Dissertations / Theses on the topic 'Learning for planning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Learning for planning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Goodspeed, Robert (Robert Charles). "Planning support systems for spatial planning through social learning." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81739.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 240-271).
This dissertation examines new professional practices in urban planning that utilize new types of spatial planning support systems (PSS) based on geographic information systems (GIS) software. Through a mixed-methods research design, the dissertation investigates the role of these new technologies in planning workshops, processes, and as metropolitan infrastructures. In particular, PSS are viewed as supporting social learning in spatial planning processes. The study includes cases in Boston, Kansas City, and Austin. The findings indicate high levels of social learning, broadly confirming the collaborative planning theory literature. Participants at planning workshops that incorporated embodied computing interaction designs reported higher levels of two forms of learning drawn from Argyris and Schöns' theory of organizational learning: single and double loop learning. Single loop learning is measured as reported learning. Double loop learning, characterized by deliberation about goals and values, is measured with a novel summative scale. These workshops utilized PSS to contribute indicators to the discussion through the use of paper maps for input and human operators for output. A regression analysis reveals that the PSS contributed to learning by encouraging imagination, engagement, and alignment. Participantsʼ perceived identities as planners, personality characteristics, and frequency of meeting attendance were also related to the learning outcomes. However, less learning was observed at workshops with many detailed maps and limited time for discussion, and exercises lacking PSS feedback. The development of PSS infrastructure is investigated by conducting a qualitative analysis of focus groups of professional planners, and a case where a PSS was planned but not implemented. The dissertation draws on the research literatures on learning, PSS and urban computer models, and planning theory. The research design is influenced by a sociotechnical perspective and design research paradigms from several fields. The dissertation argues social learning is required to achieve many normative goals in planning, such as institutional change and urban sustainability. The relationship between planning processes and outcomes, and implications of information technology trends for PSS and spatial planning are discussed.
by Robert Goodspeed.
Ph.D.
Zettlemoyer, Luke S. (Luke Sean) 1978. "Learning probabilistic relational planning rules." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/87896.
Full textPark, Sooho S. M. Massachusetts Institute of Technology. "Learning for informative path planning." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45887.
Full textIncludes bibliographical references (p. 104-108).
Through the combined use of regression techniques, we will learn models of the uncertainty propagation efficiently and accurately to replace computationally intensive Monte- Carlo simulations in informative path planning. This will enable us to decrease the uncertainty of the weather estimates more than current methods by enabling the evaluation of many more candidate paths given the same amount of resources. The learning method and the path planning method will be validated by the numerical experiments using the Lorenz-2003 model [32], an idealized weather model.
by Sooho Park.
S.M.
Junyent, Barbany Miquel. "Width-Based Planning and Learning." Doctoral thesis, Universitat Pompeu Fabra, 2021. http://hdl.handle.net/10803/672779.
Full textLa presa seqüencial de decisions òptimes és un problema fonamental en diversos camps. En els últims anys, els mètodes d'aprenentatge per reforç (RL) han experimentat un èxit sense precedents, en gran part gràcies a l'ús de models d'aprenentatge profund, aconseguint un rendiment a nivell humà en diversos dominis, com els videojocs d'Atari o l'antic joc de Go. En contrast amb l'enfocament de RL, on l'agent aprèn una política a partir de mostres d'interacció amb l'entorn, ignorant l'estructura del problema, l'enfocament de planificació assumeix models coneguts per als objectius de l'agent i la dinàmica del domini, i es basa en determinar com ha de comportar-se l'agent per aconseguir els seus objectius. Els planificadors actuals són capaços de resoldre problemes que involucren grans espais d'estats precisament explotant l'estructura del problema, definida en el model estat-acció. En aquest treball combinem els dos enfocaments, aprofitant polítiques ràpides i compactes dels mètodes d'aprenentatge i la capacitat de fer cerques en problemes combinatoris dels mètodes de planificació. En particular, ens enfoquem en una família de planificadors basats en el width (ample), que han tingut molt èxit en els últims anys gràcies a que la seva escalabilitat és independent de la mida de l'espai d'estats. L'algorisme bàsic, Iterated Width (IW), es va proposar originalment per problemes de planificació clàssica, on el model de transicions d'estat i objectius ve completament determinat, representat per conjunts d'àtoms. No obstant, els planificadors basats en width no requereixen un model de l'entorn completament definit i es poden utilitzar amb simuladors. Per exemple, s'han aplicat recentment a dominis gràfics com els jocs d'Atari. Malgrat el seu èxit, IW és un algorisme purament exploratori i no aprofita la informació de recompenses anteriors. A més, requereix que l'estat estigui factoritzat en característiques, que han de predefinirse per a la tasca en concret. A més, executar l'algorisme amb un width superior a 1 sol ser computacionalment intractable a la pràctica, el que impedeix que IW resolgui problemes de width superior. Comencem aquesta tesi estudiant la complexitat dels mètodes basats en width quan l'espai d'estats està definit per característiques multivalor, com en els problemes de RL, en lloc d'àtoms booleans. Proporcionem un límit superior més precís en la quantitat de nodes expandits per IW, així com resultats generals de complexitat algorísmica. Per fer front a problemes més complexos (és a dir, aquells amb un width superior a 1), presentem un algorisme jeràrquic que planifica en dos nivells d'abstracció. El planificador d'alt nivell utilitza característiques abstractes que es van descobrint gradualment a partir de decisions de poda en l'arbre de baix nivell. Il·lustrem aquest algorisme en dominis PDDL de planificació clàssica, així com en dominis de simuladors gràfics. En planificació clàssica, mostrem com IW(1) en dos nivells d'abstracció pot resoldre problemes de width 2. Per aprofitar la informació de recompenses passades, incorporem una política explícita en el mecanisme de selecció d'accions. El nostre mètode, anomenat π-IW, intercala la planificació basada en width i l'aprenentatge de la política usant les accions visitades pel planificador. Representem la política amb una xarxa neuronal que, al seu torn, s'utilitza per guiar la planificació, reforçant així camins prometedors. A més, la representació apresa per la xarxa neuronal es pot utilitzar com a característiques per al planificador sense degradar el seu rendiment, eliminant així el requisit d'usar característiques predefinides. Comparem π-IW amb mètodes anteriors basats en width i amb AlphaZero, un mètode que també intercala planificació i aprenentatge, i mostrem que π-IW té un rendiment superior en entorns simples. També mostrem que l'algorisme π-IW supera altres mètodes basats en width en els jocs d'Atari. Finalment, mostrem que el mètode IW jeràrquic proposat pot integrar-se fàcilment amb el nostre esquema d'aprenentatge de la política, donant com a resultat un algorisme que supera els planificadors no jeràrquics basats en IW en els jocs d'Atari amb recompenses distants.
La toma secuencial de decisiones óptimas es un problema fundamental en diversos campos. En los últimos años, los métodos de aprendizaje por refuerzo (RL) han experimentado un éxito sin precedentes, en gran parte gracias al uso de modelos de aprendizaje profundo, alcanzando un rendimiento a nivel humano en varios dominios, como los videojuegos de Atari o el antiguo juego de Go. En contraste con el enfoque de RL, donde el agente aprende una política a partir de muestras de interacción con el entorno, ignorando la estructura del problema, el enfoque de planificación asume modelos conocidos para los objetivos del agente y la dinámica del dominio, y se basa en determinar cómo debe comportarse el agente para lograr sus objetivos. Los planificadores actuales son capaces de resolver problemas que involucran grandes espacios de estados precisamente explotando la estructura del problema, definida en el modelo estado-acción. En este trabajo combinamos los dos enfoques, aprovechando políticas rápidas y compactas de los métodos de aprendizaje y la capacidad de realizar búsquedas en problemas combinatorios de los métodos de planificación. En particular, nos enfocamos en una familia de planificadores basados en el width (ancho), que han demostrado un gran éxito en los últimos años debido a que su escalabilidad es independiente del tamaño del espacio de estados. El algoritmo básico, Iterated Width (IW), se propuso originalmente para problemas de planificación clásica, donde el modelo de