Academic literature on the topic 'Lennard-jones mixtures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lennard-jones mixtures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lennard-jones mixtures"

1

Tan, Ziming, Frank Van Swol, and Keith E. Gubbins. "Lennard-Jones mixtures in cylindrical pores." Molecular Physics 62, no. 5 (December 10, 1987): 1213–24. http://dx.doi.org/10.1080/00268978700102921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schultz, Andrew J., and David A. Kofke. "Virial coefficients of Lennard-Jones mixtures." Journal of Chemical Physics 130, no. 22 (June 14, 2009): 224104. http://dx.doi.org/10.1063/1.3148379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vlot, Margot J., Hjalmar E. A. Huitema, Arnoud de Vooys, and Jan P. van der Eerden. "Crystal structures of symmetric Lennard-Jones mixtures." Journal of Chemical Physics 107, no. 11 (September 15, 1997): 4345–49. http://dx.doi.org/10.1063/1.474775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vlot, Margot J., and Jan P. van der Eerden. "Symmetric Lennard-Jones mixtures in two dimensions." Journal of Chemical Physics 109, no. 14 (October 8, 1998): 6043–50. http://dx.doi.org/10.1063/1.477229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Canongia Lopes, José N. "Microphase separation in mixtures of Lennard-Jones particles." Physical Chemistry Chemical Physics 4, no. 6 (February 12, 2002): 949–54. http://dx.doi.org/10.1039/b108845a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Yiping, and Benjamin C. Y. Lu. "Analytical equation of state for Lennard–Jones mixtures." Fluid Phase Equilibria 146, no. 1-2 (May 1998): 73–92. http://dx.doi.org/10.1016/s0378-3812(98)00210-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fernández, Julián R., and Peter Harrowell. "Ordered binary crystal phases of Lennard-Jones mixtures." Journal of Chemical Physics 120, no. 19 (May 15, 2004): 9222–32. http://dx.doi.org/10.1063/1.1689642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Valdes, L. C., F. Affouard, M. Descamps, and J. Habasaki. "Mixing effects in glass-forming Lennard-Jones mixtures." Journal of Chemical Physics 130, no. 15 (April 21, 2009): 154505. http://dx.doi.org/10.1063/1.3106759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kofke, David A., and Eduardo D. Glandt. "Monte carlo simulation of continuous Lennard-Jones mixtures." Fluid Phase Equilibria 29 (October 1986): 327–35. http://dx.doi.org/10.1016/0378-3812(86)85032-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miyano, Yoshimon. "Equation of state for Lennard-Jones fluid mixtures." Fluid Phase Equilibria 66, no. 1-2 (September 1991): 125–41. http://dx.doi.org/10.1016/0378-3812(91)85051-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Lennard-jones mixtures"

1

Holtz, Barbara. "Investigations of Lennard-Jones fluids and their binary mixtures by simulation and theory." Thesis, University of Kent, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Qu, Joshua D. Moore, Ying-Chun Liu, Thomas R. Roussel, Qi Wang, and Keith E. Gubbins. "Bimodal diffusion of binary Lennard Jones mixtures in atomically detailed single-walled carbon nanotubes." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-189445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Qu, Joshua D. Moore, Ying-Chun Liu, Thomas R. Roussel, Qi Wang, and Keith E. Gubbins. "Bimodal diffusion of binary Lennard Jones mixtures in atomically detailed single-walled carbon nanotubes." Diffsuion fundamentals 11 (2009) 22, S. 1, 2009. https://ul.qucosa.de/id/qucosa%3A13961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Coslovich, Daniele. "Connections between structure,dynamics and energy landscape in simple models of glass-forming liquids." Doctoral thesis, Università degli studi di Trieste, 2008. http://hdl.handle.net/10077/2563.

Full text
Abstract:
2006/2007
The microscopic origin of the glass-transition represents a long-standing open problem in condensed matter physics. Recent theoretical advances and the increasing amount of experimental and simulation data demonstrate the activity of this field of research. In this thesis we address, through molecular dynamics simulations of model glass-forming liquids, a key and yet unsolved issue concerning the description of the glass-transition: the connection between the unusual dynamical properties of glass-formers, their structural properties, and the features of the intermolecular interactions. Toward this end, we consider a broad range of models based on pair interactions. Such models are able to describe both fragile and strong glass-formers and to reproduce different types of local order, including icosahedral and prismatic structures (typical of metallic glasses) as well as tetrahedral ones (typical of network glasses). For these models we provide a systematic characterization of the structure, dynamics, and potential energy surface. The first part of the thesis briefly introduces the theoretical framework concerning the connection between structure and dynamics in fragile and strong glass-formers, as well as the main experimental and simulation results. The state of the art of the description in terms of the potential energy surface is critically reviewed on the basis of recent simulation results. The simulation methods and the optimization algorithms employed in the thesis are then presented, focusing on the stage of object-oriented analysis of the problem of molecular simulations of classical interacting systems. Such analysis constitutes an original aspect of the thesis and provided a unified and effective framework for the development of simulation software. The second part focuses on the main results obtained. The variations of dynamical properties in different systems, with particular reference to the Angell's fragility and to dynamic heterogeneities, are traced back first to the features of the locally preferred structures, then to the properties of the potential energy surface. In particular, we show that the variation of fragility in the models considered can be rationalized in terms of the formation of stable domains formed by locally preferred structures. The analysis of the properties of stationary points (local minima and saddle points) in the potential energy surface allows us to establish a direct connection between fragility, structurally stable domains and energy barriers. On the other hand, the spatial localization features of the unstable modes display qualitative variations in the models considered. The study of the correlation between the spatial localization of the unstable modes and the propensity of motion reveals that the dynamical influence of such modes is typical of the late beta-relaxation - time scale within which the effect of dynamic heterogeneity is maximum. It appears to be easier to identify such connection in fragile, rather than strong, systems. This provides indications on the possible qualitative differences concerning the metabasin structure of the potential energy surface in fragile and strong glass-formers.
XX Ciclo
1980
APA, Harvard, Vancouver, ISO, and other styles
5

Quant, Carlos Arturo. "Colloidal chemical potential in attractive nanoparticle-polymer mixtures: simulation and membrane osmometry." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/7616.

Full text
Abstract:
The potential applications of dispersed and self-assembled nanoparticles depend critically on accurate control and prediction of their phase behavior. The chemical potential is essential in describing the equilibrium distribution of all components present in every phase of a system and is useful as a building block for constructing phase diagrams. Furthermore, the chemical potential is a sensitive indicator of the local environment of a molecule or particle and is defined in a mathematically rigorous manner in both classical and statistical thermodynamics. The goal of this research is to use simulations and experiments to understand how particle size and composition affect the particle chemical potential of attractive nanoparticle-polymer mixtures. The expanded ensemble Monte Carlo (EEMC) simulation method for the calculation of the particle chemical potential for a nanocolloid in a freely adsorbing polymer solution is extended to concentrated polymer mixtures. The dependence of the particle chemical potential and polymer adsorption on the polymer concentration and particle diameter are presented. The perturbed Lennard-Jones chain (PLJC) equation of state (EOS) for polymer chains1 is adapted to calculate the particle chemical potential of nanocolloid-polymer mixtures. The adapted PLJC equation is able to predict the EEMC simulation results of the particle chemical potential by introducing an additional parameter that reduces the effects of polymer adsorption and the effective size of the colloidal particle. Osmotic pressure measurements are used to calculate the chemical potential of nanocolloidal silica in an aqueous poly(ethylene oxide) (PEO) solution at different silica and PEO concentrations. The experimental data was compared with results calculated from Expanded Ensemble Monte Carlo (EEMC) simulations. The results agree qualitatively with the experimentally observed chemical potential trends and illustrate the experimentally-observed dependence of the chemical potential on the composition. Furthermore, as is the case with the EEMC simulations, polymer adsorption was found to play the most significant role in determining the chemical potential trends. The simulation and experimental results illustrate the relative importance of the particles size and composition as well as the polymer concentration on the particle chemical potential. Furthermore, a method for using osmometry to measure chemical potential of nanoparticles in a nanocolloid-mixture is presented that could be combined with simulation and theoretical efforts to develop accurate equations of state and phase behavior predictions. Finally, an equation of state originally developed for polymer liquid-liquid equilibria (LLE) was demonstrated to be effective in predicting nanoparticle chemical potential behavior observed in the EEMC simulations of particle-polymer mixtures.
APA, Harvard, Vancouver, ISO, and other styles
6

Hannaoui, Rachid. "Simulation par Dynamique Moléculaire des Propriétés de Transport (Masse et Chaleur) de Fluides Confinés." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3010/document.

Full text
Abstract:
Le comportement d’un fluide confiné dans un milieu poreux peu perméable (micro- and méso-pores) a été étudié en ce qui concerne ses propriétés de diffusion de masse, de conductivité thermique et de thermodiffusion. Pour ce faire des simulations de dynamique moléculaire hors équilibre ont été réalisées sur des mélanges binaires modèles placés dans des conditions thermodynamiques diverses, confinés dans des milieux poreux de géométrie lamellaire de différentes natures (lisse ou atomique, plus ou moins adsorbant) en utilisant l’ensemble __//_ et l’ensemble grand canonique. Les résultats ont montré que les effets du milieu poreux sur les propriétés de transport sont d’autant plus marqués que lataille de pore est petite, que l’adsorption est forte et que la température est basse. Les résultats ont permis d’évaluer quantitativement ces effets. Il a aussi été montré que la rugosité des murs a un impact très important sur le coefficient de diffusion de masse et non négligeable sur celui de thermodiffusion
The aim of this work was to study how a fluid confined in a low permeability porous medium (micro- and meso-porous) behaves concerning its properties of mass diffusion, thermal conductivity and thermal diffusion. For this purpose, non-equilibrium molecular dynamics simulations have been performed on simple binary mixtures placed in various thermodynamic conditions, confined in a porous medium of lamellar geometry of different types (structure-less or atomistic, more or less adsorbent) in __//_ and grand canonical ensembles. The results show that the effects of porous medium on transport properties are more pronounced when the pore size is small, the adsorption is strong and the temperature is low. The results allowed to evaluate these effects quantitatively. In addition, it has been found that the wall roughness has a major impact on the mass diffusion coefficient and a non negligible one on the thermal diffusion coefficient
APA, Harvard, Vancouver, ISO, and other styles
7

Pérez, Pellitero Javier. "Improvement of monte carlo algorithms and intermolecular potencials for the modelling of alkanois, ether thiophenes and aromatics." Doctoral thesis, Universitat Rovira i Virgili, 2007. http://hdl.handle.net/10803/8550.

Full text
Abstract:
Durante la última década y paralelamente al incremento de la velocidad de computación, las técnicas de simulación molecular se han erigido como una importante herramienta para la predicción de propiedades físicas de sistemas de interés industrial. Estas propiedades resultan esenciales en las industrias química y petroquímica a la hora de diseñar, optimizar, simular o controlar procesos. El actual coste moderado de computadoras potentes hace que la simulación molecular se convierta en una excelente opción para proporcionar predicciones de dichas propiedades. En particular, la capacidad predictiva de estas técnicas resulta muy importante cuando en los sistemas de interés toman parte compuestos tóxicos o condiciones extremas de temperatura o presión debido a la dificultad que entraña la experimentación a dichas condiciones. La simulación molecular proporciona una alternativa a los modelos termofísicos utilizados habitualmente en la industria como es el caso de las ecuaciones de estado, modelos de coeficientes de actividad o teorías de estados correspondientes, que resultan inadecuados al intentar reproducir propiedades complejas de fluidos como es el caso de las de fluidos que presentan enlaces de hidrógeno, polímeros, etc. En particular, los métodos de Monte Carlo (MC) constituyen, junto a la dinámica molecular, una de las técnicas de simulación molecular más adecuadas para el cálculo de propiedades termofísicas. Aunque, por contra del caso de la dinámica molecular, los métodos de Monte Carlo no proporcionan información acerca del proceso molecular o las trayectorias moleculares, éstos se centran en el estudio de propiedades de equilibrio y constituyen una herramienta, en general, más eficiente para el cálculo del equilibrio de fases o la consideración de sistemas que presenten elevados tiempos de relajación debido a su bajos coeficientes de difusión y altas viscosidades. Los objetivos de esta tesis se centran en el desarrollo y la mejora tanto de algoritmos de simulación como de potenciales intermoleculares, factor considerado clave para el desarrollo de las técnicas de simulación de Monte Carlo. En particular, en cuanto a los algoritmos de simulación, la localización de puntos críticos de una manera precisa ha constituido un problema para los métodos habitualmente utilizados en el cálculo de equlibrio de fases, como es el método del colectivo de GIBBS. La aparición de fuertes fluctuaciones de densidad en la región crítica hace imposible obtener datos de simulación en dicha región, debido al hecho de que las simulaciones son llevadas a cabo en una caja de simulación de longitud finita que es superada por la longitud de correlación. Con el fin de proporcionar una ruta adecuada para la localización de puntos críticos tanto de componentes puros como mezclas binarias, la primera parte de esta tesis está dedicada al desarrollo y aplicación de métodos adecuados que permitan superar las dificultades encontradas en el caso de los métodos convencionales. Con este fin se combinan estudios de escalado del tamaño de sitema con técnicas de "Histogram Reweighting" (HR). La aplicación de estos métodos se ha mostrado recientemente como mucho mejor fundamentada y precisa para el cálculo de puntos críticos de sistemas sencillos como es el caso del fluido de LennardJones (LJ). En esta tesis, estas técnicas han sido combinadas con el objetivo de extender su aplicación a mezclas reales de interés industrial. Previamente a su aplicación a dichas mezclas reales, el fluido de LennardJones, capaz de reproducir el comportamiento de fluidos sencillos como es el caso de argón o metano, ha sido tomado como referencia en un paso preliminar. A partir de simulaciones realizadas en el colectivo gran canónico y recombinadas mediante la mencionada técnica de "Histogram Reweighting" se han obtenido los diagramas de fases tanto de fluidos puros como de mezclas binarias. A su vez se han localizado con una gran precisión los puntos críticos de dichos sistemas mediante las técnicas de escalado del tamaño de sistema. Con el fin de extender la aplicación de dichas técnicas a sistemas multicomponente, se han introducido modificaciones a los métodos de HR evitando la construcción de histogramas y el consecuente uso de recursos de memoria. Además, se ha introducido una metodología alternativa, conocida como el cálculo del cumulante de cuarto orden o parámetro de Binder, con el fin de hacer más directa la localización del punto crítico. En particular, se proponen dos posibilidades, en primer lugar la intersección del parámetro de Binder para dos tamaños de sistema diferentes, o la intersección del parámetro de Binder con el valor conocido de la correspondiente clase de universalidad combinado con estudios de escalado. Por otro lado, y en un segundo frente, la segunda parte de esta tesis está dedicada al desarrollo de potenciales intermoleculares capaces de describir las energías inter e intramoleculares de las moléculas involucradas en las simulaciones. En la última década se han desarrolldo diferentes modelos de potenciales para una gran variedad de compuestos. Uno de los más comunmente utilizados para representar hidrocarburos y otras moléculas flexibles es el de átomos unidos, donde cada grupo químico es representado por un potencial del tipo de LennardJones. El uso de este tipo de potencial resulta en una significativa disminución del tiempo de cálculo cuando se compara con modelos que consideran la presencia explícita de la totalidad de los átomos. En particular, el trabajo realizado en esta tesis se centra en el desarrollo de potenciales de átomos unidos anisotrópicos (AUA), que se caracterizan por la inclusión de un desplazamiento de los centros de LennardJones en dirección a los hidrógenos de cada grupo, de manera que esta distancia se convierte en un tercer parámetro ajustable junto a los dos del potencial de LennardJones.
En la segunda parte de esta tesis se han desarrollado potenciales del tipo AUA4 para diferentes familias de compuesto que resultan de interés industrial como son los tiofenos, alcanoles y éteres. En el caso de los tiofenos este interés es debido a las cada vez más exigentes restricciones medioambientales que obligan a eliminar los compuestos con presencia de azufre. De aquí la creciente de necesidad de propiedades termodinámicas para esta familia de compuestos para la cual solo existe una cantidad de datos termodinámicos experimentales limitada. Con el fin de hacer posible la obtención de dichos datos a través de la simulación molecular hemos extendido el potencial intermolecular AUA4 a esta familia de compuestos. En segundo lugar, el uso de los compuestos oxigenados en el campo de los biocombustibles ha despertado un importante interés en la industria petroquímica por estos compuestos. En particular, los alcoholes más utilizados en la elaboración de los biocombustibles son el metanol y el etanol. Como en el caso de los tiofenos, hemos extendido el potencial AUA4 a esta familia de compuestos mediante la parametrización del grupo hidroxil y la inclusión de un grupo de cargas electrostáticas optimizadas de manera que reproduzcan de la mejor manera posible el potencial electrostático creado por una molecula de referencia en el vacío. Finalmente, y de manera análoga al caso de los alcanoles, el último capítulo de esta tesis la atención se centra en el desarrollo de un potencial AUA4 capaz de reproducir cuantitativamente las propiedades de coexistencia de la familia de los éteres, compuestos que son ampliamente utilizados como solventes.
Parallel with the increase of computer speed, in the last decade, molecular simulation techniques have emerged as important tools to predict physical properties of systems of industrial interest. These properties are essential in the chemical and petrochemical industries in order to perform process design, optimization, simulation and process control. The actual moderate cost of powerful computers converts molecular simulation into an excellent tool to provide predictions of such properties. In particular, the predictive capability of molecular simulation techniques becomes very important when dealing with extreme conditions of temperature and pressure as well as when toxic compounds are involved in the systems to be studied due to the fact that experimentation at such extreme conditions is difficult and expensive.
Consequently, alternative processes must be considered in order to obtain the required properties. Chemical and petrochemical industries have made intensive use of thermophysical models including equations of state, activity coefficients models and corresponding state theories. These predictions present the advantage of providing good approximations with minimal computational needs. However, these models are often inadequate when only a limited amount of information is available to determine the necesary parameters, or when trying to reproduce complex fluid properties such as that of molecules which exhibit hydrogen bonding, polymers, etc. In addition, there is no way for dynamical properties to be estimated in a consistent manner.
In this thesis, the HR and FSS techniques are combined with the main goal of extending the application of these methodologies to the calculation of the vaporliquid equilibrium and critical point of real mixtures. Before applying the methodologies to the real mixtures of industrial interest, the LennardJones fluid has been taken as a reference model and as a preliminary step. In this case, the predictions are affected only by the omnipresent statistical errors, but not by the accuracy of the model chosen to reproduce the behavior of the real molecules or the interatomic potential used to calculate the configurational energy of the system.
The simulations have been performed in the grand canonical ensemble (GCMC)using the GIBBS code. Liquidvapor coexistences curves have been obtained from HR techniques for pure fluids and binary mixtures, while critical parameters were obtained from FSS in order to close the phase envelope of the phase diagrams. In order to extend the calculations to multicomponent systems modifications to the conventional HR techniques have been introduced in order to avoid the construction of histograms and the consequent need for large memory resources. In addition an alternative methodology known as the fourth order cumulant calculation, also known as the Binder parameter, has been implemented to make the location of the critical point more straightforward. In particular, we propose the use of the fourth order cumulant calculation considering two different possibilities: either the intersection of the Binder parameter for two different system sizes or the intersection of the Binder parameter with the known value for the system universality class combined with a FSS study. The development of transferable potential models able to describe the inter and intramolecular energies of the molecules involved in the simulations constitutes an important field in the improvement of Monte Carlo techniques. In the last decade, potential models, also referred to as force fields, have been developed for a wide range of compounds. One of the most common approaches for modeling hydrocarbons and other flexible molecules is the use of the unitedatoms model, where each chemical group is represented by one LennardJones center. This scheme results in a significant reduction of the computational time as compared to allatoms models since the number of pair interactions goes as the square of the number of sites. Improvements on the standard unitedatoms model, where typically a 612 LennardJones center of force is placed on top of the most significant atom, have been proposed. For instance, the AUA model consists of a displacement of the LennardJones centers of force towards the hydrogen atoms, converting the distance of displacement into a third adjustable parameter. In this thesis we have developed AUA 4 intermolecular potentials for three different families of compounds. The family of ethers is of great importance due to their applications as solvents. The other two families, thiophenes and alkanols, play an important roles in the oil and gas industry. Thiophene due to current and future environmental restrictions and alkanols due ever higher importance and presence of biofuels in this industry.
APA, Harvard, Vancouver, ISO, and other styles
8

Biswas, Rajib. "Dynamics of Water under Confinement and Studies of Structural Transformation in Complex Systems." Thesis, 2013. http://etd.iisc.ernet.in/2005/3405.

Full text
Abstract:
The thesis involves computer simulation and theoretical studies of dynamics of water under confinement and structural transformation in different complex systems. Based on the systems and phenomena of interest, the work has been classified in to three major parts: I. Dynamics of water under confinement II. Dynamics of water in presence of amphiphilic solutes III. Structural transformation in complex systems The three parts have further been divided into nine chapters. Brief chapter wise outline of the thesis is discussed below. Part I deals with the dynamics of water in confined systems. In Chapter I.1, we provide a brief introduction of water dynamics inc on fined systems. We also give a brief outline of relevant experimental and theoretical techniques used to study the water dynamics under confinement. Chapter I.2 describes a model based analytical study of dynamical correlation in confined systems. Here, we introduce a novel one dimensional Ising model to investigate the propagation and annihilation of dynamical correlations in confined systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles (RMs).In our model, the two spins located at the two end cells are oriented in the opposite directions to mimic the surface effects present in the real systems. These produce opposing polarizations which propagate from the surface to the center, thus producing bulk like condition at the center. This model can be solved analytically for short chains. For long chains, we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm).We show that the model satisfactorily reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is non-exponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of the relaxation of spins undergoes a change with the emergence of homogeneous dynamics, where the decay is predominantly exponential. In Chapter I.3, layer-wise distance dependent orientation relaxation of water confined in reverse micelle s(RM)is studied using theoretical and computational tools. We use both a newly constructed spins on a ring (SOR) Ising-type model with modified Shore-Zwanzig rotational dynamics and atomistic simulations with explicit water. Our study explores the size effect of RMs and the role of intermolecular correlations, compromised by the presence of a highly polar surface, on the distance (from the surface) dependence of water relaxation. The SOR model can capture some aspects of distance dependent orientation relaxation, such as acceleration of orientation relaxation at intermediate layers. In atomistic simulations, layer-wise decomposition of hydrogen bond (H-bond) formation pattern clearly reveal that the H-bond arrangement of water at a certain distance away from the surface can remain frustrated due to interaction with the polar surface head groups. We show that this layer-wise analysis also reveals the presence of a non-monotonic, slow relaxation component which can be attributed to the frustration effect and is accentuated in small to intermediate size RMs. For larger RMs, the long-time component decreases monotonically from the interface to the interior of the RMs with slowest relaxation observed at the interface. In ChapterI.4, we present theoretical two dimensional infrared spectroscopic (2D-IR) studies of water confined within RMs of various sizes. Here we focus again mainly on the altered dynamics of confined water by performing a layer-wise decomposition of water. We aim to quantify the relative contributions to the calculated 2D-IR spectra by water molecules located in different layers. The spectra of 0-1 transition clearly show substantial elongation along the diagonal, due to in homogeneous broadening and incomplete spectral diffusion, in the surface water layer of different size of RMs studied in this work. Our study reveals that the motion of the surface water molecules is sub-diffusive, establishing the constrained nature of their dynamics. This is further supported by the two peak nature of the angular analogue of the van Hove correlation function. With increasing system size the motion of water molecules becomes more diffusive in nature and the structural diffusion is observed to be almost completed in the central layer of larger RMs. Comparisons between experiment and simulation help establishing the correspondence between the spectral decomposition available in experimental 2D-IR with the spatial decomposition of simulated 2D-IR. Simulations also allow a quantitative exploration of the relative role of water, sodium ions and sulfonate head groups in irrational dephasing. Interestingly, the negative cross correlation between forces on oxygen and hydrogen of O-H bond in bulk water significantly decreases in the surface layer of different RMs. This negative cross correlation gradually increases in the central layer with increasing size of the RMs and this is found to be partly responsible for the faster relaxation rate of water in the central layer. Part II consists of two chapters and focuses on the dynamics of water in presence of amphiphilic solutes. In Chapter II.1, we present a brief introduction of water – DMSO binary mixture and various anomalous properties of the same. In Chapter II.2, we present theoretical IR study of water dynamics in water–DMSO binary mixtures of different compositions. We show that with increasing DMSO concentration, the IR absorption peak maxima show the presence of structural transformation in similar concentration range, observed in earlier studies. Analysis of H-bonded network near hydrophilic and hydrophobic part of DMSO also suggests that average number of hydrogen bonds near the hydrophobic parts possess maxima at the same concentration range. We also show that with increasing DMSO concentration water dynamics becomes very slow. This has been supported by the diagonal elongation of the 2D-IR spectra and also the slow decay of frequency fluctuation correlation n function (FFCF) and the orientation time correlation function (OTCF). The decoupling of the OTCF establishes that water-DMSOH-bond is much stronger than that of water-water. The last part (Part III) consists of three chapters that deal with structural transformation in various complex systems. In Chapter III.1, we introduce polydisperse systems and present existing theoretical, computer simulation and experimental studies. It also contains the importance and diversity of polydisperse system in nature. In Chapter III.2, we present computer simulation study of melting of polydisperse Lennard-Jones (LJ) system with Gaussian polydispersity in size. The phase diagram reproduces the existence of an early temperature in variant terminal polydispersity (δt0.11), with no signature of re-entrant melting. The absence of re-entrant melting can be attributed to the influence of attractive part of the potential on melting. We find that at terminal polydispersity the fractional density change approaches zero that seems to arise from vanishingly small compressibility of the disordered phase. At constant temperature and volume fraction system undergoes a sharp transition from crystalline solid to disordered state with increasing polydispersity. This has been quantified by second and third order rotational invariant bond orientational orders as well as by the average inherent structure energy. The translational order parameter also indicates similar structural change The free energy calculation further supports the nature of the transition. The third order bond orientational order shows that with increasing polydispersity, local cluster favors more icosahedral-like arrangements and thus the system loses its crystalline symmetry. In Chapter III.3, we present study of phase transition and effect of confinement on it in SOR model. This system is similar to our SOR model discussed in Chapter I.3. The spins execute continuous rotation under a modified XY Hamiltonian. In order to understand the nature of phase transition in such confined spin systems we have performed extensive Monte Carlo simulations. The system size dependence of Binders cumulant, specific heat, order parameter and finite size scaling of order parameter universally suggest the existence of a phase transition. The absence of hysteresis and Scaling of Binders energy cumulant minimum confirm the continuous nature of the transition. The finite size scaling analyses give rise to the mean field nature of the transition. Plausible applications of the proposed model in modeling dipolar liquids in confined systems are also discussed. In Appendix A, we discuss a preliminary study of front propagation in a non-equilibrium system. The model system analogous to the super cooled liquid shows non-Avrami domain growth during rejuvenation. The origin of the non-Avrami nature of the domain growth and the presence of cross over are also discussed. In Appendix B, we discuss umbrella a sampling technique and WHAM analysis which is used in ChapterIII.2 to get the free energy of polydisperse LJ system.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Lennard-jones mixtures"

1

F, Ely James, and National Institute of Standards and Technology (U.S.), eds. Properties of Lennard-Jones mixtures at various temperatures and energy ratios with a size ratio of two. [Gaithersburg, MD]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

F, Ely James, and National Institute of Standards and Technology (U.S.), eds. Properties of Lennard-Jones mixtures at various temperatures and energy ratios with a size ratio of two. [Gaithersburg, MD]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

F, Ely James, and National Institute of Standards and Technology (U.S.), eds. Properties of Lennard-Jones mixtures at various temperatures and energy ratios with a size ratio of two. [Gaithersburg, MD]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

F, Ely James, and National Institute of Standards and Technology (U.S.), eds. Properties of Lennard-Jones mixtures at various temperatures and energy ratios with a size ratio of two. [Gaithersburg, MD]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

F, Ely James, and National Institute of Standards and Technology (U.S.), eds. Properties of Lennard-Jones mixtures at various temperatures and energy ratios with a size ratio of two. [Gaithersburg, MD]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lennard-jones mixtures"

1

Narumi, Takayuki, Michio Tokuyama, Michio Tokuyama, Irwin Oppenheim, and Hideya Nishiyama. "Relationship between the Diffusive Coefficient and the Specific Heat for Lennard-Jones Binary Mixture." In COMPLEX SYSTEMS: 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897791.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Lennard-jones mixtures"

1

Huber, Marcia L. Properties of Lennard-Jones mixtures at various temperatures and energy ratios with a size ratio of two. Gaithersburg, MD: National Bureau of Standards, 1989. http://dx.doi.org/10.6028/nist.tn.1331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography