Dissertations / Theses on the topic 'Learning with Limited Data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Learning with Limited Data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Chen, Si. "Active Learning Under Limited Interaction with Data Labeler." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104894.
Full textM.S.
Machine Learning (ML) has achieved huge success in recent years. Machine Learning technologies such as recommendation system, speech recognition and image recognition play an important role on human daily life. This success mainly build upon the use of large amount of labeled data: Compared with traditional programming, a ML algorithm does not rely on explicit instructions from human; instead, it takes the data along with the label as input, and aims to learn a function that can correctly map data to the label space by itself. However, data labeling requires human effort and could be time-consuming and expensive especially for datasets that contain domain-specific knowledge (e.g., disease prediction etc.) Active Learning (AL) is one of the solution to reduce data labeling effort. Specifically, the learning algorithm actively selects data points that provide more information for the model, hence a better model can be achieved with less labeled data. While traditional AL strategies do achieve good performance, it requires a small amount of labeled data as initialization and performs data selection in multi-round, which pose great challenge to its application, as there is no platform provide timely online interaction with data labeler and the interaction is often time inefficient. To deal with the limitations, we first propose DULO which a new setting of AL is studied: data selection is only allowed to be performed once. To further broaden the application of our method, we propose D²ULO which is built upon DULO and Domain Adaptation techniques to avoid the use of initial labeled data. Our experiments show that both of the proposed two frameworks achieve better performance compared with state-of-the-art baselines.
Dvornik, Mikita. "Learning with Limited Annotated Data for Visual Understanding." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM050.
Full textThe ability of deep-learning methods to excel in computer vision highly depends on the amount of annotated data available for training. For some tasks, annotation may be too costly and labor intensive, thus becoming the main obstacle to better accuracy. Algorithms that learn from data automatically, without human supervision, perform substantially worse than their fully-supervised counterparts. Thus, there is a strong motivation to work on effective methods for learning with limited annotations. This thesis proposes to exploit prior knowledge about the task and develops more effective solutions for scene understanding and few-shot image classification.Main challenges of scene understanding include object detection, semantic and instance segmentation. Similarly, all these tasks aim at recognizing and localizing objects, at region- or more precise pixel-level, which makes the annotation process difficult. The first contribution of this manuscript is a Convolutional Neural Network (CNN) that performs both object detection and semantic segmentation. We design a specialized network architecture, that is trained to solve both problems in one forward pass, and operates in real-time. Thanks to the multi-task training procedure, both tasks benefit from each other in terms of accuracy, with no extra labeled data.The second contribution introduces a new technique for data augmentation, i.e., artificially increasing the amount of training data. It aims at creating new scenes by copy-pasting objects from one image to another, within a given dataset. Placing an object in a right context was found to be crucial in order to improve scene understanding performance. We propose to model visual context explicitly using a CNN that discovers correlations between object categories and their typical neighborhood, and then proposes realistic locations for augmentation. Overall, pasting objects in ``right'' locations allows to improve object detection and segmentation performance, with higher gains in limited annotation scenarios.For some problems, the data is extremely scarce, and an algorithm has to learn new concepts from a handful of examples. Few-shot classification consists of learning a predictive model that is able to effectively adapt to a new class, given only a few annotated samples. While most current methods concentrate on the adaptation mechanism, few works have tackled the problem of scarce training data explicitly. In our third contribution, we show that by addressing the fundamental high-variance issue of few-shot learning classifiers, it is possible to significantly outperform more sophisticated existing techniques. Our approach consists of designing an ensemble of deep networks to leverage the variance of the classifiers, and introducing new strategies to encourage the networks to cooperate, while encouraging prediction diversity. By matching different networks outputs on similar input images, we improve model accuracy and robustness, comparing to classical ensemble training. Moreover, a single network obtained by distillation shows similar to the full ensemble performance and yields state-of-the-art results with no computational overhead at test time
Moskvyak, Olga. "Learning from limited annotated data for re-identification problem." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/226866/1/Olga_Moskvyak_Thesis.pdf.
Full textXian, Yongqin [Verfasser]. "Learning from limited labeled data - Zero-Shot and Few-Shot Learning / Yongqin Xian." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1219904457/34.
Full textEriksson, Håkan. "Clustering Generic Log Files Under Limited Data Assumptions." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189642.
