Journal articles on the topic 'Learning on graphs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Learning on graphs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Huang, Xueqin, Xianqiang Zhu, Xiang Xu, Qianzhen Zhang, and Ailin Liang. "Parallel Learning of Dynamics in Complex Systems." Systems 10, no. 6 (December 15, 2022): 259. http://dx.doi.org/10.3390/systems10060259.
Full textZeng, Jiaqi, and Pengtao Xie. "Contrastive Self-supervised Learning for Graph Classification." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (May 18, 2021): 10824–32. http://dx.doi.org/10.1609/aaai.v35i12.17293.
Full textFionda, Valeria, and Giuseppe Pirrò. "Learning Triple Embeddings from Knowledge Graphs." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 3874–81. http://dx.doi.org/10.1609/aaai.v34i04.5800.
Full textZainullina, R. "Automatic Graph Generation for E-learning Systems." Bulletin of Science and Practice 7, no. 6 (June 15, 2021): 12–16. http://dx.doi.org/10.33619/2414-2948/67/01.
Full textHu, Shengze, Weixin Zeng, Pengfei Zhang, and Jiuyang Tang. "Neural Graph Similarity Computation with Contrastive Learning." Applied Sciences 12, no. 15 (July 29, 2022): 7668. http://dx.doi.org/10.3390/app12157668.
Full textXiang, Xintao, Tiancheng Huang, and Donglin Wang. "Learning to Evolve on Dynamic Graphs (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 13091–92. http://dx.doi.org/10.1609/aaai.v36i11.21682.
Full textKim, Jaehyeon, Sejong Lee, Yushin Kim, Seyoung Ahn, and Sunghyun Cho. "Graph Learning-Based Blockchain Phishing Account Detection with a Heterogeneous Transaction Graph." Sensors 23, no. 1 (January 1, 2023): 463. http://dx.doi.org/10.3390/s23010463.
Full textMa, Yunpu, and Volker Tresp. "Quantum Machine Learning Algorithm for Knowledge Graphs." ACM Transactions on Quantum Computing 2, no. 3 (September 30, 2021): 1–28. http://dx.doi.org/10.1145/3467982.
Full textMa, Guixiang, Nesreen K. Ahmed, Theodore L. Willke, and Philip S. Yu. "Deep graph similarity learning: a survey." Data Mining and Knowledge Discovery 35, no. 3 (March 24, 2021): 688–725. http://dx.doi.org/10.1007/s10618-020-00733-5.
Full textLee, Namkyeong, Junseok Lee, and Chanyoung Park. "Augmentation-Free Self-Supervised Learning on Graphs." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (June 28, 2022): 7372–80. http://dx.doi.org/10.1609/aaai.v36i7.20700.
Full textZhang, Tong, Yun Wang, Zhen Cui, Chuanwei Zhou, Baoliang Cui, Haikuan Huang, and Jian Yang. "Deep Wasserstein Graph Discriminant Learning for Graph Classification." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (May 18, 2021): 10914–22. http://dx.doi.org/10.1609/aaai.v35i12.17303.
Full textChristensen, Andrew J., Ananya Sen Gupta, and Ivars Kirsteins. "Graph representation learning on braid manifolds." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A39. http://dx.doi.org/10.1121/10.0015466.
Full textJames, Jinto, K. A. Germina, and P. Shaini. "Learning graphs and 1-uniform dcsl graphs." Discrete Mathematics, Algorithms and Applications 09, no. 04 (August 2017): 1750046. http://dx.doi.org/10.1142/s179383091750046x.
Full textZhuang, Jun, and Mohammad Al Hasan. "Defending Graph Convolutional Networks against Dynamic Graph Perturbations via Bayesian Self-Supervision." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 4 (June 28, 2022): 4405–13. http://dx.doi.org/10.1609/aaai.v36i4.20362.
Full textGerofsky, Susan. "Mathematical learning and gesture." Gesture and Multimodal Development 10, no. 2-3 (December 31, 2010): 321–43. http://dx.doi.org/10.1075/gest.10.2-3.10ger.
Full textBahrami, Saeedeh, Alireza Bosaghzadeh, and Fadi Dornaika. "Multi Similarity Metric Fusion in Graph-Based Semi-Supervised Learning." Computation 7, no. 1 (March 7, 2019): 15. http://dx.doi.org/10.3390/computation7010015.
Full textWald, Johanna, Nassir Navab, and Federico Tombari. "Learning 3D Semantic Scene Graphs with Instance Embeddings." International Journal of Computer Vision 130, no. 3 (January 22, 2022): 630–51. http://dx.doi.org/10.1007/s11263-021-01546-9.
Full textCUCKA, PETER, NATHAN S. NETANYAHU, and AZRIEL ROSENFELD. "LEARNING IN NAVIGATION: GOAL FINDING IN GRAPHS." International Journal of Pattern Recognition and Artificial Intelligence 10, no. 05 (August 1996): 429–46. http://dx.doi.org/10.1142/s0218001496000281.
Full textBai, Yunsheng, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. "Learning-Based Efficient Graph Similarity Computation via Multi-Scale Convolutional Set Matching." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 3219–26. http://dx.doi.org/10.1609/aaai.v34i04.5720.
Full textGIBERT, JAUME, ERNEST VALVENY, and HORST BUNKE. "EMBEDDING OF GRAPHS WITH DISCRETE ATTRIBUTES VIA LABEL FREQUENCIES." International Journal of Pattern Recognition and Artificial Intelligence 27, no. 03 (May 2013): 1360002. http://dx.doi.org/10.1142/s0218001413600021.
Full textJung, Jinhong, Jaemin Yoo, and U. Kang. "Signed random walk diffusion for effective representation learning in signed graphs." PLOS ONE 17, no. 3 (March 17, 2022): e0265001. http://dx.doi.org/10.1371/journal.pone.0265001.
Full textJavad Hosseini, Mohammad, Nathanael Chambers, Siva Reddy, Xavier R. Holt, Shay B. Cohen, Mark Johnson, and Mark Steedman. "Learning Typed Entailment Graphs with Global Soft Constraints." Transactions of the Association for Computational Linguistics 6 (December 2018): 703–17. http://dx.doi.org/10.1162/tacl_a_00250.
Full textBalcı, Mehmet Ali, Ömer Akgüller, Larissa M. Batrancea, and Lucian Gaban. "Discrete Geodesic Distribution-Based Graph Kernel for 3D Point Clouds." Sensors 23, no. 5 (February 21, 2023): 2398. http://dx.doi.org/10.3390/s23052398.
Full textLi, Shuai, Wei Chen, Zheng Wen, and Kwong-Sak Leung. "Stochastic Online Learning with Probabilistic Graph Feedback." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 4675–82. http://dx.doi.org/10.1609/aaai.v34i04.5899.
Full textMakarov, Ilya, Dmitrii Kiselev, Nikita Nikitinsky, and Lovro Subelj. "Survey on graph embeddings and their applications to machine learning problems on graphs." PeerJ Computer Science 7 (February 4, 2021): e357. http://dx.doi.org/10.7717/peerj-cs.357.
Full textYao, Huaxiu, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang, Nitesh Chawla, and Zhenhui Li. "Graph Few-Shot Learning via Knowledge Transfer." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 6656–63. http://dx.doi.org/10.1609/aaai.v34i04.6142.
Full textBera, Abhijit, Mrinal Kanti Ghose, and Dibyendu Kumar Pal. "Graph Classification Using Back Propagation Learning Algorithms." International Journal of Systems and Software Security and Protection 11, no. 2 (July 2020): 1–12. http://dx.doi.org/10.4018/ijsssp.2020070101.
Full textAbualkishik, Abedallah Z., Rasha Almajed, and William Thompson. "Trustworthy Federated Graph Learning Framework for Wireless Internet of Things." International Journal of Wireless and Ad Hoc Communication 5, no. 2 (2022): 48–63. http://dx.doi.org/10.54216/ijwac.050204.
Full textAbualkishik, Abedallah Z., Rasha Almajed, and William Thompson. "Trustworthy Federated Graph Learning Framework for Wireless Internet of Things." International Journal of Wireless and Ad Hoc Communication 6, no. 1 (2023): 50–62. http://dx.doi.org/10.54216/ijwac.060105.
Full textNi, Xiang, Jing Li, Mo Yu, Wang Zhou, and Kun-Lung Wu. "Generalizable Resource Allocation in Stream Processing via Deep Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 01 (April 3, 2020): 857–64. http://dx.doi.org/10.1609/aaai.v34i01.5431.
Full textGuo, Zhijiang, Yan Zhang, Zhiyang Teng, and Wei Lu. "Densely Connected Graph Convolutional Networks for Graph-to-Sequence Learning." Transactions of the Association for Computational Linguistics 7 (November 2019): 297–312. http://dx.doi.org/10.1162/tacl_a_00269.
Full textBéthune, Louis, Yacouba Kaloga, Pierre Borgnat, Aurélien Garivier, and Amaury Habrard. "Hierarchical and Unsupervised Graph Representation Learning with Loukas’s Coarsening." Algorithms 13, no. 9 (August 21, 2020): 206. http://dx.doi.org/10.3390/a13090206.
Full textLi, Yanying. "Characterizing the Minimal Essential Graphs of Maximal Ancestral Graphs." International Journal of Pattern Recognition and Artificial Intelligence 34, no. 04 (August 5, 2019): 2059009. http://dx.doi.org/10.1142/s0218001420590090.
Full textAlbergante, Luca, Evgeny Mirkes, Jonathan Bac, Huidong Chen, Alexis Martin, Louis Faure, Emmanuel Barillot, Luca Pinello, Alexander Gorban, and Andrei Zinovyev. "Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph." Entropy 22, no. 3 (March 4, 2020): 296. http://dx.doi.org/10.3390/e22030296.
Full textJaeger, Manfred, Jens D. Nielsen, and Tomi Silander. "Learning probabilistic decision graphs." International Journal of Approximate Reasoning 42, no. 1-2 (May 2006): 84–100. http://dx.doi.org/10.1016/j.ijar.2005.10.006.
Full textThanou, Dorina, Xiaowen Dong, Daniel Kressner, and Pascal Frossard. "Learning Heat Diffusion Graphs." IEEE Transactions on Signal and Information Processing over Networks 3, no. 3 (September 2017): 484–99. http://dx.doi.org/10.1109/tsipn.2017.2731164.
Full textZhu, Jun. "Learning representations on graphs." National Science Review 5, no. 1 (January 1, 2018): 21. http://dx.doi.org/10.1093/nsr/nwx147.
Full textMadhawa, Kaushalya, and Tsuyoshi Murata. "Active Learning for Node Classification: An Evaluation." Entropy 22, no. 10 (October 16, 2020): 1164. http://dx.doi.org/10.3390/e22101164.
Full textSun, Yuan, Andong Chen, Chaofan Chen, Tianci Xia, and Xiaobing Zhao. "A Joint Model for Representation Learning of Tibetan Knowledge Graph Based on Encyclopedia." ACM Transactions on Asian and Low-Resource Language Information Processing 20, no. 2 (March 30, 2021): 1–17. http://dx.doi.org/10.1145/3447248.
Full textPiao, Yinhua, Sangseon Lee, Dohoon Lee, and Sun Kim. "Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 10 (June 28, 2022): 11165–73. http://dx.doi.org/10.1609/aaai.v36i10.21366.
Full textMonka, Sebastian, Lavdim Halilaj, and Achim Rettinger. "A survey on visual transfer learning using knowledge graphs." Semantic Web 13, no. 3 (April 6, 2022): 477–510. http://dx.doi.org/10.3233/sw-212959.
Full textXie, Anze, Anders Carlsson, Jason Mohoney, Roger Waleffe, Shanan Peters, Theodoros Rekatsinas, and Shivaram Venkataraman. "Demo of marius." Proceedings of the VLDB Endowment 14, no. 12 (July 2021): 2759–62. http://dx.doi.org/10.14778/3476311.3476338.
Full textLee, Kwangyon, Haemin Jung, June Seok Hong, and Wooju Kim. "Learning Knowledge Using Frequent Subgraph Mining from Ontology Graph Data." Applied Sciences 11, no. 3 (January 20, 2021): 932. http://dx.doi.org/10.3390/app11030932.
Full textZhao, Jianan, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye. "Heterogeneous Graph Structure Learning for Graph Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 5 (May 18, 2021): 4697–705. http://dx.doi.org/10.1609/aaai.v35i5.16600.
Full textGarcia-Hernandez, Carlos, Alberto Fernández, and Francesc Serratosa. "Learning the Edit Costs of Graph Edit Distance Applied to Ligand-Based Virtual Screening." Current Topics in Medicinal Chemistry 20, no. 18 (August 24, 2020): 1582–92. http://dx.doi.org/10.2174/1568026620666200603122000.
Full textZhang, Kainan, Zhipeng Cai, and Daehee Seo. "Privacy-Preserving Federated Graph Neural Network Learning on Non-IID Graph Data." Wireless Communications and Mobile Computing 2023 (February 3, 2023): 1–13. http://dx.doi.org/10.1155/2023/8545101.
Full textVaghani, Dev. "An Approch for Representation of Node Using Graph Transformer Networks." International Journal for Research in Applied Science and Engineering Technology 11, no. 1 (January 31, 2023): 27–37. http://dx.doi.org/10.22214/ijraset.2023.48485.
Full textRuf, Verena, Anna Horrer, Markus Berndt, Sarah Isabelle Hofer, Frank Fischer, Martin R. Fischer, Jan M. Zottmann, Jochen Kuhn, and Stefan Küchemann. "A Literature Review Comparing Experts’ and Non-Experts’ Visual Processing of Graphs during Problem-Solving and Learning." Education Sciences 13, no. 2 (February 19, 2023): 216. http://dx.doi.org/10.3390/educsci13020216.
Full textPeng, Yun, Byron Choi, and Jianliang Xu. "Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art." Data Science and Engineering 6, no. 2 (April 28, 2021): 119–41. http://dx.doi.org/10.1007/s41019-021-00155-3.
Full textReba, Kristjan, Matej Guid, Kati Rozman, Dušanka Janežič, and Janez Konc. "Exact Maximum Clique Algorithm for Different Graph Types Using Machine Learning." Mathematics 10, no. 1 (December 28, 2021): 97. http://dx.doi.org/10.3390/math10010097.
Full text