To see the other types of publications on this topic, follow the link: Lennard-Jones clusters.

Journal articles on the topic 'Lennard-Jones clusters'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lennard-Jones clusters.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rom�n, C. E., and I. L. Garz�n. "Evaporation of Lennard-Jones clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 20, no. 1-4 (March 1991): 163–66. http://dx.doi.org/10.1007/bf01543964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cai, Wensheng, Yan Feng, Xueguang Shao, and Zhongxiao Pan. "Optimization of Lennard-Jones atomic clusters." Journal of Molecular Structure: THEOCHEM 579, no. 1-3 (March 2002): 229–34. http://dx.doi.org/10.1016/s0166-1280(01)00730-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Garz�n, I. L., and M. Avalos-Borja. "Thermal decay of Lennard-Jones clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 12, no. 1-4 (March 1989): 185–87. http://dx.doi.org/10.1007/bf01426934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lacava, Johann, Philip Born, and Tobias Kraus. "Nanoparticle Clusters with Lennard-Jones Geometries." Nano Letters 12, no. 6 (May 14, 2012): 3279–82. http://dx.doi.org/10.1021/nl3013659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pal, Barnana. "Ordering in Two-Dimensional Lennard-Jones Clusters." ISRN Condensed Matter Physics 2012 (February 6, 2012): 1–7. http://dx.doi.org/10.5402/2012/342642.

Full text
Abstract:
Cluster formation in a two-dimensional Lennard-Jones system under different conditions of temperature () and particle concentration () has been studied using the Monte-Carlo method with the introduction of real thermal motion of the constituent particles through a modification of the conventional Metropolis algorithm. The - phase diagram determined from the study of the root mean square displacement of the particles shows features characteristics of the - diagram for phase equilibrium in real systems. The solid-like to liquid-like transition takes place when the average nearest neighbour distance increases by ~1% of the equilibrium value in the low-temperature solid-like configuration. The Lindemann parameter () is found to decrease with the increase of to reach a steady value of for .
APA, Harvard, Vancouver, ISO, and other styles
6

Mravlak, Marko, Thomas Kister, Tobias Kraus, and Tanja Schilling. "Structure diagram of binary Lennard-Jones clusters." Journal of Chemical Physics 145, no. 2 (July 14, 2016): 024302. http://dx.doi.org/10.1063/1.4954938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cassioli, Andrea, Marco Locatelli, and Fabio Schoen. "Global optimization of binary Lennard–Jones clusters." Optimization Methods and Software 24, no. 4-5 (October 2009): 819–35. http://dx.doi.org/10.1080/10556780802614101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SOLOV'YOV, ILIA A., ANDREY V. SOLOV'YOV, and WALTER GREINER. "FUSION PROCESS OF LENNARD–JONES CLUSTERS: GLOBAL MINIMA AND MAGIC NUMBERS FORMATION." International Journal of Modern Physics E 13, no. 04 (August 2004): 697–736. http://dx.doi.org/10.1142/s0218301304002454.

Full text
Abstract:
We present a new theoretical framework for modeling the fusion process of Lennard–Jones (LJ) clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the LJ-clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the LJ-clusters based on the icosahedral symmetry with the peaks in the abundance mass spectra experimentally measured for the clusters of noble gas atoms. Our method serves as an efficient alternative to the global optimization techniques based on the Monte-Carlo simulations and it can be applied for the solutions of a broad variety of problems in which atomic cluster structure is important.
APA, Harvard, Vancouver, ISO, and other styles
9

Calvo, F., M. Benali, V. Gerbaud, and M. Hemati. "Close-packing transitions in clusters of Lennard-Jones spheres." Computing Letters 1, no. 4 (March 6, 2005): 183–91. http://dx.doi.org/10.1163/157404005776611295.

