Academic literature on the topic 'Lemmas'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lemmas.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lemmas"
Schecter, Stephen. "Exchange lemmas 1: Deng's lemma." Journal of Differential Equations 245, no. 2 (July 2008): 392–410. http://dx.doi.org/10.1016/j.jde.2007.08.011.
Full textSchecter, Stephen. "Exchange lemmas 2: General Exchange Lemma." Journal of Differential Equations 245, no. 2 (July 2008): 411–41. http://dx.doi.org/10.1016/j.jde.2007.10.021.
Full textSivaraman, Aishwarya, Alex Sanchez-Stern, Bretton Chen, Sorin Lerner, and Todd Millstein. "Data-driven lemma synthesis for interactive proofs." Proceedings of the ACM on Programming Languages 6, OOPSLA2 (October 31, 2022): 505–31. http://dx.doi.org/10.1145/3563306.
Full textWei, Longxing. "The Bilingual Mental Lexicon and Lemmatic Transfer in Second Language Learning." English Language Teaching and Linguistics Studies 2, no. 3 (August 31, 2020): p43. http://dx.doi.org/10.22158/eltls.v2n3p43.
Full textAnosov, D. V., and E. V. Zhuzhoma. "Closing lemmas." Differential Equations 48, no. 13 (December 2012): 1653–99. http://dx.doi.org/10.1134/s0012266112130010.
Full textSzemerédi, Endre. "Arithmetic Progressions, Different Regularity Lemmas and Removal Lemmas." Communications in Mathematics and Statistics 3, no. 3 (September 2015): 315–28. http://dx.doi.org/10.1007/s40304-015-0062-1.
Full textLungu, Nicolaie, and Sorina Anamaria Ciplea. "Optimal Gronwall lemmas." Fixed Point Theory 18, no. 1 (March 1, 2017): 293–304. http://dx.doi.org/10.24193/fpt-ro.2017.1.23.
Full textCarbery, Anthony. "Covering lemmas revisited." Proceedings of the Edinburgh Mathematical Society 31, no. 1 (February 1988): 145–50. http://dx.doi.org/10.1017/s0013091500006647.
Full textGasser, I., P. A. Markowich, and B. Perthame. "Dispersion Lemmas Revisited." VLSI Design 9, no. 4 (January 1, 1999): 365–75. http://dx.doi.org/10.1155/1999/81341.
Full textSun, Shu-Hao. "On separation lemmas." Journal of Pure and Applied Algebra 78, no. 3 (April 1992): 301–10. http://dx.doi.org/10.1016/0022-4049(92)90112-s.
Full textDissertations / Theses on the topic "Lemmas"
JACHELLI, KEILLA LOPES CASTILHO. "SPERNER S LEMMAS AND APPLICATIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33127@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL
Esse trabalho visa demonstrar os lemas de Sperner e aplicá-los nasdemonstrações do teorema de Monsky em Q2 e do teorema do ponto fixo deBrouwer em R2. Além disso, relatamos como esses lemas foram abordados com alunos da educação básica tendo como ferramenta educacional jogos de tabuleiro.
This work aims to prove the Sperner s Lemmas and to apply them in proving the Monsky s Theorem in Q2 and the Brouwer fixed point Theorem in R2. Moreover, we report how these lemmas were addressed with students in basic education using board games as educational tools.
Pfeiffer, Markus Johannes. "Adventures in applying iteration lemmas." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3671.
Full textJohansson, Moa. "Automated discovery of inductive lemmas." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/9807.
Full textLovász, László Miklós. "Regularity and removal lemmas and their applications." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112899.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 123-127).
In this thesis, we analyze the regularity method pioneered by Szemerédi, and also discuss one of its prevalent applications, the removal lemma. First, we prove a new lower bound on the number of parts required in a version of Szemerédi's regularity lemma, determining the order of the tower height in that version up to a constant factor. This addresses a question of Gowers. Next, we turn to algorithms. We give a fast algorithmic Frieze-Kannan (weak) regularity lemma that improves on previous running times. We use this to give a substantially faster deterministic approximation algorithm for counting subgraphs. Previously, only an exponential dependence of the running time on the error parameter was known; we improve it to a polynomial dependence. We also revisit the problem of finding an algorithmic regularity lemma, giving approximation algorithms for some co-NP-complete problems. We show how to use the Frieze-Kannan regularity lemma to approximate the regularity of a pair of vertex sets. We also show how to quickly find, for each [epsilon]' > [epsilon], an [epsilon]'-regular partition with k parts if there exists an [epsilon]-regular partition with k parts. After studying algorithms, we turn to the arithmetic setting. Green proved an arithmetic regularity lemma, and used it to prove an arithmetic removal lemma. The bounds obtained, however, were tower-type, and Green posed the problem of improving the quantitative bounds on the arithmetic triangle removal lemma, and, in particular, asked whether a polynomial bound holds. The previous best known bound was tower-type with a logarithmic tower height. We solve Green's problem, proving an essentially tight bound for Green's arithmetic triangle removal lemma in Fn/p. Finally, we give a new proof of a regularity lemma for permutations, improving the previous tower-type bound on the number of parts to an exponential bound.
by László Miklós Lovász.
Ph. D.
Michael, Ifeanyi Friday. "On a unified categorical setting for homological diagram lemmas." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18085.
Full textENGLISH ABSTRACT: Some of the diagram lemmas of Homological Algebra, classically known for abelian categories, are not characteristic of the abelian context; this naturally leads to investigations of those non-abelian categories in which these diagram lemmas may hold. In this Thesis we attempt to bring together two different directions of such investigations; in particular, we unify the five lemma from the context of homological categories due to F. Borceux and D. Bourn, and the five lemma from the context of modular semi-exact categories in the sense of M. Grandis.
AFRIKAANSE OPSOMMING: Verskeie diagram lemmata van Homologiese Algebra is aanvanklik ontwikkel in die konteks van abelse kategorieë, maar geld meer algemeen as dit behoorlik geformuleer word. Dit lei op ’n natuurlike wyse na ’n ondersoek van ander kategorieë waar hierdie lemmas ook geld. In hierdie tesis bring ons twee moontlike rigtings van ondersoek saam. Dit maak dit vir ons moontlik om die vyf-lemma in die konteks van homologiese kategoieë, deur F. Borceux en D. Bourn, en vyflemma in die konteks van semi-eksakte kategorieë, in die sin van M. Grandis, te verenig.
Nunes, Alexmay Soares. "As permutaÃÃes caÃticas, o problema de Lucas e a teoria dos permanentes." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15598.
Full textNeste trabalho abordamos algumas tÃcnicas de contagem utilizadas para solucionar alguns problemas clÃssicos da AnÃlise CombinatÃria. Mostramos tambÃm uma relaÃÃo entre o problema das cartas mal endereÃadas, o problema de Lucas e os permanentes de uma matriz quadrada.
Edmundo, Mario Jorge. "O-minimal expansions of groups." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312447.
Full textAimino, Romain. "Vitesse de mélange et théorèmes limites pour les systèmes dynamiques aléatoires et non-autonomes." Thesis, Toulon, 2014. http://www.theses.fr/2014TOUL0005/document.
Full textThe first chapter, devoted to random systems, we establish an abstract functional framework, including a large class of expanding systems in dimension 1 and higher, under which we can prove annealed limit theorems. We also give a necessary and sufficient condition for the quenched central limit theorem to hold in dimension 1. In chapter 2, after an introduction to the notion of non-autonomous system, we study an example consisting of a family of maps of the unit interval with a common neutral fixed point, and we show that this system admits a polynomial loss of memory. The chapter 3 is devoted to concentration inequalities. We establish such inequalities for random and non-autonomous dynamical systems in dimension 1, and we study some of their applications. In chapter 4, we study dynamical Borel-Cantelli lemmas for the Rauzy-Veech-Zorich induction, and we present some results concerning statistics of recurrence for this map
Cobra, Thiago Taglialatela [UNESP]. "Sobre coincidências e pontos fixos de aplicações." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/94372.
Full textO principal objetivo deste trabalho é apresentar conceitos básicos sobre coincidências e pontos fixos de aplicações contínuas usando como ferramentas os Lemas Combinatórios de Sperner e grau de aplicações. Apresentamos também um cálculo do número de Lefschetz de f; g : T2 ¡! T3, onde Th denota uma superfície de genus h, através da fórmula dada por Gonçalves e Oliveira em [3]
The main goal of this work is present basic concepts on coincidences and fixed points of continuous maps with Sperner’s Combinatorial Lemmas, and degree maps approaches. We also present a calculation of the Lefschetz number of f; g : T2 ¡! T3, where Th denotes surface of genus h, by using the formula given by Gonçalves and Oliveira in [3]
Cobra, Thiago Taglialatela. "Sobre coincidências e pontos fixos de aplicações /." Rio Claro : [s.n.], 2010. http://hdl.handle.net/11449/94372.
Full textBanca: Edson de Oliveira
Banca: Thiago de Melo
Resumo: O principal objetivo deste trabalho é apresentar conceitos básicos sobre coincidências e pontos fixos de aplicações contínuas usando como ferramentas os Lemas Combinatórios de Sperner e grau de aplicações. Apresentamos também um cálculo do número de Lefschetz de f; g : T2 ¡! T3, onde Th denota uma superfície de genus h, através da fórmula dada por Gonçalves e Oliveira em [3]
Abstract: The main goal of this work is present basic concepts on coincidences and fixed points of continuous maps with Sperner's Combinatorial Lemmas, and degree maps approaches. We also present a calculation of the Lefschetz number of f; g : T2 ¡! T3, where Th denotes surface of genus h, by using the formula given by Gonçalves and Oliveira in [3]
Mestre
Books on the topic "Lemmas"
Dragomir, Sever Silvestru. The Gronwall type lemmas and applications. Timișoara: Tipografia Universității din Timișoara, 1987.
Find full textRossi, Richard J. Theorems, Corollaries, Lemmas, and Methods of Proof. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9781118031575.
Full textLalitte, Scott, ed. Lemons! lemons! lemons! New York, NY: Viking, 1994.
Find full textThe Schwarz lemma. Oxford: Clarendon Press, 1989.
Find full textDineen, Seán. The Schwarz lemma. Mineola, New York: Dover Publications, 2016.
Find full textTziatzi, Maria, Margarethe Billerbeck, Franco Montanari, and Kyriakos Tsantsanoglou, eds. Lemmata. Berlin, München, Boston: DE GRUYTER, 2015. http://dx.doi.org/10.1515/9783110354348.
Full textIdone, Christopher. Lemons. San Francisco: CollinsPublishers San Francisco, 1993.
Find full textSavage, Melissa. Lemons. New York: Crown Children's Books, 2017.
Find full textservice), SpringerLink (Online, ed. The Borel-Cantelli Lemma. India: Springer India, 2012.
Find full textChandra, Tapas Kumar. The Borel-Cantelli Lemma. India: Springer India, 2012. http://dx.doi.org/10.1007/978-81-322-0677-4.
Full textBook chapters on the topic "Lemmas"
Pfanzagl, Johann. "Lemmas." In Asymptotic Expansions for General Statistical Models, 451–86. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-6479-9_14.
Full textŁojasiewicz, Stanisław. "Fundamental Lemmas." In Introduction to Complex Analytic Geometry, 178–202. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-7617-9_6.
Full textSimpson, Carlos. "Finiteness lemmas." In Asymptotic Behavior of Monodromy, 60–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0094558.
Full textHerzog, Bernd. "Basic lemmas." In Kodaira-Spencer Maps in Local Algebra, 18–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0074028.
Full textGorenstein, Daniel, Richard Lyons, and Ronald Solomon. "General lemmas." In Mathematical Surveys and Monographs, 1–18. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/surv/040.4/01.
Full textGorenstein, Daniel, Richard Lyons, and Ronald Solomon. "General lemmas." In The Classification of the Finite Simple Groups, Number 6, 13–59. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/surv/040.6/02.
Full textFeldmeier, Achim. "Arithmetic Lemmas." In Introduction to Arnold's Proof of the Kolmogorov–Arnold–Moser Theorem, 175–84. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003287803-8.
Full textFeldmeier, Achim. "Analytic Lemmas." In Introduction to Arnold's Proof of the Kolmogorov–Arnold–Moser Theorem, 115–26. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003287803-5.
Full textFeldmeier, Achim. "Convergence Lemmas." In Introduction to Arnold's Proof of the Kolmogorov–Arnold–Moser Theorem, 161–74. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003287803-7.
Full textFeldmeier, Achim. "Geometric Lemmas." In Introduction to Arnold's Proof of the Kolmogorov–Arnold–Moser Theorem, 127–60. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003287803-6.
Full textConference papers on the topic "Lemmas"
McLaughlin, Craig, James McKinna, and Ian Stark. "Triangulating context lemmas." In CPP '18: Certified Proofs and Programs. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3167081.
Full textMcLaughlin, Craig, James McKinna, and Ian Stark. "Triangulating context lemmas." In the 7th ACM SIGPLAN International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3176245.3167081.
Full textVerdu, Sergio. "Non-asymptotic covering lemmas." In 2015 IEEE Information Theory Workshop (ITW). IEEE, 2015. http://dx.doi.org/10.1109/itw.2015.7133173.
Full textJohnsonbaugh, Richard, and David P. Miller. "Converses of pumping lemmas." In the twenty-first SIGCSE technical symposium. New York, New York, USA: ACM Press, 1990. http://dx.doi.org/10.1145/323410.319073.
Full textPreiner, Mathias, Aina Niemetz, and Armin Biere. "Better lemmas with lambda extraction." In 2015 Formal Methods in Computer-Aided Design (FMCAD). IEEE, 2015. http://dx.doi.org/10.1109/fmcad.2015.7542262.
Full textGishboliner, Lior, and Asaf Shapira. "Removal lemmas with polynomial bounds." In STOC '17: Symposium on Theory of Computing. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3055399.3055404.
Full textSmith, Therese, and Robert McCartney. "Mathematization in teaching pumping lemmas." In 2013 IEEE Frontiers in Education Conference (FIE). IEEE, 2013. http://dx.doi.org/10.1109/fie.2013.6685122.
Full textBansal, Nikhil, and Ryan Williams. "Regularity Lemmas and Combinatorial Algorithms." In 2009 IEEE 50th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2009. http://dx.doi.org/10.1109/focs.2009.76.
Full textKato, Ryo, Naohisa Nishida, Ryo Hirano, Tatusmi Oba, Yuji Unagami, Shota Yamada, Tadanori Teruya, Nuttapong Attrapadung, Takahiro Matsuda, and Goichiro Hanaoka. "Embedding Lemmas for Functional Encryption." In 2018 International Symposium on Information Theory and Its Applications (ISITA). IEEE, 2018. http://dx.doi.org/10.23919/isita.2018.8664231.
Full textChattopadhyay, Eshan, Pooya Hatami, Kaave Hosseini, Shachar Lovett, and David Zuckerman. "XOR lemmas for resilient functions against polynomials." In STOC '20: 52nd Annual ACM SIGACT Symposium on Theory of Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3357713.3384242.
Full textReports on the topic "Lemmas"
Sowers, R. Stein's Lemma - A Large Deviations Approach. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada209090.
Full textBlock, Henry W., and Zhaoben Fang. A Multivariate Extension of Hoeffding's Lemma. Fort Belvoir, VA: Defense Technical Information Center, November 1985. http://dx.doi.org/10.21236/ada170170.
Full textHoover, Donald R. An Improved First Borel-Cantelli Lemma. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada239489.
Full textGibbons, Robert, and Lawrence Katz. Layoffs and Lemons. Cambridge, MA: National Bureau of Economic Research, May 1989. http://dx.doi.org/10.3386/w2968.
Full textHouse, Christopher, and Jing Zhang. Layoffs, Lemons and Temps. Cambridge, MA: National Bureau of Economic Research, March 2012. http://dx.doi.org/10.3386/w17962.
Full textStewart, John, Ron Halbgewachs, Adrian Chavez, Rhett Smith, and David Teumim. Lemnos Interoperable Security Program. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1051509.
Full textHu, Luojia, and Christopher Taber. Layoffs, Lemons, Race, and Gender. Cambridge, MA: National Bureau of Economic Research, July 2005. http://dx.doi.org/10.3386/w11481.
Full textTapia, R. A., and M. W. Trosset. Extending the Farkas Lemma Approach to Necessity Conditions to Infinite Programming. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada452706.
Full textCIFOR. Studi komparatif global tentang REDD+: lembar fakta. Center for International Forestry Research (CIFOR), 2014. http://dx.doi.org/10.17528/cifor/004510.
Full textBebchuk, Lucian Arye, and Marcel Kahan. The 'Lemons Effect' in Corporate Freeze-Outs. Cambridge, MA: National Bureau of Economic Research, February 1999. http://dx.doi.org/10.3386/w6938.
Full text