To see the other types of publications on this topic, follow the link: Les entiers friables.

Journal articles on the topic 'Les entiers friables'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 journal articles for your research on the topic 'Les entiers friables.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Delahaye, Jean-Paul. "Les entiers friables." Pour la Science N° 539 – septembre, no. 9 (September 7, 2022): 80–85. http://dx.doi.org/10.3917/pls.539.0080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

De La Bretèche, Régis, and Gérald Tenenbaum. "Propriétés statistiques des entiers friables." Ramanujan Journal 9, no. 1-2 (March 2005): 139–202. http://dx.doi.org/10.1007/s11139-005-0832-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Drappeau, Sary. "Propriétés multiplicatives des entiers friables translatés." Colloquium Mathematicum 137, no. 2 (2014): 149–64. http://dx.doi.org/10.4064/cm137-2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Drappeau, Sary, and Gérald Tenenbaum. "Lois de répartition des diviseurs des entiers friables." Mathematische Zeitschrift 288, no. 3-4 (October 10, 2017): 1299–326. http://dx.doi.org/10.1007/s00209-017-1935-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Basquin, Joseph. "Loi de répartition moyenne des diviseurs des entiers friables." Journal de Théorie des Nombres de Bordeaux 26, no. 2 (2014): 281–305. http://dx.doi.org/10.5802/jtnb.868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Drappeau, Sary. "Théorèmes de type Fouvry–Iwaniec pour les entiers friables." Compositio Mathematica 151, no. 5 (March 3, 2015): 828–62. http://dx.doi.org/10.1112/s0010437x14007933.

Full text
Abstract:
An integer $n$ is said to be $y$-friable if its largest prime factor $P^{+}(n)$ is less than $y$. In this paper, it is shown that the $y$-friable integers less than $x$ have a weak exponent of distribution at least $3/5-{\it\varepsilon}$ when $(\log x)^{c}\leqslant x\leqslant x^{1/c}$ for some $c=c({\it\varepsilon})\geqslant 1$, that is to say, they are well distributed in the residue classes of a fixed integer $a$, on average over moduli ${\leqslant}x^{3/5-{\it\varepsilon}}$ for each fixed $a\neq 0$ and ${\it\varepsilon}>0$. We apply this to the estimation of the sum $\sum _{2\leqslant n\leqslant x,P^{+}(n)\leqslant y}{\it\tau}(n-1)$ when $(\log x)^{c}\leqslant y$. This follows and improves on previous work of Fouvry and Tenenbaum. Our proof combines the dispersion method of Linnik in the setting of Bombieri, Fouvry, Friedlander and Iwaniec with recent work of Harper on friable integers in arithmetic progressions.
APA, Harvard, Vancouver, ISO, and other styles
7

de la Bretèche, Régis, and Gérald Tenenbaum. "Une nouvelle approche dans la théorie des entiers friables." Compositio Mathematica 153, no. 3 (February 20, 2017): 453–73. http://dx.doi.org/10.1112/s0010437x16007806.

Full text
Abstract:
Using a new approach starting with a residue computation, we sharpen some of the known estimates for the counting function of friable integers. The improved accuracy turns out to be crucial for various applications, some of which concern fundamental questions in probabilistic number theory.
APA, Harvard, Vancouver, ISO, and other styles
8

DE LA BRETÈCHE, R., and D. FIORILLI. "Entiers friables dans des progressions arithmétiques de grand module." Mathematical Proceedings of the Cambridge Philosophical Society 169, no. 1 (March 20, 2019): 75–102. http://dx.doi.org/10.1017/s0305004119000094.

Full text
Abstract:
RésuméWe study the average error term in the usual approximation to the number of y-friable integers congruent to a modulo q, where a ≠ 0 is a fixed integer. We show that in the range exp{(log log x)5/3+ɛ} ⩽ y ⩽ x and on average over q ⩽ x/M with M → ∞ of moderate size, this average error term is asymptotic to −|a| Ψ(x/|a|, y)/2x. Previous results of this sort were obtained by the second author for reasonably dense sequences, however the sequence of y-friable integers studied in the current paper is thin, and required the use of different techniques, which are specific to friable integers.
APA, Harvard, Vancouver, ISO, and other styles
9

Hanrot, Guillaume, Gérald Tenenbaum, and Jie Wu. "Moyennes de certaines fonctions multiplicatives sur les entiers friables, 2." Proceedings of the London Mathematical Society 96, no. 1 (September 13, 2007): 107–35. http://dx.doi.org/10.1112/plms/pdm029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Basquin, Joseph. "Valeurs moyennes de fonctions multiplicatives sur les entiers friables translatés." Acta Arithmetica 145, no. 3 (2010): 285–304. http://dx.doi.org/10.4064/aa145-3-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tenenbaum, Gérald, and Jie Wu. "Moyennes de certaines fonctions multiplicatives sur les entiers friables, 3." Compositio Mathematica 144, no. 2 (March 2008): 339–76. http://dx.doi.org/10.1112/s0010437x07003077.

Full text
Abstract:
AbstractWe consider logarithmic averages, over friable integers, of non-negative multiplicative functions. Under logarithmic, one-sided or two-sided hypotheses, we obtain sharp estimates that improve upon known results in the literature regarding both the quality of the error term and the range of validity. The one-sided hypotheses correspond to classical sieve assumptions. They are applied to provide an effective form of the Johnsen–Selberg prime power sieve.
APA, Harvard, Vancouver, ISO, and other styles
12

de la Bret�che, R., and G. Tenenbaum. "Entiers friables : in�galit� de Tur�n?Kubilius et applications." Inventiones mathematicae 159, no. 3 (December 22, 2004): 531–88. http://dx.doi.org/10.1007/s00222-004-0379-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tenenbaum, Gérald. "Sur le biais d’une loi de probabilité relative aux entiers friables." Journal de théorie des nombres de Bordeaux 35, no. 2 (October 10, 2023): 481–93. http://dx.doi.org/10.5802/jtnb.1253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

de la Bretèche, Régis, and Sary Drappeau. "Niveau de répartition des polynômes quadratiques et crible majorant pour les entiers friables." Journal of the European Mathematical Society 22, no. 5 (February 4, 2020): 1577–624. http://dx.doi.org/10.4171/jems/951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Tenenbaum, Gérald, and Jie Wu. "Moyennes de certaines fonctions multiplicatives sur les entiers friables." Journal für die reine und angewandte Mathematik (Crelles Journal) 2003, no. 564 (January 12, 2003). http://dx.doi.org/10.1515/crll.2003.087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Drappeau, Sary. "Remarques sur les moyennes des fonctions de Piltz sur les entiers friables." Quarterly Journal of Mathematics, September 26, 2016. http://dx.doi.org/10.1093/qmath/haw027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography