Dissertations / Theses on the topic 'Levelized cost of energy (LCOE)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 37 dissertations / theses for your research on the topic 'Levelized cost of energy (LCOE).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Heidari, Shayan. "Economic Modelling of Floating Offshore Wind Power : Calculation of Levelized Cost of Energy." Thesis, Mälardalens högskola, Industriell ekonomi och organisation, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-36130.
Full textEnglund-Karlsson, Simon. "Energy storage and their combination with wind power compared to new nuclear power in Sweden : A review and cost analysis." Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-32749.
Full textMattsson, Helen, and Jonatan Lindberg. "Vätgasens roll i det regionala energisystemet : Tekno-ekonomiska förutsättningar för Power-to-Power." Thesis, Linköpings universitet, Energisystem, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-173577.
Full textMore and more intermittent electric power is being built in Sweden today to increase the share of renewable electricity in the energy system. This leads to more uneven electricity generation, which creates problems in terms of more volatile and unpredictable electricity prices. One way to dampen the effect of the increasing intermittent power is to use renewable hydrogen production as load shedding. In this way, the hydrogen gas can potentially become an important part of the fossil-free energy mix. Using hydrogen as energy storage in a Power-to-Power application (P2P) also enables the use of price arbitrage in the electricity market. An increased climate focus has rekindled interest in how hydrogen production can be made profitable. Some signs that investments are taking place are that several countries are investing big money on hydrogen technologies and infrastructure, and collaborations across national borders have been established. This study aims to investigate the techno-economic prerequisites for renewable hydrogen production where the profitability of arbitrage on the Elspot market is explored. This comprises a thorough investigation of commercial technologies suited for Linköping’s energy system. Three cases where constructed with different component constellations. Then the operational strategy was optimised which generated a lower and upper price limit for production and conversion of hydrogen with input price data from Elspot. The optimisation tool in Excel was used in order to obtain these price limits. Visual Basic (VBA) was then used for storage simulation in order to get a perception of the storage development through all the hours of the year. The cost of every kilogram of hydrogen produced was then calculated through Levelized Cost of Energy (LCOE), which made the comparison of the three cases easier. The resulting greenhouse gas emissions when integrating the facilities in each case were also evaluated with a so-called impact analysis. The effect was compared in net emissions in carbon dioxide equivalents for an integration of each facility. The results show that there are commercial technologies that can be integrated with the existing energy system in a resource efficient manner, whereas the economic prerequisites are not as good, where today’s Power-to-Power (P2P) solutions are not profitable. The reason seems to be the combination of insufficient spot price fluctuations and a low system efficiency (14% at best) for each case. The annual revenues correspond to 1 percent of the annual costs and that LCOE lands at about 1500 SEK. A higher utilization percentage of the plant shows a lower LCOE in the investment calculation. The storage simulation indicates that a seasonal storage is needed for this type of facility because of that the spot price fluctuations are not big enough on a daily, weekly or monthly basis. The sensitivity analysis made on the investment calculation and operational strategy also shows that there is no profitability in the P2P cases where parameters regarding investment cost, efficiency and electricity price were set optimistically. The Power-to-Gas case on the other hand shows potential for profitability, all because of lower total investment costs and higher efficiency. All cases except the case with steam methane reforming shows reductions in greenhouse gas emissions when integrated in the regional energy system. The conclusion that can be drawn from the results in the case study is that, in spite of good technological prerequisites and a positive effect on local greenhouse gas emissions, a P2P-application with hydrogen storage cannot be made profitable in a Swedish context in the near future. However, a Power-to-Gas case shows potential for profitability because of its lesser investment cost and that the system efficiency is higher.
Babajide, Nathaniel Akinrinde. "The electricity crisis in Nigeria : building a new future to accommodate 20% renewable electricity generation by 2030." Thesis, University of Dundee, 2017. https://discovery.dundee.ac.uk/en/studentTheses/7c6df776-e790-4afc-8970-3877d91a2663.
Full textAlmutairi, Badriya L. "Investigating the feasibility and soil-structure integrity of onshore wind turbine systems in Kuwait." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/27612.
Full textPettit, Erica S. "WindLCOEA MATLAB TOOL FOR OPTIMIZING THE LEVELIZED COST OF ENERGY FOR WIND TURBINE DESIGNS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396621758.
Full textSamuelsson, Mattias. "What are the drivers and forces for companies within the energy sector to invest in renewable energy technologies." Thesis, KTH, Entreprenörskap och Innovation, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189286.
Full textWashika, Tony. "Renewables Based Power generation for Kenya Pipeline Company." Thesis, KTH, Kraft- och värmeteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-131315.
Full textI was a distance student and did the presentation online via centra.
Zuniga, Gustavo Camilo Rosero. "Proposta de regulamentação para usinas eólicas através da sua energia firme." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/127893.
Full textAmong renewable energy sources, wind energy is one of the most studied and has an important stake in installed capacity in the world. However, it is an alternative concentrated in a few countries as a real option to cover the energy demand. The main reasons for this concentration are linked to climate, economic and regulatory issues. Regarding the economic issue the main limitation is the cost of energy production in comparison to other sources; the limitation of the regulatory issue is the lack of calculation methods and rules that encourage the installation of wind power plants. To overcome these limitations, it is proposed an economic regulation based on firm energy of wind farms. The influence of this incentive can be measured in the behavior of a hypothetical wind farm operating in an electricity market without regulation and in a scenario with the proposed regulation. The firm energy is a concept that exists for hydraulic and thermal sources. Using this concept with the characteristics of wind power, it is possible to develop a methodology for calculation that encourages the implementation of projects in countries with small wind power installed capacity. The result allows calculating a characteristic factor of firm energy for each type of wind turbine and a method of remuneration, which operates on the net present value of a project.
Gadkari, Sagar A. "A HYBRID RECONFIGURABLE SOLAR AND WIND ENERGY SYSTEM." Cleveland State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1225821057.
Full textAgha, Kassab Fadi. "Co-optimisation of the sizing and control of an urban microgrid." Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2822.
Full textThe modernization of the electricity grid (EG) through the implementation of microgrids offers significant potential for enhancing energy resilience, sustainability, and efficiency. However, this transition involves navigating a complex web of technical, economic, and environmental challenges. Microgrids require meticulous planning and optimization to balance energygeneration, storage, and consumption while minimizing costs and carbon emissions. Achievingthis balance calls for advanced optimization strategies, which are capable of addressing theintricacies of system components and operational dynamics. The objective of this research is to enhance the decision-making capabilities of microgrid designers by providing a comprehensive approach for microgrid planning. The study offers an in-depth analysis of the project’s lifetime from technical, economic, and environmental perspectives. Implemented in Python and solved using CPLEX, the optimization process aims to minimize both the levelized cost of energy (LCOE) and the levelized cost of emissions (LCE). The study utilizes real economic and environmental data considering load growth as well as actual solar irradiation, ambient temperature, and wind speed data. The load for the university building is based on data from the Université de Technologie de Compiègne, France with the electric vehicle (EV) load modeled using probabilistic modeling. The study introduces a joint multi-objective optimization strategy usingMixed-Integer Linear Programming (MILP) to ensure globally optimal solutions, thereby that facilitates obtaining more informed and effective design choices. These choices involve evaluating various proposed solutions to balance cost and carbon emissions while addressing the complexities and technical constraints of the energy management (EM) problem. A novel aspect of this work is the integration of EM and component sizing into a unified optimization problem, aiming for an optimality gap of 0% with reduced computation time compared to existing literature. The proposed method evaluates the inherent trade-offs among various solutions by identifying the Pareto front and allowing for an optimal balance between economic and environmental objectives. The results indicate a significant reduction in LCOE and LCE in the GCMG compared to the IMG. The study reveals that Battery Energy Storage System (BESS) capacity increases as the LCE decreases, and the number of Photovoltaic (PV) systems is higher when the LCOE is lower for both operation modes. This occurs because the BESS has a slightly lower LCE compared to PV, and the LCOE of PV is also lower than that of BESS. Furthermore, as the limit of the EG increases, the Pareto fronts become lower and steeper. Additionally, the same MILP algorithm is applied to optimize microgrids from a tertiary university campus across various cities. The study further integrates wind turbines (WT) and EV loads into the microgrid. The study provides a comparative analysis of three scenarios (PV/BESS, WT/BESS, and PV/WT/BESS) across different cities for evaluating the impacts of seasonal fluctuations on LCOE and LCE, and for assessing how microgrid component technologies influence LCOE and LCE outcomes. The results indicate that scenarios including PV/WT/BESS yield the lowest LCOE and LCE values, while the WT/BESS scenario results in the highest LCOE and LCE. It is also observed that the order of cities based on average solar irradiation or wind speed does not necessarily correspond to the order of LCOE and LCE. Monthly and daily fluctuations in solar irradiation and wind speed significantly impact these results. Regarding the technologies, locally produced PV panels contribute positively to the overall LCE of the microgrid, with PV panels incorporating phase changing material showing higher LCE. The research also compares two distinct algorithms
Alasadi, Habeeb A. "100% Renewable Energy for Residences in Seven Counties in Ohio." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1493070390195179.
Full textSONG, CONGCONG. "Electricity generation from hybrid PV-wind-bio-mass system for rural application in Brazil." Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211794.
Full textBergvall, Daniel. "Cost Comparison of Repowering Alternatives for Offshore Wind Farms." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-395298.
Full textLeal, Fernando Inti. "Economic and regulatory analysis of natural gas in Brazil: electricity generation, infrastructure, and energy integration." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3136/tde-06022019-101324/.
Full textAs descobertas de substanciais reservatórios de gás natural no Brasil, localizados em águas ultra profundas após a camada Pré-Sal, demonstram um cenário promissor, aliado a investimentos estratégicos e a políticas públicas adequadas, para o desenvolvimento da infraestrutura de gás natural e uma transição sustentável na matriz elétrica brasileira. Tal transição deveria ocorrer por intermédio do uso de tubulação transnacional de gás natural, conectada a grandes instalações industriais e a usinas termelétricas, como parte de um planejamento estratégico voltado à expansão do uso de gás natural na indústria e a evitar a escassez no suprimento de energia elétrica, com vantagens econômicas e ambientais. Considerando que os debates mais relevantes do novo milênio estão focados na globalização e no desenvolvimento sustentável das nações, a integração transnacional na América Latina tem recebido crescente atenção por parte de pesquisadores e de elaboradores das políticas públicas. Nesse contexto geral, a proposta da presente pesquisa foi a de desenvolver um modelo para estudar, de uma forma comparativa, a geração termelétrica, bem como analisar o impacto do arcabouço jurídico-regulatório e das políticas governamentais no desenvolvimento da infraestrutura e do mercado do gás natural no Brasil, com um estudo detalhado dos mais relevantes mecanismos regulatórios e de mercado. Foi realizado, ainda, um comparativo da legislação regulatória do gás natural no Brasil com outros Estados-Membros relevantes do Mercosul. O estudo também avalia as sanções impostas pela Resolução ANEEL n. 583 de 2013 nos fornecedores, devido a corte no suprimento de gás natural para empreendimentos de geração termelétrica, propondo um cálculo alternativo visando a mitigar a influência das médias e outros parâmetros intrínsecos ao mercado de energia, dessa maneira reduzindo as sanções contratuais para o fornecedor de gás natural, sem prejudicar a neutralidade contratual. Diferentes fatores foram analisados de forma a determinar qual tecnologia seria a mais eficiente em termos de custos nivelados de eletricidade. Os resultados indicaram que as termelétricas a gás natural são muito competitivas e eficientes, quando comparadas com outros tipos de combustível, tanto pelo aspecto ambiental quanto pelo econômico, mesmo quando externalidades são incluídas. Ainda, que são necessárias mudanças nas políticas regulatórias e no investimento estratégico por parte dos agentes do mercado, de forma a incentivar o desenvolvimento de infraestrutura e a expansão do uso do gás natural no Brasil. O estudo também evidencia que o impacto ambiental do vazamento de CH4 se iguala àquele do CO2 liberado pela combustão em cerca de 4.2% em base mássica, quando o vazamento de metano atinge um nível em que seu impacto como gás do efeito estufa fica equivalente à biomassa.
Maggio, Daniele. "Assessment of the economics of fusion energy as a key element of a future sustainable energy mix." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3427301.
Full textIn order to be able to evaluate, from an economic point of view, under which conditions fusion technology can be a key element of a future electricity generation system, adequate calculation tools are needed to simulate a fusion reactor in a simple way and calculate the cost of electricity generated. Other tools are required to simulate an energy system, composed of different power plants, and to evaluate the system cost of electricity. The thesis work begins with the presentation of the FRESCO code (Fusion REactor Simplified COst): a code developed in C ++ language with the aim to model in a simplified way a D-T fusion power plant based on the tokamak configuration. In FRESCO the power plant is studied from a technical and an economical point of view. It allows the users to calculate reactor parameters i.e. geometrical and physical dimension of the power plant, electromagnetic parameters of the machine, net electricity production, auxiliary energy needed, the operative cycle phases (especially for the pulsed configuration), and not last, the related capital cost and the cost of electricity. As part of the thesis work, the improvements introduced in FRESCO are presented first, such as the model of the reactor chamber vacuum pumping system, and the integration between the FRESCO code and an optimization program based on genetic algorithms. Then, the analysis of the effects of the duration of the operative phases in a pulsed power plant on the cost of electricity is presented. In the second part of the thesis, the COMESE code (COsto MEdio del Sistema Elettrico, Average Cost of the Electric System) is described. The code developed as a part of the doctoral research activities, is used to develop and test energy scenarios. In particular, scenarios that can show how nuclear fusion technology can be part of the electricity generation park. The COMESE C ++ calculation code uses the electricity demand and generation data of a country, together with the data of the technologies and storage systems, in order to simulate an energy scenario. It allows to evaluate if the hypothesized generation succeeds in satisfying the demand. In that case, it calculates the levelized cost of timely electricity (LCOTE) for the scenario. It also offers the possibility to perform a stochastic analysis, based on the Monte Carlo method, in order to take into account the uncertainty on the economic parameters of generation technologies. An application of the COMESE C ++ code is presented. Two fully renewable European energy scenarios, one for Northern Europe based on the wind generation technology and one for Southern Europe based on photovoltaic generation technologies, are studied and compared. Alternative scenarios including fusion technology were developed, in order to estimate which economic conditions (overnight cost) fusion power plants can be competitive and bring a benefit to the levelized cost of timely electricity of an energy scenario.
Lundin, Rasmus, and Benjamin Beitler-Dorch. "Modelling and Analysis of Mobile Energy Transmission for Offshore Wind Power : An analysis of flow batteries as an energy transmission system for offshore wind power." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-40082.
Full textGinste, Joakim, and Sascha Partanen. "Feasibility analysis of upgrading the cogeneration unit of George Washington sugar mill in Cuba." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283613.
Full textKubas regering har satt som mål att generera 24 procent av landets elektricitet från förnyelsebara källor till år 2030. Landets många sockerbruk har identifierats som nyckelaktörer för att nå detta mål då sockerbrukens kraftvärmeenhet har potential att öka Kubas elproduktion från biomassa genom att uppgradera dem till bioelektriska kraftverk. Denna studie utvärderar möjligheten att uppgradera kraftvärmeenheten på sockerbruket George Washington i provinsen Villa Clara, Kuba. Först görs en energibalans på det föreslagna uppgraderade systemet för att utläsa dess genomförbarhet ur ett energiperspektiv. För att utvärdera projektets genomförbarhet ur ett finansiellt perspektiv beräknas investeringens nettonuvärde (NPV), interna avkastningsgrad (IRR), diskonterade återbetalningstid (DPP) och energiproduktionskostnad (LCOE). De undvikta CO2 utsläppen genom integrering av mer biokraft i det kubanska elsystemet beräknas från den uteblivna förbränningen av diesel för elproduktion i landet. Effekterna på Kubas energioberoende kvantifieras genom att man beräknar den minskade dieselimporten. NPV i det föreslagna uppgraderade systemet är 64,9 MUSD, IRR är 25,6 procent vilket är betydligt högre än den fastställda diskonteringsräntan på 6,5 procent, DPP är 5,3 år och LCOE är 0,0533 USD/kWh vilket är lägre än det maximala LCOE som fastställts av AZCUBA till 0,14 USD/kWh. De uteblivna CO2-utsläppen och minskningen av importerad diesel beräknas uppgå till 110 173 ton CO2 respektive 36 724 ton diesel varje år. Dessa indikatorer tyder på att uppgraderingen av George Washingtons kraftvärmeenhet är genomförbar.
Nilsson, Sanna. "Analys av solelinstallationer på olika fastighetstyper : En studie om möjligheter och hinder." Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-31193.
Full textGeneration of electricity by use of solar irradiation is today a very small part of the total electricity generation in Sweden. It is not necessary to build a great amount of solar parks all over Sweden to reach a higher level, it could instead be possible by using already existing rooftops. That is one of the situations that indicates the need of a greater knowledge dissemination, about today’s energysystem and the technology of photovoltaics. It also exists a demand of knowledge about characteristic Swedish houses and rooftops. To convert the different kinds of rooftops to small powersources, there is also a demand of knowledge about installations that is possible to do with different kinds of photovoltaics. Although, solar power alone cannot compete with fossil fuels, but it should have a good possibility to reach a much higher level than what exists today. Wallenstam AB is anenergy-conscious company within the real estate business in Gothenburg. Their interests in renewable energy and their ambition to replace fossil fuel with more environment-friendly technology facilitated this cooperation.The first part of the report aims to get more and deeper knowledge about the subject photovoltaics and solar plants. The second part of the report aims to investigate what possibilities and impediments there is with photovoltaic installations at different kinds of typical Swedish houses. A planning work is made at three different types of buildings in the area of Gothenburg. One at an industry/office space, one at a modern apartment block and one at a central building in Gothenburg that has both apartments and commercialized activity. The goal is to find the most suitable photovoltaic installation to each of the three buildings, based on economic advantageousness, appearance and esthetic, and the possibilities with the technology of earlier installed energy systems.The report and the result are formed on the basis of literature studies, site visits at the buildings, measurements at drawings and satellite maps, calculations by hand and modelling in the software PVsyst. Many discussions with people in the solar energy industry were also held. To calculate the Levelized Cost Of Energy (LCOE) and to perform the sensitivity analysis, a web-based calculator was used. The web-based calculator belongs to the report El från nya och framtida anläggningar 2014. The main result shows that only two of the possible photovoltaic installations gets a LCOE that is competitive relative the comparative electricity price at 0,75 SEK/kWh. Installations with polycrystalline solar panels at Kvillebäcken 3:1 and Mölnlycke 1:1. The result also shows that the two installations with polycrystalline solar panels at Kvillebäcken 3:1 and Mölnlycke Fabriker is really competitive if the capital interest rate is reduced from 4 % to 2 %, or if the investment cost isreduced by 15 %. At the property Inom Vallgraven 26:8, the LCOE for all possible installations are over one Swedish krona per kilowatt hour, but an installation with solar panels at a central building like that could have a marketing value. It would also show Wallenstams standpoint for renewable energy, new technology and a sustainable energy system.
Bagger, Toräng Adrian, and Olof Rickhammar. "Batterilagring för ökad självkonsumtion från solceller : En studie om lönsamheten hos batterilagring i den svenska bostadssektorn." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279696.
Full textThere is a growing demand for renewable power generation and efficient solutions to combine with renewables. Previous works have explored energy storage systems (ESS) and their profitability in various applications. There is an uncertainty about the profitability of ESS for increased self-consumption in Sweden. This thesis explores the profitability of battery energy storage systems (BESS) used for increased self-consumption for stakeholders with solar photovoltaics in the Swedish residential sector. A model based on levelized cost of storage (LCOS) was constructed, and varying input values were used for different scenarios. The results showed that the current cost of BESS is too high, with LCOS ranging between 1,68 SEK/kWh and 3,56 SEK/kWh depending on the stakeholder as well as input data. For profitability, a reduction of LCOS between 55% and 85% is needed. Furthermore, this thesis explores which variables have the greatest effect on a BESS’s profitability. A sensitivity analysis was conducted, where CAPEX, the number of battery cycles per year, WACC and tax reductions linked to electricity trading were identified as important variables. This thesis concluded that higher electricity prices in combination with reduced investment costs is needed to justify an investment in BESS. Besides increased self-consumption, other values are needed to justify an investment in a BESS in the near future.
Naji, Adel Ali. "Data Mining for Accurately Estimating Residential Natural Gas Energy Consumption and Savings Using a Random Forest Approach." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1557422487896673.
Full textPellizzeri, Vincenzo. "Sistemi energetici ibridi off-grid per applicazioni in aree rurali e paesi emergenti: analisi dello stato dell'arte." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textPOZZI, NICOLA. "Numerical Modeling and Experimental Testing of a Pendulum Wave Energy Converter (PeWEC)." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2708896.
Full textRavi, Kumar Swetha. "A techno-economic analysis of a residential solar Photovoltaic system installed in 2010 : A comparative case study between California and Germany." Thesis, KTH, Energi och klimatstudier, ECS, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105187.
Full textAnieheobi, Callistus Chukwuemeka. "Congo-Nigeria hydroelectric superhighway grid : an economic viable option / Anieheobi Callistus C." Thesis, North-West University, 2008. http://hdl.handle.net/10394/3667.
Full textThesis (M.Ing. (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2009.
Vasquez, Padilla Ricardo. "Simplified Methodology for Designing Parabolic Trough Solar Power Plants." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3390.
Full textRadebe, Thandwefika. "Are solar home systems a more financially viable method of electrifying Ghana households?" Master's thesis, Faculty of Commerce, 2021. http://hdl.handle.net/11427/33001.
Full textSilva, Leonardo Ribeiro Madeira da. "Comparação dos custos de geração de energia elétrica entre tecnologias despacháveis e intermitentes no Brasil." reponame:Repositório Institucional do FGV, 2017. http://hdl.handle.net/10438/18285.
Full textApproved for entry into archive by GILSON ROCHA MIRANDA (gilson.miranda@fgv.br) on 2017-05-29T14:55:52Z (GMT) No. of bitstreams: 1 Dissertação_Leonardo_Madeira v4 - revEdson VF IMPRESSA.pdf: 497221 bytes, checksum: edd8c6618d1bbcf4135abc1f146a6980 (MD5)
Made available in DSpace on 2017-05-30T12:49:39Z (GMT). No. of bitstreams: 1 Dissertação_Leonardo_Madeira v4 - revEdson VF IMPRESSA.pdf: 497221 bytes, checksum: edd8c6618d1bbcf4135abc1f146a6980 (MD5) Previous issue date: 2017-05-05
This study seeks to evaluate the financial differences of power generation between a huge array of technologies, splitting them in Dispatchable and Intermittent. Tacitly accepted all over the world as a financial tool to compare any kind of technology, the Levelized Cost of Energy, LCOE, might originate inappropriate conclusions assumptions once it considers the life cycle of some power generation source with a homogeneous generation profile. Containing a huge framework of data source and a simple metric, the study puts the Joskow (2011) study into Brazil electric sector context.
Este trabalho busca avaliar as diferenças financeiras de geração de energia entre uma grande gama de tecnologias, separando-as em Despacháveis e Intermitentes. Aceito na grande maioria dos países como instrumento de comparação financeira entre fontes de geração, o Custo Nivelado de Energia (LCOE) também é amplamente utilizado no Brasil. Com base em Joskow (2011) e em dados para empreendimentos brasileiros, mostra-se que esta métrica, o LCOE, pode gerar conclusões equivocadas devido ao fato de considerar, em um ciclo de vida dos projetos, um perfil de geração homogêneo, o que não é compatível com as características de despachabilidade das diversas fontes.
Bellinaso, Lucas Vizzotto. "Metodologia de projeto para redução do custo de sistemas fotovoltaicos." Universidade Federal de Santa Maria, 2014. http://repositorio.ufsm.br/handle/1/8534.
Full textIn photovoltaic systems, the lowest energy cost is not always achieved by an inverter with minimized cost or maximized efficiency. It is important to adopt methodologies that optimize the balance between system losses and costs. The Levelized Cost of Electricity minimization methodology, presented in literature, obtains an optimized inverter design, but needs variables like discount rate and maintenance costs. This study proposes a methodology for design and comparison of photovoltaic inverters that is simpler and is based on the adoption of a cost per Watt reference. It minimizes the energy cost considering the photovoltaic initial system cost and design specifications. This methodology is presented in detail, including an inverter design example that analyses losses and cost of all components, and also the irradiance of the photovoltaic installation place. Experimental results are presented to validate the proposed methodology.
Em sistemas fotovoltaicos, o menor custo da energia gerada nem sempre é obtido com inversores de custo minimizado ou eficiência maximizada. Para o custo da energia seja minimizado, é importante empregar metodologias de projeto que otimizem o compromisso entre perdas e custos. A metodologia de minimização do custo nivelado da eletricidade, a mais difundida na literatura, permite obter um projeto otimizado do inversor, mas necessita de variáveis como taxa de desconto e custos de manutenção do sistema fotovoltaico. Este trabalho propõe uma metodologia para projeto e comparação de inversores fotovoltaicos mais simples, baseada na adoção de um custo por Watt de referência. Essa metodologia objetiva reduzir o custo da energia produzida considerando apenas o custo inicial do sistema fotovoltaico e as restrições associadas às especificações de projeto. A metodologia proposta é apresentada em detalhes, incluindo um exemplo de projeto de inversor que analisa as perdas e custos dos componentes, além do perfil de irradiação do local de instalação do sistema fotovoltaico. Resultados experimentais são apresentados para validação da metodologia proposta.
(9525959), Reza Asadpour. "EXPLORING THE POTENTIAL OF LOW-COST PEROVSKITE CELLS AND IMPROVED MODULE RELIABILITY TO REDUCE LEVELIZED COST OF ELECTRICITY." Thesis, 2020.
Find full textVan, Wyk Werner. "Assessing the financial viability of renewable independent power production in South Africa / Werner van Wyk." Thesis, 2014. http://hdl.handle.net/10394/15730.
Full textMBA, North-West University, Potchefstroom Campus, 2015
Erturk, Mehmet. "Economic analysis of wind and solar energy sources of Turkey." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-05-2993.
Full texttext
"Feasibility Study of Use of Renewable Energy to Power Greenfield Eco-Industrial Park." Master's thesis, 2014. http://hdl.handle.net/2286/R.I.27383.
Full textDissertation/Thesis
LCOE calculation charts
Gabi Life-cycle analysis
Masters Thesis Mechanical Engineering 2014
Beigzadeh, Ashkan. "Economic Evaluation of an Advanced Super Critical Oxy-Coal Power Plant with CO2 Capture." Thesis, 2009. http://hdl.handle.net/10012/4693.
Full textRichardson, Riley L. "Developing a holistic framework to investigate the environmental, social, and economic suitability of tidal stream energy in British Columbia’s remote coastal diesel reliant First Nations Communities." Thesis, 2020. http://hdl.handle.net/1828/12529.
Full textGraduate
Lozano, Adolfo. "Analysis of a novel thermoelectric generator in the built environment." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-4131.
Full texttext
Langels, Hanna, and Oskar Syrjä. "Hydrogen Production and Storage Optimization based on Technical and Financial Conditions : A study of hydrogen strategies focusing on demand and integration of wind power." Thesis, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-435176.
Full text