Full textKomplexa datorsystem är ofta benägna att uppvisa anormalt eller felaktigt beteende, vilket kan leda till kostsamma driftstopp under tiden som systemen diagnosticeras och repareras. En informationskälla till feldiagnosticeringen är loggfiler, vilka ofta genereras i stora mängder och av olika typer. Givet loggfilernas storlek och semistrukturerade utseende så blir en manuell analys orimlig att genomföra. Viss automatisering är önsvkärd för att sovra bland loggfilerna så att källan till felen och anormaliteterna blir enklare att upptäcka. Det här projektet syftade till att utveckla en generell algoritm som kan klustra olikartade loggfiler i enlighet med domänexpertis. Resultaten visar att algoritmen presterar väl i enlighet med manuell klustring även med färre antaganden om datan.
Boman, Jimmy. "A deep learning approach to defect detection with limited data availability." Thesis, Umeå universitet, Institutionen för fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-173207.
Full textGuo, Zhenyu. "Data famine in big data era : machine learning algorithms for visual object recognition with limited training data." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/46412.
Full textAyllon, Clemente Irene [Verfasser]. "Towards natural speech acquisition: incremental word learning with limited data / Irene Ayllon Clemente." Bielefeld : Universitätsbibliothek Bielefeld, 2013. http://d-nb.info/1077063458/34.
Full textChang, Fengming. "Learning accuracy from limited data using mega-fuzzification method to improve small data set learning accuracy for early flexible manufacturing system scheduling." Saarbrücken VDM Verlag Dr. Müller, 2005. http://d-nb.info/989267156/04.
Full textTania, Zannatun Nayem. "Machine Learning with Reconfigurable Privacy on Resource-Limited Edge Computing Devices." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292105.
Full textDistribuerad databehandling möjliggör effektiv datalagring, bearbetning och hämtning men det medför säkerhets- och sekretessproblem. Sensorer är hörnstenen i de IoT-baserade rörledningarna, eftersom de ständigt samlar in data tills de kan analyseras på de centrala molnresurserna. Dessa sensornoder begränsas dock ofta av begränsade resurser. Helst är det önskvärt att göra alla insamlade datafunktioner privata, men på grund av resursbegränsningar kanske det inte alltid är möjligt. Att göra alla funktioner privata kan orsaka överutnyttjande av resurser, vilket i sin tur skulle påverka prestanda för hela systemet. I denna avhandling designar och implementerar vi ett system som kan hitta den optimala uppsättningen datafunktioner för att göra privata, med tanke på begränsningar av enhetsresurserna och systemets önskade prestanda eller noggrannhet. Med hjälp av generaliseringsteknikerna för data-anonymisering skapar vi användardefinierade injicerbara sekretess-kodningsfunktioner för att göra varje funktion i datasetet privat. Oavsett resurstillgänglighet definieras vissa datafunktioner av användaren som viktiga funktioner för att göra privat. Alla andra datafunktioner som kan utgöra ett integritetshot kallas de icke-väsentliga funktionerna. Vi föreslår Dynamic Iterative Greedy Search (DIGS), en girig sökalgoritm som tar resursförbrukningen för varje icke-väsentlig funktion som inmatning och ger den mest optimala uppsättningen icke-väsentliga funktioner som kan vara privata med tanke på tillgängliga resurser. Den mest optimala uppsättningen innehåller de funktioner som förbrukar minst resurser. Vi utvärderar vårt system på en Fitbit-dataset som innehåller 17 datafunktioner, varav 4 är viktiga privata funktioner för en viss klassificeringsapplikation. Våra resultat visar att vi kan erbjuda ytterligare 9 privata funktioner förutom de 4 viktiga funktionerna i Fitbit-datasetet som innehåller 1663 poster. Dessutom kan vi spara 26; 21% minne jämfört med att göra alla funktioner privata. Vi testar också vår metod på en större dataset som genereras med Generative Adversarial Network (GAN). Den valda kantenheten, Raspberry Pi, kan dock inte tillgodose storleken på den stora datasetet på grund av otillräckliga resurser. Våra utvärderingar med 1=8th av GAN-datasetet resulterar i 3 extra privata funktioner med upp till 62; 74% minnesbesparingar jämfört med alla privata datafunktioner. Att upprätthålla integritet kräver inte bara ytterligare resurser utan har också konsekvenser för de designade applikationernas prestanda. Vi upptäcker dock att integritetskodning har en positiv inverkan på noggrannheten i klassificeringsmodellen för vår valda klassificeringsapplikation.
Rücklé, Andreas [Verfasser], Iryna [Akademischer Betreuer] Gurevych, Jonathan [Akademischer Betreuer] Berant, and Goran [Akademischer Betreuer] Glavaš. "Representation Learning and Learning from Limited Labeled Data for Community Question Answering / Andreas Rücklé ; Iryna Gurevych, Jonathan Berant, Goran Glavaš." Darmstadt : Universitäts- und Landesbibliothek, 2021. http://d-nb.info/1236344472/34.
Full textOmstedt, Fredrik. "A deep reinforcement learning approach to the problem of golf using an agent limited by human data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277832.
Full textInom sporten golf har användandet av statistik blivit ett vanligt sätt att förstå och förbättra golfares golfsvingar. Trots det faktum att svingdata är tillgängligt, tack vare en mängd tekniska verktyg, är det inte självklart hur datan kan användas, speciellt för amatörgolfare. Detta examensarbete undersöker huruvida användandet av förstärkande inlärning tillsammans med en golfares data är en möjlighet för att spela golf, något som skulle kunna bidra med insikter om hur golfaren kan utvecklas. Mer specifikt har en Dueling Double Deep Q Network-agent och en Multi Pass Deep Q Network-agent tränats och evaluerats på att spela golf från pixeldata från två simulerade golfbanor genom att endast an- vända slagdata från en riktig golfare. Dessa två agenter har sedan jämförts med golfaren på hur väl de spelade i förhållande till mängden slag och avstånden till golfhålen när hålen avslutats. Majoriteten av resultaten visade ingen signifikant skillnad mellan någon av agenterna och golfaren på båda golfbanorna, vilket indikerar att agenterna spelade på en liknande nivå som golfaren. Komplexiteten hos problemet gjorde att agenterna hade bra kunskap om tillstånd som förekom ofta men dålig kunskap annars. Detta är en trolig orsak till att agenterna kunde spela på en liknande nivå som men inte bättre än golfaren. Andra anledningar kan vara för lite träningstid och potentiellt ickerepresentativ data från golfaren. Sammanfattningsvis kan slutsatsen dras att användandet av förstärkande inlärning för problemet golf, och möjligtvis även liknande problem, har potential. Dessutom skulle agenterna kunna förbättras givet fler eller mer djupgående undersökningar, så att mer värdefulla insikter om golfares data kan upptäckas.
Sherwin, Jason. "A computational approach to achieve situational awareness from limited observations of a complex system." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33955.
Full textHarár, Pavol. "Klasifikace audia hlubokým učením s limitovanými zdroji dat." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-408054.
Full textGiaretta, Lodovico. "Pushing the Limits of Gossip-Based Decentralised Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-253794.
Full textUnder de senaste åren har vi sett en kraftig ökning av närvaron och kraften hos anslutna enheter, såsom smartphones, smarta hushållsmaskiner, och smarta sensorer. Dessa enheter producerar stora mängder data som kan vara extremt värdefulla för att träna stora och avancerade maskininlärningsmodeller. Dessvärre är det ibland inte möjligt att samla in och bearbeta dessa dataset på ett centralt system, detta på grund av deras storlek eller de växande sekretesskraven för digital datahantering.För att lösa problemet har forskare utvecklar protokoller för att träna globala modeller på ett decentraliserat sätt och utnyttja beräkningsförmågan hos dessa enheter. Dessa protokoll kräver inte datan på enheter delas utan förlitar sig istället på att kommunicera delvis tränade modeller.Dessvärre så är verkliga system svåra att kontrollera och kan presentera ett brett spektrum av utmaningar som lätt överskådas i akademiska studier och simuleringar. Denna forskning analyserar gossip inlärning protokollet vilket är av de viktigaste resultaten inom decentraliserad maskininlärning, för att bedöma dess tillämplighet på verkliga scenarier.Detta arbete identifierar de huvudsakliga antagandena om protokollet och utför noggrant utformade simuleringar för att testa protokollets beteende när dessa antaganden tas bort. Resultaten visar att protokollet redan kan tillämpas i vissa miljöer, men att det misslyckas när det utsätts för vissa förhållanden som i verklighetsbaserade scenarier. Mer specifikt så kan modellerna som utbildas av protokollet vara partiska och fördelaktiga mot data lagrade i noder med snabbare kommunikationshastigheter eller ett högre antal grannar. Vidare kan vissa kommunikationstopologier få en stark negativ inverkan på modellernas konvergenshastighet.Även om denna studie kom fram till en förmildrande effekt för vissa av dessa problem så verkar det som om gossip inlärning protokollet kräver ytterligare forskningsinsatser för att säkerställa en bredare industriell tillämplighet.
Pettersson, Christoffer. "Investigating the Correlation Between Marketing Emails and Receivers Using Unsupervised Machine Learning on Limited Data : A comprehensive study using state of the art methods for text clustering and natural language processing." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189147.
Full textMålet med detta projekt att undersöka eventuella samband mellan marknadsföringsemail och dess mottagare med hjälp av oövervakad maskininlärning på en brgränsad mängd data. Datan består av ca 1200 email meddelanden med 98.000 mottagare. Initialt så gruperas alla meddelanden baserat på innehåll via text klustering. Meddelandena innehåller ingen information angående tidigare gruppering eller kategorisering vilket skapar ett behov för ett oövervakat tillvägagångssätt för inlärning där enbart det råa textbaserade meddelandet används som indata. Projektet undersöker moderna tekniker så som bag-of-words för att avgöra termers relevans och the gap statistic för att finna ett optimalt antal kluster. Datan vektoriseras med hjälp av term frequency - inverse document frequency för att avgöra relevansen av termer relativt dokumentet samt alla dokument kombinerat. Ett fundamentalt problem som uppstår via detta tillvägagångssätt är hög dimensionalitet, vilket reduceras med latent semantic analysis tillsammans med singular value decomposition. Då alla kluster har erhållits så analyseras de mest förekommande termerna i vardera kluster och jämförs. Eftersom en initial kategorisering av meddelandena saknas så krävs ett alternativt tillvägagångssätt för evaluering av klustrens validitet. För att göra detta så hämtas och analyseras alla mottagare för vardera kluster som öppnat något av dess meddelanden. Mottagarna har olika attribut angående deras syfte med att använda produkten samt personlig information. När de har hämtats och undersökts kan slutsatser dras kring hurvida samband kan hittas. Det finns ett klart samband mellan vardera kluster och dess mottagare, men till viss utsträckning. Mottagarna från samma kluster visade likartade attribut som var urskiljbara gentemot mottagare från andra kluster. Därav kan det sägas att de resulterande klustren samt dess mottagare är specifika nog att urskilja sig från varandra men för generella för att kunna handera mer detaljerad information. Med mer data kan detta bli ett användbart verktyg för att bestämma mottagare av specifika emailutskick för att på sikt kunna öka öppningsfrekvensen och därmed nå ut till mer relevanta mottagare baserat på tidigare resultat.
Young, William Albert II. "LEARNING RATES WITH CONFIDENCE LIMITS FOR JET ENGINE MANUFACTURING PROCESSES AND PART FAMILIES FROM NOISY DATA." Ohio University / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1131637106.
Full textTrávníčková, Kateřina. "Interaktivní segmentace 3D CT dat s využitím hlubokého učení." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-432864.
Full textYang, Xuan, and 楊譞. "Budget-limited data disambiguation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/196458.
Full textpublished_or_final_version
Computer Science
Doctoral
Doctor of Philosophy
Wang, Chen. "Global investigation of marine atmospheric boundary layer rolls using Sentinel-1 SAR data." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0203.
Full textThis thesis exploits the global Sentinel-1 (S-1) wave mode (WV) synthetic aperture radar (SAR) data for marine atmospheric boundary layer (MABL) roll studies. A deep learning- based model was developed to automatically identify rolls from the massive S-1 WV images. Valuation evidences that more and clearer rolls are visible at the larger incidence angle with limitation in very low wind speeds and when wind direction being perpendicular to the SAR antenna looking. Beyond this, the huge data leads to a new result that, on average and across all wind speeds, MABL rolls induce surface wind variations of ~8% (±3.5%) the mean flow, seldom exceeding 20%. Global statistics confirmed with previous studies that up to 90% of the identified rolls occur in near neutral to slightly unstable conditions. Roll wavelength and orientation are extracted with findings of multi-scale organization and directional contrast between low- and mid-latitudes. The systematical distribution of roll orientation with respect to the surface wind from tropics to extratropics recalls the importance of horizontal Coriolis force on rolls. Despite the significance of these highlights for both atmosphere and ocean studies, it is highly expected to extend the nearly global S- 1 WV SAR data for rolls, convective cells and other key air-sea processes. Results should be compared, explained, and complemented in the near future with in-depth theoretical and numerical studies
Senecal, Joshua G. "Length-limited data transformation and compression /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Full textPople, Andrew James. "Value-based maintenance using limited data." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391958.
Full textHsu, Bo-June (Bo-June Paul). "Language Modeling for limited-data domains." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/52796.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 99-109).
With the increasing focus of speech recognition and natural language processing applications on domains with limited amount of in-domain training data, enhanced system performance often relies on approaches involving model adaptation and combination. In such domains, language models are often constructed by interpolating component models trained from partially matched corpora. Instead of simple linear interpolation, we introduce a generalized linear interpolation technique that computes context-dependent mixture weights from features that correlate with the component confidence and relevance for each n-gram context. Since the n-grams from partially matched corpora may not be of equal relevance to the target domain, we propose an n-gram weighting scheme to adjust the component n-gram probabilities based on features derived from readily available corpus segmentation and metadata to de-emphasize out-of-domain n-grams. In scenarios without any matched data for a development set, we examine unsupervised and active learning techniques for tuning the interpolation and weighting parameters. Results on a lecture transcription task using the proposed generalized linear interpolation and n-gram weighting techniques yield up to a 1.4% absolute word error rate reduction over a linearly interpolated baseline language model. As more sophisticated models are only as useful as they are practical, we developed the MIT Language Modeling (MITLM) toolkit, designed for efficient iterative parameter optimization, and released it to the research community.
(cont.) With a compact vector-based n-gram data structure and optimized algorithm implementations, the toolkit not only improves the running time of common tasks by up to 40x, but also enables the efficient parameter tuning for language modeling techniques that were previously deemed impractical.
by Bo-June (Paul) Hsu.
Ph.D.
Chang, Eric I.-Chao. "Improving wordspotting performance with limited training data." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/38056.
Full textIncludes bibliographical references (leaves 149-155).
by Eric I-Chao Chang.
Ph.D.
Zama, Ramirez Pierluigi <1992>. "Deep Scene Understanding with Limited Training Data." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9815/1/zamaramirez_pierluigi_tesi.pdf.
Full textCaprioli, Francesco. "Optimal fiscal policy, limited commitment and learning." Doctoral thesis, Universitat Pompeu Fabra, 2009. http://hdl.handle.net/10803/7396.
Full textThis thesis is about how fiscal authority should optimally set dissorting taxes. Chapter 1 deals with the optimal fiscal policy problem when the government has an incentive to default on external debt. Chapter 2 deals with the optimal fiscal policy problem when households do not know how government sets taxes. The main conclusion I get is that, in each of these two contexts, the tax smoothing result, which is the standars result in the optimal taxation literature, is broken. When governments do not have a commitment technology taxes respond to the incentives to default; when agents have partial information about the underlying economic model, taxes depend on their beliefs about it.
O'Farrell, Michael Robert. "Estimating persistence of fished populations with limited data /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Full textDowd, Michael. "Assimilation of data into limited-area coastal models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq24773.pdf.
Full textMcLaughlin, N. R. "Robust multimodal person identification given limited training data." Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.579747.
Full textFattah, Polla. "Behaviour classification for temporal data with limited readings." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/44677/.
Full textDing, Silin. "Freeway Travel Time Estimation Using Limited Loop Data." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1205288596.
Full textLi, Jiawei. "Person re-identification with limited labeled training data." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/541.
Full textAnderson, Christopher. "BANDWIDTH LIMITED 320 MBPS TRANSMITTER." International Foundation for Telemetering, 1996. http://hdl.handle.net/10150/607635.
Full textWith every new spacecraft that is designed comes a greater density of information that will be stored once it is in operation. This, coupled with the desire to reduce the number of ground stations needed to download this information from the spacecraft, places new requirements on telemetry transmitters. These new transmitters must be capable of data rates of 320 Mbps and beyond. Although the necessary bandwidth is available for some non-bandwidth-limited transmissions in Ka-Band and above, many systems will continue to rely on more narrow allocations down to X-Band. These systems will require filtering of the modulation to meet spectral limits. The usual requirements of this filtering also include that it not introduce high levels of inter-symbol interference (ISI) to the transmission. These constraints have been addressed at CE by implementing a DSP technique that pre-filters a QPSK symbol set to achieve bandwidth-limited 320 Mbps operation. This implementation operates within the speed range of the radiation-hardened digital technologies that are currently available and consumes less power than the traditional high-speed FIR techniques.
Watkins, Andrew B. "AIRS: a resource limited artificial immune classifier." Master's thesis, Mississippi State : Mississippi State University, 2001. http://library.msstate.edu/etd/show.asp?etd=etd-11052001-102048.
Full textZhang, Yi. "Learning with Limited Supervision by Input and Output Coding." Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/156.
Full textGIOBERGIA, FLAVIO. "Machine learning with limited label availability: algorithms and applications." Doctoral thesis, Politecnico di Torino, 2023. https://hdl.handle.net/11583/2976594.
Full textVan, Niekerk Daniel Rudolph. "Automatic speech segmentation with limited data / by D.R. van Niekerk." Thesis, North-West University, 2009. http://hdl.handle.net/10394/3978.
Full textThesis (M.Ing. (Computer Engineering))--North-West University, Potchefstroom Campus, 2009.
Nagy, Arnold B. "Priority area performance and planning areas with limited biological data." Thesis, University of Sheffield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425193.
Full textDowler, John D. "Using Neural Networks with Limited Data to Estimate Manufacturing Cost." Ohio University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1211293606.
Full textSzotten, David. "Limited data problems in X-ray and polarized light tomography." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/limited-data-problems-in-xray-and-polarized-light-tomography(5bc153b4-7344-4a62-9879-e23cc3d60b2d).html.
Full textQu, Lizhen [Verfasser], and Gerhard [Akademischer Betreuer] Weikum. "Sentiment analysis with limited training data / Lizhen Qu. Betreuer: Gerhard Weikum." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2013. http://d-nb.info/1053680104/34.
Full textMehdawi, Nader. "Monitoring for Underdetermined Underground Structures during Excavation Using Limited Sensor Data." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5670.
Full textM.S.
Masters
Civil, Environmental, and Construction Engineering
Engineering and Computer Science
Civil Engineering; Structures and Geotechnical Engineering
White, Susan Mary. "Sediment yield estimation from limited data sets : a Philippines case study." Thesis, University of Exeter, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332300.
Full textDon, Michael, and Tom Harkins. "Achieving High Resolution Measurements Within Limited Bandwidth Via Sensor Data Compression." International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581447.
Full textThe U.S. Army Research Laboratory (ARL) is developing an onboard instrument and telemetry system to obtain measurements of the 30mm MK310 projectile's in-flight dynamics. The small size, high launch acceleration, and extremely high rates of this projectile create many design challenges. Particularly challenging is the high spin rate which can reach 1400 Hz at launch. The bandwidth required to continuously transmit solar data using the current method for such a rate would leave no room for data from other sensors. To solve this problem, a data compression scheme is implemented that retains the resolution of the solar sensor data while providing room in the telemetry frame for other measurements.
Abidin, Mohamed Roseli bin Zainal. "Hydrological and hydraulic sensitivity analyses for flood modelling with limited data." Thesis, University of Birmingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707174.
Full textFisher, Emily. "Tools for assessing data-limited fisheries and communicating stock status information." Thesis, Fisher, Emily (2012) Tools for assessing data-limited fisheries and communicating stock status information. PhD thesis, Murdoch University, 2012. https://researchrepository.murdoch.edu.au/id/eprint/14881/.
Full textSäfdal, Joakim. "Data-Driven Engine Fault Classification and Severity Estimation Using Interpolated Fault Modes from Limited Training Data." Thesis, Linköpings universitet, Fordonssystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-173916.
Full textDlamini, Luleka. "Exploring the potential of using remote sensing data to model agricultural systems in data-limited areas." Master's thesis, Faculty of Science, 2020. http://hdl.handle.net/11427/32239.
Full textBarrère, Killian. "Architectures de Transformer légères pour la reconnaissance de textes manuscrits anciens." Electronic Thesis or Diss., Rennes, INSA, 2023. http://www.theses.fr/2023ISAR0017.
Full textTransformer architectures deliver low error rates but are challenging to train due to limited annotated data in handwritten text recognition. We propose lightweight Transformer architectures to adapt to the limited amounts of annotated handwritten text available. We introduce a fast Transformer architecture with an encoder, processing up to 60 pages per second. We also present architectures using a Transformer decoder to incorporate language modeling into character recognition. To effectively train our architectures, we offer algorithms for generating synthetic data adapted to the visual style of modern and historical documents. Finally, we propose strategies for learning with limited data and reducing prediction errors. Our architectures, combined with synthetic data and these strategies, achieve competitive error rates on lines of text from modern documents. For historical documents, they train effectively with minimal annotated data, surpassing state-ofthe- art approaches. Remarkably, just 500 annotated lines are sufficient for character error rates close to 5%
Sanakoyeu, Artsiom [Verfasser], and Björn [Akademischer Betreuer] Ommer. "Visual Representation Learning with Limited Supervision / Artsiom Sanakoyeu ; Betreuer: Björn Ommer." Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://d-nb.info/1231632488/34.
Full text