Full text
Abstract:
The structures of clusters of spherical and homogeneous particles are investigated using a combination of global optimization methods. The pairwise potential between particles is integrated exactly from elementary Lennard-Jones interactions, and the use of reduced units allows us to get insight into the effects of the particle diameter. As the diameter increases, the potential becomes very sharp, and the cluster structure generally changes from icosahedral (small radius) to close-packed cubic (large radius), possibly through intermediate decahedral shapes. The results are interpreted in terms of the effective range of the potential.
APA, Harvard, Vancouver, ISO, and other styles
10

Garzón, I. L., M. Avalos Borja, and Estela Blaisten-Barojas. "Phenomenological model of melting in Lennard-Jones clusters." Physical Review B 40, no. 7 (September 1, 1989): 4749–59. http://dx.doi.org/10.1103/physrevb.40.4749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Daldoss, G., O. Pilla, and G. Viliani. "Search for tunnelling centres in Lennard-Jones clusters." Philosophical Magazine B 77, no. 2 (February 1998): 689–98. http://dx.doi.org/10.1080/13642819808204996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pankova, Arina A., and Vladislav A. Blatov. "4-150-atom Lennard–Jones clusters in intermetallics." Acta Crystallographica Section A Foundations of Crystallography 69, a1 (August 25, 2013): s457. http://dx.doi.org/10.1107/s0108767313096037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Calvo, F. "Chaos and dynamical coexistence in Lennard-Jones clusters." Journal of Chemical Physics 108, no. 16 (April 22, 1998): 6861–67. http://dx.doi.org/10.1063/1.476100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Osenda, Omar, Pablo Serra, and Francisco A. Tamarit. "Non-equilibrium properties of small Lennard-Jones clusters." Physica D: Nonlinear Phenomena 168-169 (August 2002): 336–40. http://dx.doi.org/10.1016/s0167-2789(02)00521-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Barrón, C., S. Gómez, D. Romero, and A. Saavedra. "A genetic algorithm for Lennard-Jones atomic clusters." Applied Mathematics Letters 12, no. 7 (October 1999): 85–90. http://dx.doi.org/10.1016/s0893-9659(99)00106-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Celestini, F., R. J. M. Pellenq, P. Bordarier, and B. Rousseau. "Melting of Lennard-Jones clusters in confined geometries." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 37, no. 1 (April 15, 1996): 49–53. http://dx.doi.org/10.1007/s004600050008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Garz�n, I. L., M. Avalos-Borja, and E. Blaisten-Barojas. "More on the melting of Lennard-Jones clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 12, no. 1-4 (March 1989): 181–83. http://dx.doi.org/10.1007/bf01426933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Q., M. P. I�iguez, and J. A. Alonso. "Molecular dynamics study of A18B lennard-jones clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 31, no. 4 (December 1994): 299–301. http://dx.doi.org/10.1007/bf01445011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Reardon, A. C., and D. J. Quesnel. "Growth of equilibrium clusters of Lennard-Jones molecules." Journal of Computational Physics 83, no. 1 (July 1989): 240–45. http://dx.doi.org/10.1016/0021-9991(89)90231-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Parneix, P., and Ph Bréchignac. "Evaporation dynamics of mixed Lennard-Jones atomic clusters." Journal of Chemical Physics 118, no. 18 (May 8, 2003): 8234–41. http://dx.doi.org/10.1063/1.1566738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Daldoss, O. Pilla, G. Viliani, G. "Search for tunnelling centres in Lennard-Jones clusters." Philosophical Magazine B 77, no. 2 (February 1, 1998): 689–98. http://dx.doi.org/10.1080/014186398259789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

COPPOCK, JOSEPH D., BENJAMIN T. BOMSTAD, DAVID T. HUEBNER, JACQUELYN P. STREY, and BRIAN G. MOORE. "POTENTIAL ENERGY AS A PLUCKING CRITERION FOR LIQUID CLUSTER SIMULATIONS." International Journal of Modern Physics C 19, no. 03 (March 2008): 509–21. http://dx.doi.org/10.1142/s0129183108012133.

Full text
Abstract:
We have investigated the liquid state of atomic clusters interacting through a classical pair-wise Lennard–Jones 6–12 potential, using constant energy molecular dynamics simulations. For larger clusters (N ≳ 500–600 atoms) desorption events are frequent and a cluster in the liquid state eventually always converts to a solid state. To study the cluster as it cools, one must isolate the central cluster from the desorbed atoms. In this paper, we investigate using the atomic potential energy as a very simple criterion for removing desorbed atoms from the simulation, and examine the spatial profile of atomic potential energy in various size liquid and solid clusters.
APA, Harvard, Vancouver, ISO, and other styles
23

Doye, Jonathan P. K., and Florent Calvo. "Entropic effects on the structure of Lennard-Jones clusters." Journal of Chemical Physics 116, no. 19 (2002): 8307. http://dx.doi.org/10.1063/1.1469616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Schnabel, Stefan, Michael Bachmann, and Wolfhard Janke. "Elastic Lennard-Jones polymers meet clusters: Differences and similarities." Journal of Chemical Physics 131, no. 12 (September 28, 2009): 124904. http://dx.doi.org/10.1063/1.3223720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Romero, David, Carlos Barrón, and Susana Gómez. "The optimal geometry of Lennard-Jones clusters: 148–309." Computer Physics Communications 123, no. 1-3 (December 1999): 87–96. http://dx.doi.org/10.1016/s0010-4655(99)00259-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Garz�n, I. L., X. P. Long, R. Kawai, and J. H. Weare. "Structure and dynamics of Lennard-Jones clusters with impurities." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 12, no. 1-4 (March 1989): 81–83. http://dx.doi.org/10.1007/bf01426910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Moore, Brian G., and Afraa A. Al-Quraishi. "The structure of liquid clusters of Lennard-Jones atoms." Chemical Physics 252, no. 3 (February 2000): 337–47. http://dx.doi.org/10.1016/s0301-0104(99)00334-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gong, Rui, and Longjiu Cheng. "Anisotropy effect of multi-center Lennard-Jones molecular clusters." Computational and Theoretical Chemistry 1082 (April 2016): 41–48. http://dx.doi.org/10.1016/j.comptc.2016.03.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hansen, K. "Description of unimolecular reaction rates of Lennard-Jones clusters." Journal of Physics B: Atomic, Molecular and Optical Physics 52, no. 23 (November 4, 2019): 235101. http://dx.doi.org/10.1088/1361-6455/ab4873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sabo, Dubravko, Cristian Predescu, J. D. Doll, and David L. Freeman. "Phase changes in selected Lennard-Jones X13−nYn clusters." Journal of Chemical Physics 121, no. 2 (July 8, 2004): 856–67. http://dx.doi.org/10.1063/1.1759625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Doye, Jonathan P. K., David J. Wales, and Mark A. Miller. "Thermodynamics and the global optimization of Lennard-Jones clusters." Journal of Chemical Physics 109, no. 19 (November 15, 1998): 8143–53. http://dx.doi.org/10.1063/1.477477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

CHEN, L. Y., and N. J. M. HORING. "STUDY OF LENNARD-JONES CLUSTERS: EFFECTS OF ANHARMONICITIES FAR FROM SADDLE POINTS." International Journal of High Speed Electronics and Systems 18, no. 01 (March 2008): 119–26. http://dx.doi.org/10.1142/s0129156408005199.

Full text
Abstract:
We study the transition pathways of a Lennard-Jones cluster of seven particles in three dimensions. Low lying saddle points of the LJ cluster, which can be reached directly from a minimum without passing through another minimum, are identified without any presumption of their characteristics, nor of the product states they lead to. The probabilities are computed for paths going from a given minimum to the surrounding saddle points. These probabilities are directly related to prefactors in the rate formula. This determination of the rate prefactors includes all anharmonicities, near or far from saddle points, which are pertinent in the very sophisticated energy landscape of LJ clusters and in many other complex systems.
APA, Harvard, Vancouver, ISO, and other styles
33

IKESHOJI, T. "MOLECULAR DYNAMICS SIMULATION FOR THE CLUSTERING PROCESS BY TEMPERATURE CONTROL." Surface Review and Letters 03, no. 01 (February 1996): 247–51. http://dx.doi.org/10.1142/s0218625x96000486.

Full text
Abstract:
The clusterization process from gas states of Lennard–Jones (L–J) potential atom and water molecule of the TIP4P model was simulated by the molecular dynamics calculation with a constant-temperature thermostat at 0.1 (reduced unit) for the L–J atom system and at 200 K for the water molecule. The linear relationship between the logarithm of the populatlon and the cluster size was observed with no significant peak. The inner temperature of clusters was higher than the system temperature. Structure parameters derived from the inertia of clusters gave the following information on the structure. Clusters grow at first in linear or planar structure. Dipole interaction of water molecules favors more linear structure at the beginning of the cluster formation. Clusters around 13 L–J atoms become highly spherical and water clusters of 3–5 members become rings, after lowering of the temperature.
APA, Harvard, Vancouver, ISO, and other styles
34

van de Waal, Benjamin W. "Stability of face‐centered cubic and icosahedral Lennard‐Jones clusters." Journal of Chemical Physics 90, no. 6 (March 15, 1989): 3407–8. http://dx.doi.org/10.1063/1.455848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Blaisten-Barojas, Estela, I. L. Garzón, and M. Avalos-Borja. "Melting and freezing of Lennard-Jones clusters on a surface." Physical Review B 36, no. 16 (December 1, 1987): 8447–55. http://dx.doi.org/10.1103/physrevb.36.8447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Northby, J. A. "Structure and binding of Lennard‐Jones clusters: 13≤N≤147." Journal of Chemical Physics 87, no. 10 (November 15, 1987): 6166–77. http://dx.doi.org/10.1063/1.453492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Iwamatsu, Masao. "Icosahedral binary clusters of glass-forming Lennard–Jones binary alloy." Materials Science and Engineering: A 449-451 (March 2007): 975–78. http://dx.doi.org/10.1016/j.msea.2006.02.257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lozovik, Yuri E., and Andrey M. Popov. "Equilibrium clusters in dense Lennard-Jones gas: molecular dynamics simulation." Journal of Physical Chemistry 98, no. 2 (January 1994): 436–40. http://dx.doi.org/10.1021/j100053a016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Northby, J. A., J. Xie, David L. Freeman, and J. D. Doll. "Binding energy of large icosahedral and cuboctahedral Lennard-Jones clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 12, no. 1-4 (March 1989): 69–71. http://dx.doi.org/10.1007/bf01426907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shao, Xueguang, Yuhong Xiang, and Wensheng Cai. "Formation of the central vacancy in icosahedral Lennard-Jones clusters." Chemical Physics 305, no. 1-3 (October 2004): 69–75. http://dx.doi.org/10.1016/j.chemphys.2004.06.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Martinez, Hernan L., R. Ravi, and Susan C. Tucker. "Characterization of solvent clusters in a supercritical Lennard‐Jones fluid." Journal of Chemical Physics 104, no. 3 (January 15, 1996): 1067–80. http://dx.doi.org/10.1063/1.470762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Blanc, X. "Lower Bound for the Interatomic Distance in Lennard-Jones Clusters." Computational Optimization and Applications 29, no. 1 (October 2004): 5–12. http://dx.doi.org/10.1023/b:coap.0000039486.97389.87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wales, David J. "Rearrangements of 55‐atom Lennard‐Jones and (C60)55 clusters." Journal of Chemical Physics 101, no. 5 (September 1994): 3750–62. http://dx.doi.org/10.1063/1.467559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Daven, D. M., N. Tit, J. R. Morris, and K. M. Ho. "Structural optimization of Lennard-Jones clusters by a genetic algorithm." Chemical Physics Letters 256, no. 1-2 (June 1996): 195–200. http://dx.doi.org/10.1016/0009-2614(96)00406-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chekmarev, S. F., and F. S. Liu. "Some aspects of dynamic chaos in small Lennard-Jones clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 20, no. 1-4 (March 1991): 231–33. http://dx.doi.org/10.1007/bf01543980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lai, XiangJing, RuChu Xu, and WenQi Huang. "Prediction of the lowest energy configuration for Lennard-Jones clusters." Science China Chemistry 54, no. 6 (May 31, 2011): 985–91. http://dx.doi.org/10.1007/s11426-011-4280-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Awasthi, A., S. C. Hendy, and S. A. Brown. "Oblique Impacts and Rebounds of Lennard-Jones Clusters on Solid Surfaces." Mathematics and Mechanics of Solids 15, no. 7 (July 26, 2010): 771–81. http://dx.doi.org/10.1177/1081286510374687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Xue, Fei, Yongquan Cai, Yongjing Chen, and Zhihua Cui. "Discrete Social Emotional Optimization Algorithm with Lattice for Lennard-Jones Clusters." Journal of Computational and Theoretical Nanoscience 12, no. 8 (August 1, 2015): 1963–67. http://dx.doi.org/10.1166/jctn.2015.4214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, Yongjing, Zhihua Cui, Jian Yin, and Ying Tan. "Global minimum structure optimisation of Lennard-Jones clusters by hybrid PSO." International Journal of Modelling, Identification and Control 14, no. 4 (2011): 303. http://dx.doi.org/10.1504/ijmic.2011.043154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Dawid, A., and Z. Gburski. "Interaction-induced light scattering in Lennard-Jones argon clusters: Computer simulations." Physical Review A 56, no. 4 (October 1, 1997): 3294–96. http://dx.doi.org/10.1103/physreva.56.3294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography