Academic literature on the topic 'Lepton flavored dark matter'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lepton flavored dark matter.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lepton flavored dark matter"

1

Kile, Jennifer, Andrew Kobach, and Amarjit Soni. "Lepton-flavored dark matter." Physics Letters B 744 (May 2015): 330–38. http://dx.doi.org/10.1016/j.physletb.2015.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kitabayashi, Teruyuki. "Primordial Black Holes and Scotogenic dark matter." Journal of Physics: Conference Series 2156, no. 1 (December 1, 2021): 012192. http://dx.doi.org/10.1088/1742-6596/2156/1/012192.

Full text
Abstract:
Abstract We study the correlations between the initial density of primordial black holes and the lepton flavor violating μ → eγ process via scotogenic dark matter. The initial density of PBHs may be constrained with the future MEG II experiment.
APA, Harvard, Vancouver, ISO, and other styles
3

Panci, Paolo, Diego Redigolo, Thomas Schwetz, and Robert Ziegler. "Axion dark matter from lepton flavor-violating decays." Physics Letters B 841 (June 2023): 137919. http://dx.doi.org/10.1016/j.physletb.2023.137919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chao, Wei. "Dark matter, LFV and neutrino magnetic moment in the radiative seesaw model with fermion triplet." International Journal of Modern Physics A 30, no. 01 (January 9, 2015): 1550007. http://dx.doi.org/10.1142/s0217751x15500074.

Full text
Abstract:
In this paper we work in the framework of a radiative seesaw model with triplet fermion Σ. Due to the Z2 discrete flavor symmetry, the lightest neutral component of Σ is stable and thus can be a dark matter candidate. Its mass can be solely determined by the dark matter relic abundance, which is bout 2.594 TeV. It can still constitute 30% of the dark matter when considering constraints from dark matter indirect detection experiments. The model also predict a dark matter-nucleus scattering cross-section that would be accessible with future dark matter direct detection searches. We further investigate constraints on the parameter space of the model from the lepton-flavor-violating processes and neutrino transition magnetic moments, induced by the Yukawa interaction of the Σ with the left-handed lepton doublets.
APA, Harvard, Vancouver, ISO, and other styles
5

Chiang, Cheng-Wei, and Hiroshi Okada. "A simple model for explaining muon-related anomalies and dark matter." International Journal of Modern Physics A 34, no. 20 (July 20, 2019): 1950106. http://dx.doi.org/10.1142/s0217751x19501069.

Full text
Abstract:
We propose a model to explain several muon-related experimental anomalies and the abundance of dark matter. We introduce a vector-like exotic lepton that form an iso-doublet and three right-handed Majorana fermions as an iso-singlet. A real/complex scalar field is added as a dark matter candidate. We impose a global [Formula: see text] symmetry under which fields associated with the SM muon are charged. To stabilize the dark matter, we impose a [Formula: see text] (or [Formula: see text]) symmetry under which the exotic lepton doublet and the real (or complex) scalar field are charged. We find that the model can simultaneously explain the muon anomalous magnetic dipole moment and the dark matter relic density in no conflict with any lepton flavor-violating/conserving observables, with some details depending upon whether the scalar field is real or complex. Besides, we extend the framework to the quark sector in a way similar to the lepton sector, and find that the recent anomalies associated with the [Formula: see text] transition can also be accommodated while satisfying constraints such as the [Formula: see text] decays and neutral meson mixings.
APA, Harvard, Vancouver, ISO, and other styles
6

Gaviria, Alexandra, Robinson Longas, and Andrés Rivera. "Lepton dark matter portal in the inert Zee model." International Journal of Modern Physics A 35, no. 31 (November 10, 2020): 2050190. http://dx.doi.org/10.1142/s0217751x20501900.

Full text
Abstract:
The inert Zee model is an extension of the Zee model for neutrino masses. This new model explains the dark matter relic abundance, generates a one-loop neutrino masses and forbids tree-level Higgs-mediated flavor changing neutral currents. Although the dark matter phenomenology of the model is similar to that of the inert doublet model, the presence of new vector-like fermions opens the lepton portal as a new dark matter annihilation channel. We study the impact of this new portal in the low-mass regime and show the parameter space allowed by direct and indirect searches of dark matter. Remarkably, the region for [Formula: see text] GeV is recovered for [Formula: see text]. We also show that future experiments like LZ and DARWIN could probe a large region of the parameter space of the model.
APA, Harvard, Vancouver, ISO, and other styles
7

Alam, I. S. "Phenomenology of dark matter and mirror fermions from a left–right mirror model with singlet scalar." Journal of Physics G: Nuclear and Particle Physics 49, no. 2 (December 22, 2021): 025002. http://dx.doi.org/10.1088/1361-6471/ac3cfc.

Full text
Abstract:
Abstract We investigate a left–right mirror model with SU(3) c × SU(2)L × SU(2)R × U(1) Y and a discrete Z 2 symmetry, which introduces mirror fields that are copies of the standard model (SM) fields. The mirror fields have the opposite chirality to their SM counterpart fields. We also introduce singlet scalars as dark matter (DM). The new interaction between DM, SM fermions, and mirror fermions can account for DM abundance, charged lepton flavor violation, lepton anomalous magnetic moment, and flavor changing neutral current. We demonstrated that if we choose DM annihilation into muon as the dominant annihilation channel for leptophilic DM, both the observed DM abundance and the observed discrepancy between theory and experiment in the muon anomalous magnetic moment can be explained without contradicting the bound derived from charged lepton flavor violating processes. We briefly discuss how mirror fermions will be produced at the future linear collider, as mirror fermions can interact with neutral gauge bosons in this model. Finally, we discuss the lightest mirror neutrino decay mechanism, which will be highly abundant if stable.
APA, Harvard, Vancouver, ISO, and other styles
8

Hwang, Jae-Kwang. "New fermionic dark matters, extended Standard Model and cosmic rays." Modern Physics Letters A 32, no. 26 (August 11, 2017): 1730023. http://dx.doi.org/10.1142/s0217732317300233.

Full text
Abstract:
Three generations of leptons and quarks correspond to the lepton charges (LCs) in this work. Then, the leptons have the electric charges (ECs) and LCs. The quarks have the ECs, LCs and color charges (CCs). Three heavy leptons and three heavy quarks are introduced to make the missing third flavor of EC. Then the three new particles which have the ECs are proposed as the bastons (dark matters) with the rest masses of 26.121 eV/c2, 42.7 GeV/c2 and 1.9 × 10[Formula: see text] eV/c2. These new particles are applied to explain the origins of the astrophysical observations like the ultra-high energy cosmic rays and supernova 1987A anti-neutrino data. It is concluded that the 3.5 keV X-ray peak observed from the cosmic X-ray background spectra is originated not from the pair annihilations of the dark matters but from the X-ray emission of the Q1 baryon atoms which are similar in the atomic structure to the hydrogen atom. The presence of the 3.5 keV cosmic X-ray supports the presence of the Q1 quark with the EC of −4/3. New particles can be indirectly seen from the astrophysical observations like the cosmic ray and cosmic gamma ray. In this work, the systematic quantized charges of EC, LC and CC for the elementary particles are used to consistently explain the decay and reaction schemes of the elementary particles. Also, the strong, weak and dark matter forces are consistently explained.
APA, Harvard, Vancouver, ISO, and other styles
9

Vicente, Avelino. "Anomalies in b→s Transitions and Dark Matter." Advances in High Energy Physics 2018 (June 24, 2018): 1–11. http://dx.doi.org/10.1155/2018/3905848.

Full text
Abstract:
Since 2013, the LHCb collaboration has reported on the measurement of several observables associated with b→s transitions, finding various deviations from their predicted values in the Standard Model. These include a set of deviations in branching ratios and angular observables, as well as in the observables RK and RK⁎, specially built to test the possible violation of Lepton Flavor Universality. Even though these tantalizing hints are not conclusive yet, the b→s anomalies have gained considerable attention in the flavor community. Here we review new physics models that address these anomalies and explore their possible connection to the dark matter of the Universe. After discussing some of the ideas introduced in these works and classifying the proposed models, two selected examples are presented in detail in order to illustrate the potential interplay between these two areas of current particle physics.
APA, Harvard, Vancouver, ISO, and other styles
10

Chun, Eung Jin. "Lepton-flavor violating signatures in supersymmetric U(1)′ seesaw." International Journal of Modern Physics A 30, no. 15 (May 26, 2015): 1530041. http://dx.doi.org/10.1142/s0217751x15300410.

Full text
Abstract:
In a supersymmetric U(1)′ seesaw model, a right-handed sneutrino can be a good thermal dark matter candidate if the extra gaugino [Formula: see text] is light enough to provide an appropriate annihilation cross-section through a t-channel diagram. We first discuss how right thermal relic density of the right-handed sneutrino dark matter can arise and then explore lepton number and flavor violating signatures followed by cascade production of [Formula: see text] from the third generation squarks at the LHC.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Lepton flavored dark matter"

1

Dhen, Mikaël. "Muon to electron conversion, flavored leptogenesis and asymmetric dark matter in minimal extensions of the Standard Model." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/217745.

Full text
Abstract:
Il est clair que le Modèle Standard des particules élémentaires n'est pas complet. Parmi tous les indices d'une physique au-delà du Modèle Standard, la masse des neutrinos, l'asymétrie matière-antimatière de notre Univers et la matière noire constituent les trois contextes généraux de cette thèse.Le fait que les neutrinos soient massifs constitue la plus claire évidence d'une physique au-delà du Modèle Standard. La masse des neutrinos peut trouver une explication notamment dans le cadre des modèles favoris dits "modèles Seesaw". Ces modèles, en plus de générer une petite masse pour les neutrinos, génèrent aussi des processus dans lesquels la saveur d'un lepton chargé est changée, comme la désintégration d'un muon en un électron et un photon, ou la conversion d'un muon en un électron au sein d'un atome sans émission de neutrino. Ces processus sont importants car les expériences futures devraient atteindre des sensibilités impressionnantes sur leurs taux, mais aussi parce que leur observation confirmerait l'existence d'une physique nouvelle et pourrait peut-être discriminé parmi les différents modèles. Il est donc important d'avoir une expression analytique fiable du taux de ces processus dans le cadre de ces modèles Seesaw favoris. Dans la première partie de cette thèse, nous calculons l'expression du taux de conversion d'un muon en un électron au sein d'un atome dans le cadre des modèles Seesaw de type 1, et analysons la phénoménologie s'y rapportant. Ces modèles Seesaw, en plus de générer une petite masse pour les neutrinos et des processus changeant la saveur leptonique, permettent aussi la création de l'asymétrie matière-antimatière dans l'Univers, à travers le mécanisme dit de "leptogenèse". Selon ce mécanisme, une asymétrie leptonique aurait d'abord été créée, avant d'être partiellement transférée en une asymétrie baryonique. Dans la seconde partie de cette thèse, nous calculons et analysons la leptogenèse dans le cadre des modèles Seesaw de type 2 avec, pour la première fois, la prise en compte des effets de saveurs.Finalement, la troisième et dernière partie de cette thèse se concentre sur la possibilité de générer non seulement la matière baryonique à partir d'une asymétrie, mais aussi la matière noire. A cette fin, nous considérons le modèle dit "doublet inerte'', car il contient une interaction qui pourrait à priori générer de la matière noire à partir d'une asymétrie. Nous adressons dès lors la question suivante et y répondons: est-il possible de générer toute la matière noire à partir d'une asymétrie de matière noire dans le contexte du modèle doublet inerte ?
Option Physique du Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
2

Lucente, Michele. "Implication of Sterile Fermions in Particle Physics and Cosmology." Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4803.

Full text
Abstract:
The neutrino mass generation mechanism, the nature of dark matter and the origin of the baryon asymmetry of the Universe are three compelling questions that cannot be accounted for in the Standard Model of particle physics. In this thesis we focus on all these issues by providing a possible solution in terms of a minimal extension of the Standard Model, consisting in the addition of a set of sterile fermions to the field content of the theory. Sterile fermions are gauge singlet fields, that can interact via mixing with the active neutrinos. We focus on the Inverse Seesaw mechanism, which is characterised by a low (TeV or lower) new physics scale and that can be tested in current and future experimental facilities. We present the model building analysis that points towards the minimal realisations of the mechanism, and the phenomenological study in order to accommodate light neutrino masses and to impose all the relevant experimental constraints in the model, as well as the expected experimental signatures. We show the viability of the sterile neutrino hypothesis as dark matter component, together with the characteristic features of this scenario in the minimal Inverse Seesaw mechanism. The possibility of successfully accounting for the baryon asymmetry in a testable realisation of the leptogenesis mechanism is also addressed. On the other hand it is important to look for manifestations of sterile fermions in laboratory experiments. We address this point by making predictions for the expected rates of rare lepton number violating decays of vector bosons, that can be mediated by sterile fermions, as well as by studying the impact of sterile fermions on global fit of electroweak precision data.
APA, Harvard, Vancouver, ISO, and other styles
3

Lucente, Michele. "Implication of Sterile Fermions in Particle Physics and Cosmology." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112210/document.

Full text
Abstract:
Le mécanisme de génération de masses des neutrinos, la nature de la matière noire et l’origine de l’asymétrie baryonique de l’Univers sont les trois questions les plus pressantes dans la physique moderne des astroparticules, qui exigent l’introduction d’une nouvelle physique au-delà du Modèle Standard. Dans cette thèse, nous nous concentrons sur ces trois questions en fournissant une solution possible en termes d'une extension minimale du Modèle Standard, constituée par l’ajout d'un ensemble de fermions stériles au contenu des champs de la théorie. Les fermions stériles sont des champs qui sont singlets de jauge et qui peuvent interagir avec les neutrinos actifs à travers des termes de mélange. Nous nous concentrons sur le mécanisme dit de l’Inverse Seesaw (ISS), qui est caractérisé par une faible échelle de la nouvelle physique (de l’ordre TeV ou inférieure) et qui peut être testé dans les installations expérimentales actuelles et futures. Nous présentons l'analyse qui permet d’identifier les réalisations minimales de ce mécanisme et l'étude phénoménologique pour prendre en compte la masses des neutrinos légers et pour imposer toutes les contraintes expérimentales pertinentes au modèle, ainsi que les signatures expérimentales attendues. Nous montrons la viabilité de l’hypothèse que les neutrinos stériles constituent la matière noire, et les caractéristiques de cette solution dans le mécanisme minimale de l’ISS. La possibilité d’expliquer avec succès l'asymétrie baryonique à travers un processus de leptogenèse dans une réalisation testable du mécanisme est aussi adressée. Il est important de chercher des manifestations des fermions stériles dans les expériences de laboratoire. Nous abordons ce point en faisant des prévisions sur les rapports des branchement attendus pour les désintégrations des bosons vectoriels qui violent le saveur leptonique, qui peuvent être véhiculés par les fermions stériles. Nous étudions aussi l'impact des fermions stériles sur les fits globaux des données de précision électrofaible
The neutrino mass generation mechanism, the nature of dark matter and the origin of the baryon asymmetry of the Universe are three compelling questions that cannot be accounted for in the Standard Model of particle physics. In this thesis we focus on all these issues by providing a possible solution in terms of a minimal extension of the Standard Model, consisting in the addition of a set of sterile fermions to the field content of the theory. Sterile fermions are gauge singlet fields, that can interact via mixing with the active neutrinos. We focus on the Inverse Seesaw mechanism, which is characterised by a low (TeV or lower) new physics scale and that can be tested in current and future experimental facilities. We present the model building analysis that points towards the minimal realisations of the mechanism, and the phenomenological study in order to accommodate light neutrino masses and to impose all the relevant experimental constraints in the model, as well as the expected experimental signatures. We show the viability of the sterile neutrino hypothesis as dark matter component, together with the characteristic features of this scenario in the minimal Inverse Seesaw mechanism. The possibility of successfully accounting for the baryon asymmetry in a testable realisation of the leptogenesis mechanism is also addressed.On the other side it is important to look for manifestations of sterile fermions in laboratory experiments. We address this point by making predictions for the expected rates of rare lepton number violating decays of vector bosons, that can be mediated by sterile fermions, as well as by studying the impact of sterile fermions on global fit of electroweak precision data
APA, Harvard, Vancouver, ISO, and other styles
4

Chatterjee, Shiuli. "Phenomenological Explorations in Dark Matter." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5707.

Full text
Abstract:
The previous decade has seen an explosive increase in explorations into the nature of dark matter (DM) encompassing astrophysical, particle and cosmological probes. We face today a large body of gravitational evidences supporting the existence of dark matter and yet must grapple with ambiguity about its particle nature. This makes it one of the most important and challenging questions in physics, with a wide range of implications. Of particular interest is the interplay between the particle nature of dark matter and its astrophysical and cosmological manifestations. In this thesis, we address a few important questions regarding the possible properties of dark matter. The thesis consists of two parts. The first part explores lepton flavored dark matter (LFDM). One of the main results of this part is the connection between the stability of dark matter and the symmetries it possesses. We systematically show that many representations of lepton flavored dark matter are stable under the minimal flavor violation (MFV) hypothesis as long as there are no lepton number violating interactions. As a special case of the stability condition, we show that DM carrying certain charges under lepton number are trivially stable from lepton number conservation alone. We then study the cases of freeze-in mechanisms for relic density production and their detection phenomenology. We see that the LFDM in the MFV framework naturally accommodates a freeze-in production. Additionally, the notoriously difficult to detect freeze-in mechanism leads to some observable signatures at present and future direct detection experiments in minimal models of LFDM. In the second part of the thesis, we explore two important questions related to direct and indirect searches for dark matter. The latest results from the direct detection experiment XENON1T achieved unprecedentedly low background rates in electron recoil events for O(keV) recoil energies, with the future experiment XENONnT projected to lower it even further. Motivated by this, we explore the reach of XENON1T experiment in probing inelastic dark matter. We consider a dark sector consisting of two Majorana fermions χ1 and χ2 that form a pseudo-Dirac state with O(keV) mass splitting. We study the freeze-in production of the DM along with constraints from lepton colliders, flavor factories, beam dumps, and supernova cooling in the relevant parameter space. We then study the direct detection of the DM by assuming the lighter state makes up the full DM abundance in current epoch. We show then that direct detection process is enabled only by up-scattering of the dark matter in the Sun, followed by a down-scattering in electron recoil events at direct detection experiments on Earth. This leads to constraints from the current results from XENON1T experiment. We also find that hitherto unconstrained parameter space will be probed at the XENONnT experiment. The second question addresses whether neutron stars can be used as reliable probes of particle dark matter. For concreteness, we focus on the case where dark matter is captured by muons leading to kinetic heating in old neutron stars. The temperatures of old neutron stars can be probed at near-future telescopes like the James Webb Space Telescope (JWST). Our results show that the capture rates and subsequently the temperatures of the neutron stars are crucially dependent on the dark matter properties as opposed to the astrophysical properties of the neutron stars, like equation-of-state, velocity of the neutron star, dark matter halo distribution, etc. This, we believe, sets the path for neutron stars to become reliable laboratories of dark matter properties.
APA, Harvard, Vancouver, ISO, and other styles
5

Chowdhury, Debtosh. "Flavor and Dark Matter Issues in Supersymmetric Models." Thesis, 2013. http://etd.iisc.ac.in/handle/2005/3358.

Full text
Abstract:
The Standard Model of particle physics attempts to unify the fundamental forces in the Universe (except gravity). Over the years it has been tested in numerous experiments. While these experimental results strengthen our understanding of the SM, they also point out directions for physics beyond the SM. In this thesis we assume supersymmetry (SUSY) to be the new physics beyond the SM. We have tried to analyze the present status of low energy SUSY after the recent results from direct (collider) and indirect (flavor, dark matter) searches .We have tried to see the complementarity between these apparently different experimental results and search strategies from the context of low energy SUSY. We show that such complementarity does exist in well-defined models of SUSY breaking like mSUGRA, NUHM etc. The first chapter outlines the present status of the SM and discusses about the unanswered questions in SM. Keeping SUSY as the new physics beyond the SM, we also detail about its present experimental status. Chapter1 ends with the motivation and comprehensive description about each chapter of the thesis. In chapter2, we present an introduction to formal structure of SUSY algebra and the structure of MSSM. One of the such complementarities we have studied is between flavor and dark matter. In general flavor violation effects are not considered when studying DM regions in minimal SUSY models like mSUGRA. If however flavor violation does get generated through non-minimal SUSY breaking sector, one of the most susceptible regions would be the co-annihilation region for neutralino DM. In chapter 3 we consider flavor violation in the sleptonic sector and study its implications on the stau co-annihilation region. In this work we have taken flavor violation between the right-handed smuon (˜µR) and stau (˜τR). Due to this flavor mixing the lightest slepton (ĺ1) is a flavor mixed state. We have studied the effect of such ĺ11’s in the ‘stau co-annihilation’ region of the parameter space, where the relic density of the neutralinos gets depleted due to efficient co-annihilation with the staus. Limits on the flavor violating insertion in the right-handed sleptonic sector mainly comes from BR(τ → µγ). These limits are weak in some regions of the Parameter space where cancellations happen with in the amplitudes. We look for overlaps in parameter space where both the co-annihilation condition as well as the cancellations with in the amplitudes occur. We have shown that in models with non-universal Higgs boundary conditions (NUHM) overlap between these two regions is possible. The effect of flavor violation is two fold: (a) It shifts the co-annihilation regions towards lighter neutralino masses and (b) the co-annihilation cross sections would be modified with the inclusion of flavor violating diagrams which can contribute significantly. In the overlap regions, the flavor violating cross sections become comparable and in some cases even dominant to the flavor conserving ones. A comparison among the different flavor conserving and flavor violating channels, which contribute to the neutralino annihilation cross-section, is presented. One of the challenges of addressing quantitatively the complementarity problems is the lack of proper spectrum generator (numerical tools which computes SUSY sparticle spectrum in the presence of flavor violation in the sfermionic sector). For the lack of a publicly available code which considers general flavor violating terms in the renormalization group equations (RGE) we have developed a SUSY spectrum calculator, named as SuSeFLAV .It is a code written in FORTRAN language and calculates SUSY particle spectrum (with in the context of gravity mediation) in type I seesaw, in the presence of heavy right handed neutrinos (RHN). SuSeFLAV also calculates the SUSY spectrum in other type of SUSY breaking mechanisms (e.g. gauge mediation). The renormalization group (RG) flow of soft-SUSY breaking terms will generate large off-diagonal terms in the slepton sector in the presence of this RHNs, which will give rise to sizable amount of flavor violating (LFV) decays at the weak scale. Hence, in this code we also calculate the different rare LFV decays like, µ → eγ, τ → µγ etc. In SuSeFLAV the user has the freedom to choose the scale of the RHNs as well as the mixing matrix in neutrino sector. It is also possible to choose the values of the SUSY breaking input parameters at the user defined scale. The details of this package is discussed in chapter 4. Many of the present studies of complementarity between the direct and indirect searches are inadequate to address realistic scenarios, where SUSY breaking could be much more general compared to the minimal models. The work in this thesis is a step to wards this direction. Having said that, in the present thesis we have considered modifications of popular models with either explicit flavor violating terms (in some sectors) or sources of flavor violation through new particles and new couplings motivated by strong phenomenological reasons like neutrino masses. It should be noted however, the numerical tool which has been developed during the thesis can be used to address more complicated problems like with complete flavor violation in models of SUSY breaking. One of the popular mechanisms of neutrino mass generation is the so called Seesaw Mechanism. Depending on the extra matter sector present in the theory there are three basic types of them. The type I seesaw, which has singlet bright-handed neutrinos, the type II seesaw contains scalar triplets and type III seesaw has additional fermionic triplets. One of the implications of the seesaw mechanism is flavor violation in the sfermionic sector even in the presence of flavor universal SUSY breaking. This leads to a complementarity between flavor experiments and direct SUSY searches at LHC. With the announcement of the results from the reactor neutrino oscillation experiments, the reactor mixing angle (θ13) in the neutrino mixing matrix (PMNS matrix) gets fixed to a rather large non-zero value. In SO (10) GUT theories neutrino Yukawa couplings of type I seesaw gets related to the up-type fermion sector of the SM. In chapter 5 we update the status of SUSY type I seesaw assuming SO (10)- like relations for neutrino Dirac Yukawa couplings and two cases of mixing, one large, PMNS-like, and another small, CKM-like, are considered. It is shown that for the large mixing case, only a small range of parameter space with moderate tan β is still allowed. It is shown that the renormalization group induced flavor violating slepton mass terms are highly sensitive to the Higgs boundary conditions. Depending on the choice of the parameters, they can either lead to strong enhancements or cancellations with in the flavor violating terms. We have shown that in NUHM scenario there could be possible cancellations which relaxes the severe constraints imposed by lepton flavor violation compared to mSUGRA. We further updated the flavor consequences for the type II seesaw in SUSY theories. As mentioned previously in type II seesaw neutrino mass gets generated due to exchange of heavy SU (2) L triplet Higgs field. The ratio of lepton flavor violating branching ratios (e.g. BR(τ → µγ) /BR (µ → eγ) etc.) are functions of low energy neutrino masses ans mixing angles. In chapter 6 we have analyzed how much these ratios become, after the experimental measurement of θ13, in the whole SUSY parameter space or in other words how much these ratios help to constrain the SUSY parameter space. We compute different factors which can affect this ratios. We have shown that the cMSSM-like scenarios, in which slepton masses are taken to be universal at the high scale, predict 3.5 BR(τ → µγ) / BR(µ → eγ) 30 for normal hierarchical neutrino masses. We Show that the current MEG limit puts severe constraints on the light sparticle spectrum in cMSSM-like model for seesaw scale with in1013 - 1015 GeV. These constraints can be relaxed and relatively light sparticle spectrum can be still allowed by MEG result in a class of models in which the soft mass of triplet scalar is taken to be non-universal at the GUT scale. In chapter 7 we have analyzed the effect of largen eutrino Yukawa couplings on the supersymmetric lightest Higgs mass. In July 2012, ATLAS and CMS collaboration have updated the Higgs search in LHC and found an evidence of a scalar particle having mass around 125 GeV. The one-loop contribution to Higgs mass mainly depends on the top trilinear couplings (At), the SUSY scale and the top Yukawa (Yt). Thus in models with extra large Yukawa couplings at the high scale like the seesaw mechanism ,the renormalization scaling of the At parameter can get significantly affected. This in turn can modify the light Higgs mass at the weak scale for the same set of SUSY parameters. We have shown in type I seesaw with (Yν ~ 3Yu) the light Higgs mass gets reduced by 2 - 3 GeV in most of the parameter rspace. In other words the SUSY scale must be pushed high enough to achieve similar Higgs mass compared to the cMSSM scenario. We have got similar effect in SUSY type III seesaw scenario with (Yν ~Yu) at the GUT scale. In chapter 8 we summarize the results of the thesis and discuss the possible future directions.
APA, Harvard, Vancouver, ISO, and other styles
6

Chowdhury, Debtosh. "Flavor and Dark Matter Issues in Supersymmetric Models." Thesis, 2013. http://etd.iisc.ernet.in/2005/3358.

Full text
Abstract:
The Standard Model of particle physics attempts to unify the fundamental forces in the Universe (except gravity). Over the years it has been tested in numerous experiments. While these experimental results strengthen our understanding of the SM, they also point out directions for physics beyond the SM. In this thesis we assume supersymmetry (SUSY) to be the new physics beyond the SM. We have tried to analyze the present status of low energy SUSY after the recent results from direct (collider) and indirect (flavor, dark matter) searches .We have tried to see the complementarity between these apparently different experimental results and search strategies from the context of low energy SUSY. We show that such complementarity does exist in well-defined models of SUSY breaking like mSUGRA, NUHM etc. The first chapter outlines the present status of the SM and discusses about the unanswered questions in SM. Keeping SUSY as the new physics beyond the SM, we also detail about its present experimental status. Chapter1 ends with the motivation and comprehensive description about each chapter of the thesis. In chapter2, we present an introduction to formal structure of SUSY algebra and the structure of MSSM. One of the such complementarities we have studied is between flavor and dark matter. In general flavor violation effects are not considered when studying DM regions in minimal SUSY models like mSUGRA. If however flavor violation does get generated through non-minimal SUSY breaking sector, one of the most susceptible regions would be the co-annihilation region for neutralino DM. In chapter 3 we consider flavor violation in the sleptonic sector and study its implications on the stau co-annihilation region. In this work we have taken flavor violation between the right-handed smuon (˜µR) and stau (˜τR). Due to this flavor mixing the lightest slepton (ĺ1) is a flavor mixed state. We have studied the effect of such ĺ11’s in the ‘stau co-annihilation’ region of the parameter space, where the relic density of the neutralinos gets depleted due to efficient co-annihilation with the staus. Limits on the flavor violating insertion in the right-handed sleptonic sector mainly comes from BR(τ → µγ). These limits are weak in some regions of the Parameter space where cancellations happen with in the amplitudes. We look for overlaps in parameter space where both the co-annihilation condition as well as the cancellations with in the amplitudes occur. We have shown that in models with non-universal Higgs boundary conditions (NUHM) overlap between these two regions is possible. The effect of flavor violation is two fold: (a) It shifts the co-annihilation regions towards lighter neutralino masses and (b) the co-annihilation cross sections would be modified with the inclusion of flavor violating diagrams which can contribute significantly. In the overlap regions, the flavor violating cross sections become comparable and in some cases even dominant to the flavor conserving ones. A comparison among the different flavor conserving and flavor violating channels, which contribute to the neutralino annihilation cross-section, is presented. One of the challenges of addressing quantitatively the complementarity problems is the lack of proper spectrum generator (numerical tools which computes SUSY sparticle spectrum in the presence of flavor violation in the sfermionic sector). For the lack of a publicly available code which considers general flavor violating terms in the renormalization group equations (RGE) we have developed a SUSY spectrum calculator, named as SuSeFLAV .It is a code written in FORTRAN language and calculates SUSY particle spectrum (with in the context of gravity mediation) in type I seesaw, in the presence of heavy right handed neutrinos (RHN). SuSeFLAV also calculates the SUSY spectrum in other type of SUSY breaking mechanisms (e.g. gauge mediation). The renormalization group (RG) flow of soft-SUSY breaking terms will generate large off-diagonal terms in the slepton sector in the presence of this RHNs, which will give rise to sizable amount of flavor violating (LFV) decays at the weak scale. Hence, in this code we also calculate the different rare LFV decays like, µ → eγ, τ → µγ etc. In SuSeFLAV the user has the freedom to choose the scale of the RHNs as well as the mixing matrix in neutrino sector. It is also possible to choose the values of the SUSY breaking input parameters at the user defined scale. The details of this package is discussed in chapter 4. Many of the present studies of complementarity between the direct and indirect searches are inadequate to address realistic scenarios, where SUSY breaking could be much more general compared to the minimal models. The work in this thesis is a step to wards this direction. Having said that, in the present thesis we have considered modifications of popular models with either explicit flavor violating terms (in some sectors) or sources of flavor violation through new particles and new couplings motivated by strong phenomenological reasons like neutrino masses. It should be noted however, the numerical tool which has been developed during the thesis can be used to address more complicated problems like with complete flavor violation in models of SUSY breaking. One of the popular mechanisms of neutrino mass generation is the so called Seesaw Mechanism. Depending on the extra matter sector present in the theory there are three basic types of them. The type I seesaw, which has singlet bright-handed neutrinos, the type II seesaw contains scalar triplets and type III seesaw has additional fermionic triplets. One of the implications of the seesaw mechanism is flavor violation in the sfermionic sector even in the presence of flavor universal SUSY breaking. This leads to a complementarity between flavor experiments and direct SUSY searches at LHC. With the announcement of the results from the reactor neutrino oscillation experiments, the reactor mixing angle (θ13) in the neutrino mixing matrix (PMNS matrix) gets fixed to a rather large non-zero value. In SO (10) GUT theories neutrino Yukawa couplings of type I seesaw gets related to the up-type fermion sector of the SM. In chapter 5 we update the status of SUSY type I seesaw assuming SO (10)- like relations for neutrino Dirac Yukawa couplings and two cases of mixing, one large, PMNS-like, and another small, CKM-like, are considered. It is shown that for the large mixing case, only a small range of parameter space with moderate tan β is still allowed. It is shown that the renormalization group induced flavor violating slepton mass terms are highly sensitive to the Higgs boundary conditions. Depending on the choice of the parameters, they can either lead to strong enhancements or cancellations with in the flavor violating terms. We have shown that in NUHM scenario there could be possible cancellations which relaxes the severe constraints imposed by lepton flavor violation compared to mSUGRA. We further updated the flavor consequences for the type II seesaw in SUSY theories. As mentioned previously in type II seesaw neutrino mass gets generated due to exchange of heavy SU (2) L triplet Higgs field. The ratio of lepton flavor violating branching ratios (e.g. BR(τ → µγ) /BR (µ → eγ) etc.) are functions of low energy neutrino masses ans mixing angles. In chapter 6 we have analyzed how much these ratios become, after the experimental measurement of θ13, in the whole SUSY parameter space or in other words how much these ratios help to constrain the SUSY parameter space. We compute different factors which can affect this ratios. We have shown that the cMSSM-like scenarios, in which slepton masses are taken to be universal at the high scale, predict 3.5 BR(τ → µγ) / BR(µ → eγ) 30 for normal hierarchical neutrino masses. We Show that the current MEG limit puts severe constraints on the light sparticle spectrum in cMSSM-like model for seesaw scale with in1013 - 1015 GeV. These constraints can be relaxed and relatively light sparticle spectrum can be still allowed by MEG result in a class of models in which the soft mass of triplet scalar is taken to be non-universal at the GUT scale. In chapter 7 we have analyzed the effect of largen eutrino Yukawa couplings on the supersymmetric lightest Higgs mass. In July 2012, ATLAS and CMS collaboration have updated the Higgs search in LHC and found an evidence of a scalar particle having mass around 125 GeV. The one-loop contribution to Higgs mass mainly depends on the top trilinear couplings (At), the SUSY scale and the top Yukawa (Yt). Thus in models with extra large Yukawa couplings at the high scale like the seesaw mechanism ,the renormalization scaling of the At parameter can get significantly affected. This in turn can modify the light Higgs mass at the weak scale for the same set of SUSY parameters. We have shown in type I seesaw with (Yν ~ 3Yu) the light Higgs mass gets reduced by 2 - 3 GeV in most of the parameter rspace. In other words the SUSY scale must be pushed high enough to achieve similar Higgs mass compared to the cMSSM scenario. We have got similar effect in SUSY type III seesaw scenario with (Yν ~Yu) at the GUT scale. In chapter 8 we summarize the results of the thesis and discuss the possible future directions.
APA, Harvard, Vancouver, ISO, and other styles
7

Chiu, Justin. "Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at the LHC." Thesis, 2020. http://hdl.handle.net/1828/12490.

Full text
Abstract:
This thesis presents the search for the dark sector process h -> Zd Zd -> 4l in events collected by the ATLAS detector at the Large Hadron Collider in 2015--2018. In this theorized process, the Standard Model Higgs boson (h) decays to four leptons via two intermediate Beyond-the-Standard-Model particles each called Zd. This process arises from interactions of the Standard Model with a dark sector. A dark sector consists of one or more new particles that have limited or zero interaction with the Standard Model, such as the new vector boson Zd (dark photon). It could have a rich and interesting phenomenology like the visible sector (the Standard Model) and could naturally address many outstanding problems in particle physics. For example, it could contain a particle candidate for dark matter. In particular, Higgs decays to Beyond-the-Standard-Model particles are well-motivated theoretically and are not tightly constrained; current measurements of Standard Model Higgs properties permit the fraction of such decays to be as high as approximately 30%. The results of this search do not show evidence for the existence of the h -> Zd Zd -> 4l process and are therefore interpreted in terms of upper limits on the branching ratio B(h -> Zd Zd) and the effective Higgs mixing parameter kappa^prime.
Graduate
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Lepton flavored dark matter"

1

Blaha, Stephen. The origin of the standard model: The genesis of four quark and lepton species, parity violation, the electro weak sector, color SU(3), three visible generations of fermions, and one generation of dark matter with dark energy ; Quantum theory of the third kind : a new type of divergence-free quantum field theory supporting a unified standard model of elementary particles and quantum gravity based on a new method in the calculus of variations. Auburn, NH: Pingree-Hill Publishing, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lepton flavored dark matter"

1

Terranova, Francesco. "At the forefront of the Standard Model." In A Modern Primer in Particle and Nuclear Physics, 368–419. Oxford University PressOxford, 2021. http://dx.doi.org/10.1093/oso/9780192845245.003.0013.

Full text
Abstract:
Abstract The final chapter covers the least-known territories of the Standard Model (SM). It describes the Higgs mechanism using classical relativistic fields. We present the greatest achievement of the Large Hadron Collider (LHC): the discovery of the Higgs boson in 2012. The Higgs mechanism originates fermion masses, too. Lepton masses are covered first: the discovery of neutrino oscillations and the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix. It then turns to the quark sector, stressing similarities and differences with leptons, especially in meson oscillations. The complex phase of the quark mixing matrix (CKM) and the evidence for CP violation are covered. Finally, the chapter looks at the failures of the Standard Model, introducing the idea of naturalness and the dark matter–dark energy problem. The book concludes with two masterpieces of experimental ingenuity that address these issues. The direct search of dark matter by XENON1T (2017) and the observation of gravitational waves by LIGO (2016).
APA, Harvard, Vancouver, ISO, and other styles
2

Zinn-Justin, Jean. "The Standard Model (SM) of fundamental interactions." In Quantum Field Theory and Critical Phenomena, 567–92. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.003.0023.

Full text
Abstract:
The Standard Model (SM) 2020 of weak, electromagnetic and strong interactions, based on gauge symmetry and spontaneous symmetry breaking, describes all known fundamental interactions at the microscopic scale except gravity and, perhaps, interactions with dark matter. The SM model has been tested systematically in collider experiments, and in the case of strong interactions (quantum chromodynamics) also with numerical simulations. With the discovery in 2012 of the Higgs particle at the Large Hadron Collider (LHC) at the European Council for Nuclear Research (CERN), all particles of the SM have been identified, and most parameters have been measured. Still, the Higgs particle remains the most mysterious particle of the SM, since it is responsible for all the parameters of the SM except gauge couplings and since it leads to the fine-tuning problem. The discovery of its origin, and the precise study of its properties should be, in the future, one of the most important field of research in particle physics. Since we know now that the neutrinos have masses, the simplest extension of the SM implies Dirac neutrinos. With such a minimal modification, consistent so far (2020) with experimental data, the lepton and quark sectors have analogous structures: the lepton sector involves a mixing matrix, like the quark sector (three angles have been determined, the fourth charge conjugation parity (CP) violating angle is still unknown).
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lepton flavored dark matter"

1

LEE, Chao Jung. "Lepton-Flavored Scalar Dark Matter with Minimal Flavor Violation." In Flavor Physics & CP Violation 2015. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.248.0052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Agrawal, Prateek, Steve Blanchet, Zackaria Chacko, and Can Kilic. "The phenomenology of lepton flavored dark matter." In WORKSHOP ON DARK MATTER, UNIFICATION AND NEUTRINO PHYSICS: CETUP∗ 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4807337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lola, S., and Shaaban Khalil. "Gravitino Dark Matter, Neutrino Masses and Lepton Flavor Violation from broken R-parity." In THE DARK SIDE OF THE UNIVERSE: 4th International Workshop on the Dark Side of the Universe. AIP, 2009. http://dx.doi.org/10.1063/1.3131519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Asai, Kento. "Predictions for the Neutrino Parameters in the Minimal Model Extended by General Lepton Flavor-Dependent U(1) Gauge Symmetries." In International Conference on Neutrinos and Dark Matter (NDM_2020). Andromeda Publishing and Academic Services, 2020. http://dx.doi.org/10.31526/acp.ndm-2020.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

BenZvi, Segev. "Cosmological Measurements of Dark Energy and Dark Matter." In XXIX International Symposium on Lepton Photon Interactions at High Energies. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.367.0029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

KLAPDOR-KLEINGROTHAUS, H. V. "DARK MATTER SEARCH." In Proceedings of the XX International Symposium on Lepton and Photon Interactions at High Energies. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777881_0034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ma, Ernest. "New Insights on Lepton Number and Dark Matter." In International Conference on Neutrinos and Dark Matter (NDM_2020). Andromeda Publishing and Academic Services, 2020. http://dx.doi.org/10.31526/acp.ndm-2020.16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

GOMEZ, Mario E. "Dark Matter and Lepton Flavour Violation in Yukawa Unification with Massive Neutrinos." In Identification of dark matter 2008. Trieste, Italy: Sissa Medialab, 2009. http://dx.doi.org/10.22323/1.064.0090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brun, Pierre, Jean-Michel Alimi, and André Fuözfa. "Dark Matter Solutions to the Cosmic Ray Lepton Puzzle." In INVISIBLE UNIVERSE: Proceedings of the Conference. AIP, 2010. http://dx.doi.org/10.1063/1.3462654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Youn, Sung Woo, and Yannis K. Semertzidis. "Search for axion dark matter at IBS/CAPP." In XXIX International Symposium on Lepton Photon Interactions at High Energies. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.367.0081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography