Dissertations / Theses on the topic 'LHC - Dark Matter Searches'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'LHC - Dark Matter Searches.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Belwal, Swasti [Verfasser]. "An Investigation of Constraints on Dark Matter Models from Mono-jet Searches at LHC / Swasti Belwal." Bonn : Universitäts- und Landesbibliothek Bonn, 2018. http://d-nb.info/1173789510/34.
Full textLundberg, Olof. "Searches for Dark Matter and Large Extra Dimensions in Monojet Final States with the ATLAS Experiment." Doctoral thesis, Stockholms universitet, Fysikum, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-129384.
Full textSunneborn, Gudnadottir Olga. "Exploring selections across channels in Dark Matter searches with top quarks at the ATLAS experiment of the LHC." Thesis, Uppsala universitet, Högenergifysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-393949.
Full textHallsjö, Sven-Patrik. "Search for Dark Matter in the Upgraded High Luminosity LHC at CERN : Sensitivity of ATLAS phase II upgrade to dark matter production." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-107583.
Full textROVELLI, GIULIA. "Searches for Dark Matter production in events with top quarks in the final state with the ATLAS detector at the LHC." Doctoral thesis, Università degli studi di Pavia, 2021. http://hdl.handle.net/11571/1429276.
Full textMany cosmological observations give convincing evidence for the existence of dark matter (DM), estimated to constitute around 26% of the Universe by measurements of the cosmic microwave background. While the existence of DM thus seems well established, very little is known about its nature. Numerous models of DM have been proposed, and a possible strategy to test them is to use particle accelerators. This thesis focuses in particular on the detection of DM produced in the ATLAS experiment at the Large Hadron Collider, studying signatures with top quarks in the final state in the framework of a two-Higgs-doublet model with an additional pseudoscalar mediator, called 2HDMa. The first part of the work consisted in the study of the production of DM in association with a pair of top quarks, trying to assess the sensitivity in the parameters space of 2HDMa of already existing ATLAS analyses. These analyses were performed in the framework of a different model, similar to the 2HDMa model since it included a pseudoscalar mediator. The production of DM in association with a pair of top quarks was chosen because it is directly sensitive to the nature of the mediator through the polarization of the two top quarks, which can be reconstructed from their decays products. The model employed in the existing analyses and the 2HDMa model were thus compared in detail, and after that a recasting strategy to translate the existing results in the parameter space of 2HDMa was developed and validated. The second part of the present study focused instead on a new search channel for the 2HDMa model, never explored before, including the production of dark matter associated with a single top quark. This signature was identified as the only one sensitive to the production of charged Higgs bosons, and thus holds a key role in the ATLAS research program dedicated to the 2HDMa model. Being a new and challenging signature, dedicated strategies were developed to maximise the sensitivity of the analyses focusing on the different final states.
Busoni, Giorgio. "Dark Matter Indirect Detection and Collider Search: the Good and the Bad." Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/3909.
Full textHessler, André [Verfasser], Alejandro [Akademischer Betreuer] [Gutachter] Ibarra, and Wolfgang [Gutachter] Hollik. "Exotic Particles at the LHC: Production via the Higgs Portal and FIMP Dark Matter Searches / André Hessler ; Gutachter: Alejandro Ibarra, Wolfgang Hollik ; Betreuer: Alejandro Ibarra." München : Universitätsbibliothek der TU München, 2016. http://d-nb.info/1117135128/34.
Full textShcherbakova, Anna. "Calibration of b-tagging and search for Dark Matter : Calibration of b-tagging efficiency and search for Dark Matter production in association with heavy flavour quarks with the ATLAS experiment." Doctoral thesis, Stockholms universitet, Fysikum, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-146034.
Full textAnders, J. "Searches for direct pair production of third generation squarks, and dark matter, in final states containing b−jets and ETmiss using the ATLAS detector at the LHC." Thesis, University of Liverpool, 2017. http://livrepository.liverpool.ac.uk/3009386/.
Full textBeresford, Lydia Audrey. "Searches for dijet resonances using √s = 13 TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:c516b04b-2763-487a-a633-6c506cec93ad.
Full textFischer, Cora. "Search for new phenomena in events with a high-energetic jet and missing transverse momentum with the ATLAS detectora." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/457899.
Full textA search for new phenomena in pp-collision events with a high-energetic jet and large missing transverse momentum is presented in this thesis. The analysis is carried out with a dataset collected in 2015 and 2016 by the ATLAS detector at a centre-of-mass energy of =13 TeV corresponding to an integrated luminosity of 36.1 fb⁻¹. Many theories beyond the Standard Model predict an abundance of events with very high missing transverse momentum over the events expected from Standard Model background processes. The event selection requires at most four jets, a leading jet with pT >250 GeV, missing transverse momentum with formula ETmiss >250 GeV and no reconstructed leptons. Additional requirements ensure that the data corresponds to a fully operational detector and suppress background contributions from multijet events (mismeasured jet momenta) and non-collision events (beam induced, comsic muons). Four control regions are defined orthogonal to the signal region requiring either electrons or muons in the final state. These control regions are utilised to estimate the major backgrounds in the signal region stemming from vector-boson+jets production and to constrain the uncertainties related to the former and to top-quark production. The production of Z(->νν)+jets and W(->τν)+jets constitute the dominant backgrounds. They are estimated in a simultaneous likelihood fit to the formula distributions in the control regions. Therefore, the Monte Carlo prediction of all W/Z+jets processes is reweighted according to the predictions from higher-orders perturbative calculations: next-to-leading order in QCD and next-to-next-to-leading order in EW precision. With the knowledge of the correlations among different processes and the error propagation in different regions of boson-pT, all W/Z+jets processes can be combined with one single scale factor that is obtained by the simultaneous fit to the data in the control regions. A second scale factor assigned to the data-driven normalisation of the top-quark background is a free parameter in the likelihood fit. These obtained scale factors are applied to the respective backgrounds in the SR to obtain the final background estimate. Since the data is in agreement with the Standard Model background prediction and no significant excess is present, the results are interpreted in terms of exclusion limits on various models: the model of ADD large extra spatial dimensions, Supersymmetry processes involving compressed scenarios and WIMP dark matter production in simplified models. Existing limits from previous ATLAS analyses have been improved by 15%-30%. Limits on ADD extra dimensions models are set in the parameter space of n (number of additonal dimensions) and (reduced Planck-mass MD in n extra dimensions). The limits reach up to MD = 7.74 TeV for n=2 and MD = 4.77 TeV for n=6. Limits in Supersymmetric production of light squarks with a mass splitting of 5 GeV between squark and neutralino mass reach up to 710 GeV in squark mass. The production of stop (decay to charm-quark+neutralino) and sbottom-pairs (decay to bottom-quark+neutralino) and same mass splittings is excluded up to squark masses of 430 GeV. The pair production of stop-quarks with a subsequent four-body decay is excluded up to 390 GeV for mass splittings of 7 GeV. In the case of WIMP DM production, limits are derived in the plane of dark matter mass vs. mediator mass. The maximum mediator mass excluded is 1.55 TeV (low dark matter mass), the maximum dark matter mass excluded is 440 GeV at mediator mass of 1.2 TeV for an s-channel axial-vector mediator model.
Lou, Xuanhong [Verfasser]. "Search for Dark Matter Produced in Association with Heavy Standard Model Particles at √s = 13TeV with the ATLAS Detector at the LHC / Xuanhong Lou." Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2020. http://d-nb.info/1230555129/34.
Full textPerego, Marta Maria. "Search for new physics produced via Vector Boson Fusion in final states with large missing transverse momentum with the ATLAS detector." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS088/document.
Full textThis thesis presents searches for new physics produced via Vector Boson Fusion (VBF) in final states with large Missing Transverse Momentum (Etmiss) using 36.1 fb⁻¹ of data from proton-proton collisions at center-of-mass-energy of 13 TeV, collected by the ATLAS experiment at the Large Hadron Collider at CERN during 2015 and 2016. In particular, it focuses on the search for the invisible decay of the Higgs boson produced via the vector boson fusion (VBF) process. As the SM predicts an Higgs invisible decay only through H->ZZ*->4v with Branching Ratio BR~0.1%, if an invisibly decaying Higgs boson would be observed with a higher BR, this would be a sign of new physics. Several Beyond the Standard Model (BSM) models predict invisibly decaying Higgs boson where the Higgs can decay into dark matter particles or neutral long-lived massive particles. Among the H->invisible searches the most sensitive one is the one where the Higgs is produced via the VBF process. Its final state is characterized by two energetic jets, with the typical features of the VBF mode (i.e. large angular separation and large invariant mass) and large missing transverse momentum (Etmiss>180 GeV). To select a sample of signal candidate events, a Signal Region (SR) is designed to maximize the fraction of expected signal events with respect to the SM prediction (backgrounds). The SM processes which can populate the SR comes mainly from Z->vv+jets and W->lv+jets processes, where the lepton is lost or not reconstructed. Their contribution is estimated with a semi data driven approach: dedicated regions enriched in W->lv/Z->ll events are used to normalize to data the Monte Carlo (MC) estimates using a simultaneous fitting technique (transfer factor) and to extrapolate them to the SR. The predicted background estimate is compared to the observed SR data. Since no excess is found, an upper limit on the BR(H->inv) is set. The analysis is then reinterpreted in the context of models inspired by the Minimal Dark Matter model. The case of a new electroweak fermionic triplet, with null hypercharge and with interactions respecting the B-L number, added on top of the SM provides a good Dark Matter candidate. As such, it is an example of pure Weakly Interacting Massive Particle (WIMP), meaning that it is a DM particle with SU(2)_L SM interactions which is not mixing with other states (pure).If the thermal abundance is assumed, the mass of the neutral component is around 3 TeV, however smaller masses are also allowed in case of non-thermal production mechanisms or if the triplet constitutes only a fraction of the DM abundance. It can be produced at proton-proton colliders such as the LHC and it can be probed in different ways. Once produced, the charged components of the triplet decays into the lightest neutral component chi0 plus very soft charged pions. chi0 is reconstructed as Etmiss in the detector while the pions, because of the small mass splitting between the neutral and charged components, are so soft that are lost and are not reconstructed. Therefore, when produced via VBF, it gives rise to a signature with two VBF jets and Etmiss, the same final state that has been investigated for the VBF Higgs invisible analysis. Different mass point (from 90 GeV to 200 GeV) have been generated with the Madgraph+Pythia, Monte Carlo programs within the official ATLAS software, and upper limits are set on the fiducial cross section. Extrapolations to higher luminosities using a simplified approach are also presented
Röhrig, Rainer-Christian [Verfasser], Hubert [Akademischer Betreuer] Kroha, Hubert [Gutachter] Kroha, and Stefan [Gutachter] Schönert. "Search for Dark Matter Production in Association with a Higgs Boson with the ATLAS Detector at the LHC / Rainer-Christian Röhrig ; Gutachter: Hubert Kroha, Stefan Schönert ; Betreuer: Hubert Kroha." München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1185638083/34.
Full textGadow, Paul Philipp [Verfasser], Oliver [Akademischer Betreuer] Kortner, Peter [Gutachter] Fierlinger, and Oliver [Gutachter] Kortner. "Search for Dark Matter Produced in Association with Hadronically Decaying Bosons at √s = 13 TeV with the ATLAS Detector at the LHC / Paul Philipp Gadow ; Gutachter: Peter Fierlinger, Oliver Kortner ; Betreuer: Oliver Kortner." München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/1221719521/34.
Full textKahlhoefer, Felix Karl David. "Complementarity of searches for dark matter." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ec5b1afe-b75c-44d9-9dad-e0d342e46fa1.
Full textMishra-Sharma, Siddharth. "Extragalactic Searches for Dark Matter Annihilation." Thesis, Princeton University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10928813.
Full textWe are at the dawn of a data-driven era in astrophysics and cosmology. A large number of ongoing and forthcoming experiments combined with an increasingly open approach to data availability offer great potential in unlocking some of the deepest mysteries of the Universe. Among these is understanding the nature of dark matter (DM)—one of the major unsolved problems in particle physics. Characterizing DM through its astrophysical signatures will require a robust understanding of its distribution in the sky and the use of novel statistical methods.
The first part of this thesis describes the implementation of a novel statistical technique which leverages the “clumpiness” of photons originating from point sources (PSs) to derive the properties of PS populations hidden in astrophysical datasets. This is applied to data from the Fermi satellite at high latitudes (|b| ≥ 30°) to characterize the contribution of PSs of extragalactic origin. We find that the majority of extragalactic gamma-ray emission can be ascribed to unresolved PSs having properties consistent with known sources such as active galactic nuclei. This leaves considerably less room for significant dark matter contribution.
The second part of this thesis poses the question: “what is the best way to look for annihilating dark matter in extragalactic sources?” and attempts to answer it by constructing a pipeline to robustly map out the distribution of dark matter outside the Milky Way using galaxy group catalogs. This framework is then applied to Fermi data and existing group catalogs to search for annihilating dark matter in extragalactic galaxies and clusters.
Palacio, Navarro Joaquim. "Indirect dark matter searches: MAGIC & CTA." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/462764.
Full textDecades of observational evidences have been accumulated to show that Standard Model (SM) particles cannot totally explain the strong gravitational unbalance observed in several astronomical regions, at all cosmological scales, from that of Milky Way (MW) satellite galaxies, to that of Cluster of Galaxies (CGs). Although some theories argue for the modification of the gravitational laws, the existence of a new massive particle (or a set of them), interacting only weakly with SM particles, provides a preferred explanation. It is estimated that this form of Dark Matter (DM) roughly accounts for 4 times the amount of SM matter, therefore shaping the evolution of cosmic structures along the history of the Universe. A well-motivated general framework for DM is that of a Weakly Interacting Massive Particle (WIMP), generic massive particles with a mass range expected between few GeVs and few hundreds TeV, interaction strengths at the weak scale, and either stable or very long lived. The WIMP paradigm has been long debated, and has the advantage of being at reach by different of the top-class instruments of the current times, so that a putative discovery could be validated independently. We focus on the indirect search of DM, where annihilating or decaying WIMPs are expected to emit gamma rays at energies detectable by Imaginc Atmospheric Cherenkov Telescopes (IACTs), as the currently operating MAGIC telescopes or the future Cherenkov Telescope Array (CTA). The expected DM signal can be moderate extended when compared to IACTs Field of View (FoV), what challenges the performance of the \acrshort{dm} search of these instruments. In this thesis, I contribute to the MAGIC ongoing efforts on indirect DM searches at different analysis levels. A tool for handling the massive data products generated by current high energy experiments is developed. More over, a tailored Monte Carlo (MC) for moderate extended sources is proposed as an upgrade of the current general MC for extended sources. Finally, a method to optimize the pointing strategy of IACTs while observing moderate extended sources taking into account the off-axis performance of the instrument has also been developed and, implemented for the first time to indirect DM searches on highly DM dominated nearby dwarf Sphereoidal galaxies (dSphs). I also show my contribution to the largest telescope to be part of CTA, the Large Size Telescopes, that will dominate the CTA sensitivity for standard WIMP searches. Constraints on the WIMP thermally averaged cross-section and/or decay life-time are put with 60~hours of data in the recently discovered dSph Triangulum-II and 202~hours on the Perseus CG. On both searches, we apply a binned likelihood analysis optimized for the spectral and morphological features of gamma-ray signals of DM from annihilating or decaying WIMPs. We reach sensitivities to the thermally averaged cross-section of 3·10^{-26}~\cm^{3}\s^{-1} and decay life-times of 0.3·\times10^{25}~\s, being this the most constraining MAGIC results on WIMP searches.
Ingleby, Stuart. "Cryodetector readout for direct dark matter searches." Thesis, University of Oxford, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558393.
Full textMantani, Luca. "Simplified t-channel models for dark matter searches." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13444/.
Full textFigueiredo, Vaz Pato Miguel. "A multi-disciplinary approach to Dark Matter Searches." Paris 7, 2011. http://www.theses.fr/2011PA077205.
Full textA large portion of the present Universe is composed of a non-luminous kind of matter, which is intrinsically distinct from ail mass constituents known to exist. The evidence for this so-called Dark Matter spans sub-galactic to cosmological scales, and strongly suggests that it contributes around 80-85% of the matter content in our Universe. Over the past years, numerous experimental results relevant for Dark Matter searches have been released, triggering a great deal of excitement in the field. Moreover, plenty of data are expected in the near future. This thesis aims at linking Dark Matter models and their experimental signatures in current and upcoming detectors. As far as indirect Dark Matter detection is concerned, special attention is paid to the recently reported electron/positron excess in cosmic rays, which can in principle be explained by Dark Matter annihilations in our Galaxy. In order to test this possibility we perform a multi-messenger analysis combining the constraints from different astrophysical channels such as antiprotons, gamma-rays and radio signals. The uncertainties entering the computation of Dark Matter signatures are very significant and ultimately limit our ability to extract the properties of Dark Matter in case of discovery. Therefore, to assess and forecast ail relevant uncertainties is crucial, and a large portion o this thesis is devoted to that topic. In particular, we study the prospects for pinpointing cosmic-ray propagation with AMS-02, the systematic uncertainties regarding the local Dark Matter density and the effect of astrophysical unknowns on direct detection experiments
Scott, Pat. "Searches for Particle Dark Matter Dark stars, dark galaxies, dark halos and global supersymmetric fits /." Doctoral thesis, Stockholm : Department of Physics, Stockholm University, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-38221.
Full textAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Accepted. Paper 6: Submitted. Härtill 6 uppsatser.
Currie, Alastair Edward. "Direct searches for WIMP dark matter with ZEPLIN-III." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9980.
Full textDanninger, Matthias. "Searches for Dark Matter with IceCube and DeepCore : New constraints on theories predicting dark matter particles." Doctoral thesis, Stockholms universitet, Fysikum, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-89820.
Full textRaj, Nirmal. "Dark Matter and Supersymmetry in the LHC Era." Thesis, University of Oregon, 2015. http://hdl.handle.net/1794/19253.
Full textCosta, Miguel António Felizardo da. "Advanced instrumentation for superheated liquid detectors in dark matter searches." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/8863.
Full textThe initial goal of the thesis work was to improve the performance of the instrumentation used in the SIMPLE dark matter search. Consequently, the ultimate objective is to find a possible candidate for Dark Matter or improve the knowledge of its nature. Upon a brief description of Dark Matter and the status of its search, the fundamentals of Superheated Liquid Detectors are presented. This thesis presents a robust acoustic instrumentation together with a new method for the identification of bubble nucleations in Superheated Droplet Detectors. This is accomplished through straightforward signal processing techniques applied to the acoustical recording of the nucleation events, which consists of pulse shape identification procedures. A set of tests are presented to evaluate the performance of the proposed algorithms, as well as the new and more reliable instrumentation. An effort to locate a bubble nucleation in the SDDs is accomplished through some elaborated signal processing techniques applied to the acoustical recording of the nucleation events. These include the application of wavelets, the chirp-z transform and pulse shape identification procedures to locate temporally and validate the nucleation for its spatial localization. Acoustic and SDD associated backgrounds are completely discriminated with the developed signal processing techniques. Results from systematic studies are presented for the instrumentation and SDD response,which are used in the SIMPLE dark matter search experiment and possibly in neutron dosimetry. A new bubble nucleation efficiency is drawn out, together with particle discrimination confirmation determined throughout a-n calibrations. SIMPLE's Phase-II Dark Matter results are presented with the implementation of the complete instrumentation in operation for SDDs. These results are simultaneously presented with the full characterization of the local background scenario and gained knowledge of SDD characteristics and dynamics. Interpretations of these results are laid out. The direct future is given through the R&D of a rejuvenation superheated liquid detector, the Big Droplet Chamber. A prototype of this new Bubble Chamber is shown together with its first results of a more prevailing ultrasound acoustic system. Which can possibly reveal in the near future, unseen aspects such as the bubble formation stage in superheated liquids up to now.
Fundação para a Ciência e Tecnologia - (SFRH/BD/46545/2008)
Genolini, Yoann. "Refined predictions for cosmic rays and indirect dark matter searches." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY049/document.
Full textA hundred years ago, pioneering observations of air ionization revealed that the Earth is showered with particles coming from the Galaxy and beyond. Because of their high energies, these particles coined cosmic-rays are still a crucial tool in the field of particle physics, complementary to man-made accelerators. From an astrophysical point of view, the origin of cosmic-rays and the mechanisms which accelerate them are still very poorly known. The present paradigm involves sporadic production associated with the expanding shock waves from dying stars (SNRs).Recent experiments (notably PAMELA and, more recently, AMS-02) are ushering us into a new era of measurements of cosmic-ray fluxes with greatly reduced statistical uncertainties. In this dissertation, we propose and investigate new theoretical refinements of our predictions to fully benefit from these advances.After a general introduction on cosmic-ray physics, we first focus on the so-called primary species which are directly produced by SNRs. In this context of precision measurements, the discreteness of the sources in space and time, together with a substantial ignorance of their precise epochs and locations (with the possible exception of the most recent and close ones) may lead to significant uncertainties in the predictions of the fluxes at the Earth. So far, the conventional approach just relied on average trends. Here, we elaborate a statistical theory in order to compute the probability for the actual flux to depart from its ensemble average. Using the generalized version of the central limit theorem, we demonstrate that the probability distribution function of the flux is intimately related to the source distribution and follows a stable law with a heavier tail than the Gaussian distribution. Our theoretical framework can not only be extended to other cosmic-ray observables, such as the lepton flux, but also can be enriched to include a more comprehensive description of the correlations between the sources. Moreover the method which we have developed may be applied to a variety of problems in physics/astrophysics involving heavy tail distributions.Secondly, we concentrate on secondary CRs, like the boron nuclei, which are thought to be produced only by the collisions of cosmic-rays on the interstellar medium. More precisely, the ratio of the boron to carbon fluxes is a traditional tool used to understand and gauge the propagation of cosmic-rays in the Galaxy. Hence a very precise measurement of this ratio should imply stringent constraints on the propagation scenario. However we show that its theoretical derivation strongly depends on where these secondary species are produced as well as on the chosen set of nuclear cross-sections. Hence we assess at the 20% level the theoretical uncertainties on the so far derived propagation parameters. As new data from AMS-02 were freshly released, we present the starting points of a comprehensive new analysis for which we use the semi-analytical code USINE.Finally these high precision measurements offer new opportunities for a number of astroparticle problems, such as indirect dark matter searches which is the main thrust of the third part of the thesis. Antimatter cosmic rays are thought to be secondary species and their relatively low fluxes make them a channel of choice to look for rare processes such as dark matter annihilation. Nonetheless, the predictions of the expected backgrounds rely on a precise modeling of cosmic-ray propagation and interactions in the Galaxy. We treat them under commonly used simplified assumptions and discuss two studies where we re-evaluate the anti-proton and the positron fluxes in the light of the new AMS-02 data. Then we discuss the implications for dark matter and astrophysical explanations
Wolf, Martin. "Indirect Searches for Galactic Dark Matter with IceCube-DeepCore and PINGU." Licentiate thesis, Stockholms universitet, Fysikum, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-104786.
Full textIceCube
Gastler, Daniel E. "Design of single phase liquid argon detectors for dark matter searches." Thesis, Boston University, 2012. https://hdl.handle.net/2144/31557.
Full textPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
Within our current understanding of the makeup of the universe, dark matter makes up 25% of the total energy and over 80% of the matter in the universe. Little is known about the makeup of dark matter, but its existence has been indirectly measured using the rotation curves of galaxies, clusters of galaxies, and the Cosmic Microwave Background. To gain a greater understanding of this component of the universe, direct detection of dark matter is a major objective in particle astrophysics. One popular candidate for dark matter is the weakly interacting massive particle, or WIMP. The allowed rate of interaction between a WIMP and normal matter is extremely low, requiring new detection technologies with greater sensitivity to be explored. Though several experiments have already been conducted, no direct detection experiment has unambiguously identified a dark matter signal. This work explores the use of noble liquids, in a single liquid phase design, to detect single scatters of dark matter particles. The goal of current experiments is to investigate matter-dark-matter interaction cross-sections down to 10 -45 cm2 . With that in mind, the MiniCLEAN detector has been designed with a 500 kg liquid argon detector volume and will be viewed by a spherical 4π configuration of 92 photo-multiplier tubes. In order to determine the ability for single phase noble liquid to detect nuclear recoils from dark matter, several R&D experiments have been performed. These experiments undertook the measurement of how dark-matter-like nuclear recoils and background-like electronic recoils behave in liquid argon. In addition to reviewing the measurements of pulse shape discrimination and other noble liquid properties, my measurement of the scintillation efficiency is described. The scintillation efficiency characterizes the differing energy responses for nuclear and electron recoils. This was the first measurement of the scintillation efficiency in liquid argon for nuclear recoils over a wide energy range. Additionally, this work covers the design and testing of the front-end electronics and data acquisition software I developed for the MiniCLEAN experiment. This system has been designed to record and process thousands of physics events per second and has been tested using novel simulators, that I developed, that approximately represent the expected PMT signals of the MiniCLEAN detector.
2031-01-01
Birsin, Emrah. "Searches for a Dark Matter annihilation signal with Imaging Atmospheric Telescopes." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17290.
Full textFirst indications for the existence of Dark Matter appeared in 1933. The astrophysicist Fritz Zwicky observed the velocity dispersion of the Coma Cluster and found out that 400 times the visible mass must be contained in the galaxy cluster or the cluster could not be gravitationally bound and would disperse.Despite extensive efforts over the last 80 years not much is known about Dark Matter. The facts known are that Dark Matter interacts via gravitation, does not interact electromagneticly and is the main constituent of matter. But current experiment searching for Dark Matter directly and indirectly begin to reach sensitivities that can probe interesting parameter spaces for Dark Matter candidates like the lightest supersymmetric particle, meaning the first Dark Matter detections could happen in the near future.In this thesis a dwarf stacking analysis for Dark Matter signal search using H.E.S.S. data is performed and a upper limit is calculated. Furthermore the prospect for a Dark Matter search with CTA in the galactic center region of the Milky Way is presented for different candidate arrays and different annihilation channels. The results will show that CTA will be able to reach velocity annihilation below 3 *10^-26 cm^3s^-1, the velocity annihilation crosssection expected for a weakly interacting Dark Matter particle, within 100 h of observation which can reasonably be acquired within one to two years.
Ingebretsen, Carlson Tom. "Characterization of the Spin of Dark Matter at the LHC." Thesis, Uppsala universitet, Högenergifysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-388421.
Full textBailey, Adam. "Dark matter searches and study of electrode design in LUX and LZ." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/41878.
Full textWolf, Martin. "Indirect Searches for Dark Matter in the Milky Way with IceCube-DeepCore." Doctoral thesis, Stockholms universitet, Fysikum, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-128785.
Full textAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.
Méndez, Isla Miguel Alfonso. "Dark matter searches with cosmic-ray detectors and the Square Kilometre Array." Doctoral thesis, Faculty of Science, 2020. http://hdl.handle.net/11427/32379.
Full textHütten, Moritz. "Prospects for Galactic dark matter searches with the Cherenkov Telescope Array (CTA)." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17766.
Full textIn the current understanding of structure formation in the Universe, the Milky Way is embedded in a clumpy halo of dark matter (DM). Regions of high DM density are expected to emit enhanced γ-radiation from the DM relic annihilation. This γ-radiation can possibly be detected by γ-ray observatories on Earth, like the forthcoming Cherenkov Telescope Array (CTA). This dissertation presents a semi-analytical density modeling of the subclustered Milky Way DM halo, and the γ-ray intensity at Earth from DM annihilation in Galactic subclumps is calculated for various substructure models. It is shown that the modeling approach is able to reproduce the γ-ray intensities obtained from extensive dynamical DM simulations, and that it is consistent with the DM properties derived from optical observations of dwarf spheroidal galaxies. A systematic confidence margin of plausible γ-ray intensities from Galactic DM annihilation is estimated, encompassing a variety of previous findings. The average distances, masses, and extended emission profiles of the γ-ray-brightest DM clumps are calculated. The DM substructure models are then used to draw reliable predictions for detecting Galactic DM density clumps with CTA, using the most recent benchmark calculations for the performance of the instrument. A Likelihood-based calculation with CTA analysis software is applied to find the instrumental sensitivity to detect the γ-ray-brightest DM clump in the projected CTA extragalactic survey. An alternative Likelihood-based analysis method is developed, to detect DM substructures as anisotropies in the angular power spectrum of the extragalactic survey data. The analyses predict that the CTA extragalactic survey will be able to probe annihilation cross sections of ⟨σv⟩ > 1 × 10−24 cm3 s−1 at the 95% confidence level for a DM particle mass of mχ ∼ 500 GeV from DM annihilation in substructures. This sensitivity is compatible with long-term observations of single dwarf spheroidal galaxies with CTA. Independent of a particular source model, it is found that the CTA extragalactic survey will be able to detect anisotropies in the diffuse γ-ray background above 100 GeV at a relative amplitude of CP_F > 10−2.
Dumont, Béranger. "Higgs, supersymmetry and dark matter after Run I of the LHC." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY025/document.
Full textTwo major problems call for an extension of the Standard Model (SM): the hierarchy problem in the Higgs sector and the dark matter in the Universe. The discovery of a Higgs boson with mass of about 125 GeV was clearly the most significant piece of news from CERN's Large Hadron Collider (LHC). In addition to representing the ultimate triumph of the SM, it shed new light on the hierarchy problem and opened up new ways of probing new physics. The various measurements performed at Run I of the LHC constrain the Higgs couplings to SM particles as well as invisible and undetected decays. In this thesis, the impact of the LHC Higgs results on various new physics scenarios is assessed, carefully taking into account uncertainties and correlations between them. Generic modifications of the Higgs coupling strengths, possibly arising from extended Higgs sectors or higher-dimensional operators, are considered. Furthermore, specific new physics models are tested. This includes, in particular, the phenomenological Minimal Supersymmetric Standard Model.While a Higgs boson has been found, no sign of beyond the SM physics was observed at Run I of the LHC in spite of the large number of searches performed by the ATLAS and CMS collaborations. The implications of the negative results obtained in these searches constitute another important part of this thesis. First, supersymmetric models with a dark matter candidate are investigated in light of the negative searches for supersymmetry at the LHC using a so-called "simplified model" approach. Second, tools using simulated events to constrain any new physics scenario from the LHC results are presented. Moreover, during this thesis the selection criteria of several beyond the SM analyses have been reimplemented in the MadAnalysis 5 framework and made available in a public database
Garde, Lindholm Maja. "Dark Matter searches targeting Dwarf Spheroidal Galaxies with the Fermi Large Area Telescope." Doctoral thesis, Stockholms universitet, Fysikum, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-118905.
Full textLundström, Erik. "Phenomenology of Inert Scalar and Supersymmetric Dark Matter." Doctoral thesis, Stockholms universitet, Fysikum, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-39278.
Full textChagani, Hassan. "Studies of the responses of liquid and solid targets for direct dark matter searches." Thesis, University of Sheffield, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489361.
Full textBuchholz, Annika [Verfasser]. "Various Aspects of Astroparticle Physics and the Implications for Dark Matter Searches / Annika Buchholz." Bonn : Universitäts- und Landesbibliothek Bonn, 2020. http://d-nb.info/1218301287/34.
Full textDoro, Michele. "Novel Reflective Elements and Indirect Dark Matter Searches for MAGIC II and future IACTs." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3425635.
Full textDurante la Scuola di Dottorato ho svolto la mia ricerca seguendo due attivita' principali: una parte tecnologica relativa allo sviluppo e la produzione di unita' riflettenti per il secondo telescopio MAGIC ed una parte maggiormente scientifica sulle strategie di rivelazione indiretta di Materia Oscura con il Telescopio MAGIC.
Wahl, David. "Optimisation of light collection in inorganic scintillators for rare event searches." Thesis, University of Oxford, 2005. http://ora.ox.ac.uk/objects/uuid:c41d6500-c513-405f-926f-547a588aa1da.
Full textEl, Aisati Chaimae. "Gamma-ray and Neutrino Lines from Dark Matter: multi-messenger and dedicated smoking-gun searches." Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/266180.
Full textOption Physique du Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Wiebe, Klaus [Verfasser]. "All-flavor based searches for solar dark matter with the IceCube Neutrino Observatory / Klaus Wiebe." Mainz : Universitätsbibliothek Mainz, 2017. http://d-nb.info/1124030700/34.
Full textAli, Cavasonza Leila [Verfasser], Michael [Akademischer Betreuer] Krämer, and Stefan [Akademischer Betreuer] Schael. "Searches for leptophilic dark matter with astrophysical experiments / Leila Ali Cavasonza ; Michael Krämer, Stefan Schael." Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1130590267/34.
Full textBOSSA, MARIA. "Low-mass dark matter and neutrino-less double beta decay searches with tha darkside technology." Doctoral thesis, Gran Sasso Science Institute, 2019. http://hdl.handle.net/20.500.12571/9561.
Full textArcadi, Giorgio. "Interplay between Generation Mechanisms and Detection of Supersymmetric Dark Matter in the LHC Era." Doctoral thesis, SISSA, 2012. http://hdl.handle.net/20.500.11767/3866.
Full textMarzioni, Maria Francesca. "Axion dark matter and two-neutrino double electron capture searches in the Large Underground Xenon experiment." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31054.
Full textOlzem, Jan. "Signatures of SUSY dark matter at the LHC and in the spectra of cosmic rays." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=984327568.
Full textDienes, Keith R., Shufang Su, and Brooks Thomas. "Beyond the bump-hunt: A game plan for discovering dynamical dark matter at the LHC." AMER INST PHYSICS, 2016. http://hdl.handle.net/10150/621546.
Full text