054, no. 1 (October 1, 2021): 012049. http://dx.doi.org/10.1088/1742-6596/2054/1/012049.
Full textKoukou, Maria K., George Dogkas, Michail Gr Vrachopoulos, John Konstantaras, Christos Pagkalos, Kostas Lymperis, Vassilis Stathopoulos, et al. "Performance Evaluation of a Small-Scale Latent Heat Thermal Energy Storage Unit for Heating Applications Based on a Nanocomposite Organic PCM." ChemEngineering 3, no. 4 (November 1, 2019): 88. http://dx.doi.org/10.3390/chemengineering3040088.
Full textDemchenko, V. G., and V. Yu Falco. "EXPERIMENTAL RESEARCH OF THERMAL STABILITY OF SUBSTANCES FOR THERMAL ENERGY STORAGE." Thermophysics and Thermal Power Engineering 41, no. 2 (April 26, 2019): 64–71. http://dx.doi.org/10.31472/ttpe.2.2019.9.
Full textColangelo, Alessandro, Elisa Guelpa, Andrea Lanzini, Giulia Mancò, and Vittorio Verda. "Compact Model of Latent Heat Thermal Storage for Its Integration in Multi-Energy Systems." Applied Sciences 10, no. 24 (December 16, 2020): 8970. http://dx.doi.org/10.3390/app10248970.
Full textCzerwiński, Grzegorz, and Jerzy Wołoszyn. "Influence of the Longitudinal and Tree-Shaped Fin Parameters on the Shell-and-Tube LHTES Energy Efficiency." Energies 16, no. 1 (December 26, 2022): 268. http://dx.doi.org/10.3390/en16010268.
Full textSeeniraj, R. V., R. Velraj, and N. Lakshmi Narasimhan. "Thermal analysis of a finned-tube LHTS module for a solar dynamic power system." Heat and Mass Transfer 38, no. 4-5 (April 1, 2002): 409–17. http://dx.doi.org/10.1007/s002310100268.
Full textKhatri, Rahul, Rahul Goyal, and Ravi Kumar Sharma. "Analysis of energy storage materials for developments in solar cookers." F1000Research 11 (November 11, 2022): 1292. http://dx.doi.org/10.12688/f1000research.126864.1.
Full textKhatri, Rahul, Rahul Goyal, and Ravi Kumar Sharma. "Analysis of energy storage materials for developments in solar cookers." F1000Research 11 (February 21, 2023): 1292. http://dx.doi.org/10.12688/f1000research.126864.2.
Full textWallwork, Vince, Zhenghe Xu, and Jacob Masliyah. "Processibility of Athabasca Oil Sand Using a Laboratory Hyd ro t ransport Extraction System (LHES)." Canadian Journal of Chemical Engineering 82, no. 4 (May 19, 2008): 687–95. http://dx.doi.org/10.1002/cjce.5450820407.
Full textSeeniraj, R. V., R. Velraj, and N. Lakshmi Narasimhan. "Heat Transfer Enhancement Study of a LHTS Unit Containing Dispersed High Conductivity Particles." Journal of Solar Energy Engineering 124, no. 3 (August 1, 2002): 243–49. http://dx.doi.org/10.1115/1.1488669.
Full textKrastev, Vesselin Krassimirov, and Giacomo Falcucci. "Comparison of enthalpy-porosity and lattice Boltzmann-phase field techniques for the simulation of the heat transfer and melting processes in LHTES devices." E3S Web of Conferences 312 (2021): 01002. http://dx.doi.org/10.1051/e3sconf/202131201002.
Full text