transiciones de estado y objetivos viene completamente determinado, representado por conjuntos de átomos. Sin embargo, los planificadores basados en width no requieren un modelo del entorno completamente definido y se pueden utilizar con simuladores. Por ejemplo, se han aplicado recientemente en dominios gráficos como los juegos de Atari. A pesar de su éxito, IW es un algoritmo puramente exploratorio y no aprovecha la información de recompensas anteriores. Además, requiere que el estado esté factorizado en características, que deben predefinirse para la tarea en concreto. Además, ejecutar el algoritmo con un width superior a 1 suele ser computacionalmente intratable en la práctica, lo que impide que IW resuelva problemas de width superior. Empezamos esta tesis estudiando la complejidad de los métodos basados en width cuando el espacio de estados está definido por características multivalor, como en los problemas de RL, en lugar de átomos booleanos. Proporcionamos un límite superior más preciso en la cantidad de nodos expandidos por IW, así como resultados generales de complejidad algorítmica. Para hacer frente a problemas más complejos (es decir, aquellos con un width superior a 1), presentamos un algoritmo jerárquico que planifica en dos niveles de abstracción. El planificador de alto nivel utiliza características abstractas que se van descubriendo gradualmente a partir de decisiones de poda en el árbol de bajo nivel. Ilustramos este algoritmo en dominios PDDL de planificación clásica, así como en dominios de simuladores gráficos. En planificación clásica, mostramos cómo IW(1) en dos niveles de abstracción puede resolver problemas de width 2. Para aprovechar la información de recompensas pasadas, incorporamos una política explícita en el mecanismo de selección de acciones. Nuestro método, llamado π-IW, intercala la planificación basada en width y el aprendizaje de la política usando las acciones visitadas por el planificador. Representamos la política con una red neuronal que, a su vez, se utiliza para guiar la planificación, reforzando así caminos prometedores. Además, la representación aprendida por la red neuronal se puede utilizar como características para el planificador sin degradar su rendimiento, eliminando así el requisito de usar características predefinidas. Comparamos π-IW con métodos anteriores basados en width y con AlphaZero, un método que también intercala planificación y aprendizaje, y mostramos que π-IW tiene un rendimiento superior en entornos simples. También mostramos que el algoritmo π-IW supera otros métodos basados en width en los juegos de Atari. Finalmente, mostramos que el IW jerárquico propuesto puede integrarse fácilmente con nuestro esquema de aprendizaje de la política, dando como resultado un algoritmo que supera a los planificadores no jerárquicos basados en IW en los juegos de Atari con recompensas distantes.
Dearden, Richard W. "Learning and planning in structured worlds." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0020/NQ56531.pdf.
Full textMadigan-Concannon, Liam. "Planning for life : involving adults with learning disabilities in service planning." Thesis, London School of Economics and Political Science (University of London), 2003. http://etheses.lse.ac.uk/2664/.
Full textMäntysalo, R. (Raine). "Land-use planning as inter-organizational learning." Doctoral thesis, University of Oulu, 2000. http://urn.fi/urn:isbn:9514258444.
Full textGrant, Timothy John. "Inductive learning of knowledge-based planning operators." [Maastricht : Maastricht : Rijksuniversiteit Limburg] ; University Library, Maastricht University [Host], 1996. http://arno.unimaas.nl/show.cgi?fid=6686.
Full textBaldassarre, Gianluca. "Planning with neural networks and reinforcement learning." Thesis, University of Essex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252285.
Full textNewton, Muhammad Abdul Hakim. "Wizard : learning macro-actions comprehensively for planning." Thesis, University of Strathclyde, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501841.
Full textTynong, Anton. "Machine learning for planning in warehouse management." Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-178108.
Full textMorere, Philippe. "Bayesian Optimisation for Planning And Reinforcement Learning." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21230.
Full textWeber, Christopher H. "Planning, Acting, and Learning in Incomplete Domains." DigitalCommons@USU, 2012. https://digitalcommons.usu.edu/etd/1168.
Full textDos, Santos De Oliveira Rafael. "Bayesian Optimisation for Planning under Uncertainty." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20762.
Full textKao, Hai Feng. "Optimal planning with approximate model-based reinforcement learning." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/39889.
Full textKochenderfer, Mykel J. "Adaptive modelling and planning for learning intelligent behaviour." Thesis, University of Edinburgh, 2006. http://hdl.handle.net/1842/1408.
Full textHolst, Gustav. "Route Planning of Transfer Buses Using Reinforcement Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281286.
Full textInom ruttplanering är målet att erhålla den bästa färdvägen mellan en uppsättning platser, vilket blir en mycket komplicerad uppgift i takt med att antalet platser ökar. Denna studie kommer att behandla problemet gällande ruttplanering av transferbussar och undersöker genomförbarheten av att tillämpa en förstärkningsinlärningsmetod på detta verkliga problem. I nutida forskning har förstärkningsinlärningsmetoder framträtt som ett lovande alternativ till klassiska optimeringsalgoritmer för lösandet av liknande problem. Detta på grund utav deras positiva egenskaper gällande skalbarhet och generalisering. Emellertid har majoriteten av den nämnda forskningen utförts på strikt teoretiska problem. Denna studie implementerar en befintlig förstärkningsinlärningsmodell och anpassar den till att passa problemet med ruttplanering av transferbussar. Modellen tränas för att generera optimerade rutter, gällande tids- och kostnadskonsumtion. Därefter utvärderas rutterna, som genererats av den tränade modellen, mot motsvarande manuellt planerade rutter. Förstärkningsinlärningsmodellen producerar rutter som överträffar de manuellt planerade rutterna med avseende på de båda undersökta mätvärdena. På grund av avgränsningar och antagandet som gjorts under implementeringen anses emellertid de explicita konsumtionsskillnaderna vara lovande men kan inte ses som definitiva resultat. Huvudfyndet är modellens övergripande beteende, vilket antyder en konceptvalidering; förstärkningsinlärningsmodeller är användbara som verktyg i sammanhanget gällande verklig ruttplanering av transferbussar.
Wickman, Axel. "Exploring feasibility of reinforcement learning flight route planning." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-178314.
Full textFABBIANI, EMANUELE. "Machine Learning Approaches for Energy Distribution and Planning." Doctoral thesis, Università degli studi di Pavia, 2021. http://hdl.handle.net/11571/1436275.
Full textThe shift towards more sustainable energy generation, transportation, and storage will be a major challenge in the next decades. Following the global trend, both academic and industrial communities are exploiting all the available tools to facilitate the transition. Machine learning is undoubtedly one such tool: substantial advancements in the last years enabled its application to several aspects of energy production and management. We selected two problems that can be addressed with machine learning. In collaboration with A2A, the third largest Italian utility, we studied the prediction of natural gas demand; with the Ecole Polytechnique Fédérale de Lausanne, we tackled the identification of the topology and the electrical parameters of distribution power networks. Both topics have deep practical implications. As nations are decommissioning coal and oil plants, natural gas becomes the ideal candidate to complement renewable yet intermittent power sources. Moreover, natural gas covers a relevant portion of the energy consumption of residential and industrial buildings. The accurate prediction of the demand can make both transportation and storage more efficient, reducing environmental and financial costs. As the electrification of transportation and domestic heating gains traction, power networks are put under heavy stress. Moreover, the bidirectional power flows created by distributed generation must be carefully managed. New paradigms, such as microgrids and smart grids, are set to replace the current infrastructure. Yet, the complex control algorithms required by such designs require complete knowledge of the network structure. We deal with the prediction of residential, industrial and thermoelectric gas demand at country level. We present a comprehensive explorative study, which lays the foundation for feature selection and engineering. We then cast a regression problem and compare several base models, highlighting the strengths and weaknesses of each one. For the first time, we propose to apply ensembling, showing how it yields more accurate predictors. Finally, we design a novel model for the influence of weather forecasting errors on the accuracy of residential gas demand predictors, and we demonstrate its effectiveness with experimental evidence. We propose to solve the identification of distribution networks by means of a novel procedure, complementing an online estimation algorithm with a sequential design of experiment. The approach has two main advantages with respect to traditional methods: it exploits controllable generators to maximize the information content of the samples, and it can seamlessly adapt to changes in topology, which are especially frequent in microgrids. The effectiveness of the proposed approach is substantiated by simulations on standard testbeds. With respect to both topics, throughout the thesis we highlight the concrete industrial applications of our work and provide directions for future developments.
Wolfaardt, Ddolores. "Facilitating learning: An investigation of the language policy of Namibian schools." University of the Western Cape, 2001. http://hdl.handle.net/11394/8452.
Full textThis research has sought to investigate the language policy of Namibian schools against the background of international literature on the advantages of mother tongue as medium of instruction during the initial years of school. The historical background of the formulation and implementation of the current policy is dealt with in Chapter 2. The theoretical aspects of language planning as explained in the literature will focus on aspects like the underlying principles for language planning. This chapter will furthermore discuss information regarding the status and the use of the mother tongue as medium of instruction in Namibia during the first three years of school. In Chapter 4 a literature review of Cummins's linguistic interdependence principle, as well as the different options or models for a bilingual language approach in education, is discussed in detail and compared to the Namibian situation to find the best possible model which could be adapted for Namibia. Chapter 5 investigates the results of a survey that has been conducted in Namibia to determine the level of English language proficiency of teachers. These findings are compared to find a relation between repetition rates of learners, Grade 10 examination results per region, as well as the teacher qualifications per region. Chapter 6 proposes a gradual bilingual language model for Namibia. First the rationale will be dealt with, followed by a detailed description of the model and how it is to be implemented. Chapters 7 and 8 deal with the research methodology that was undertaken in the form of a questionnaire and interviews with educationists regarding the use of the real medium of instruction, the perceptions of educationists on the language policy, and their proposals to change the language policy. Their perceptions of the proposed language model are discussed in order to identify ideas on how to streamline it. In Chapter 9 questions concerning the implications of implementing a bilingual language policy with regard to what is possible, practicable, and affordable will be dealt with. The last chapter, Chapter 10, will compare the current language policy, a policy proposed by NIED, and the model proposed here, before a number of recommendations are made.
Latief, Shahnaz. "Time and school learning." Master's thesis, University of Cape Town, 2002. http://hdl.handle.net/11427/7948.
Full textThis study, conducted at Poor Man's Friend Secondary School (fictitious name), describes the use of Time Tabled School time. In fact, it quantifies the Time spent on Instruction and relates it to Learner Engagement-rates. Cumulatively, these variables impact on Learner Outcomes.
Whale, Alyssa Morgan. "An e-learning environment for enterprise resource planning systems." Thesis, Nelson Mandela Metropolitan University, 2016. http://hdl.handle.net/10948/13182.
Full textMott, Bradford Wayne. "Decision-Theoretic Narrative Planning for Guided Exploratory Learning Environments." NCSU, 2006. http://www.lib.ncsu.edu/theses/available/etd-03292006-110906/.
Full textFurmston, T. J. "Applications of probabilistic inference to planning & reinforcement learning." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1389368/.
Full textGrounds, Matthew Jon. "Scaling-up reinforcement learning using parallelization and symbolic planning." Thesis, University of York, 2007. http://etheses.whiterose.ac.uk/11009/.
Full textGay, Juliana Siqueira. "Learning spatial inequalities: an approach to support transportation planning." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3138/tde-03052018-103817/.
Full textParte da literatura de planejamento de transportes conceitua a infraestrutura de transportes como uma forma de distribuir pessoas e oportunidades no território. Portanto, as desigualdades espaciais tornaram-se uma questão relevante a ser endereçada no planejamento de transportes e uso do solo. De maneira a contribuir com o desafio de avaliar desigualdades e sua heterogeneidade no ambiente urbano, esse trabalho tem como objetivo identificar e descrever padrões existentes na distribuição acessibilidade a diferentes equipamentos urbanos e dados socioeconômicos por meio de técnicas de Aprendizagem de Máquina (AM) para informar a tomada de decisão em planos de transportes. De forma a caracterizar a atual consideração de métricas de desigualdades espaciais na prática do planejamento de transportes no Brasil, nove planos de mobilidade foram revisados. Para investigar as potencialidades e restrições da aplicação de AM, análises supervisionadas e não supervisionadas de indicadores de renda e acessibilidade a saúde, educação e lazer foram realizadas. Os dados do município de São Paulo dos anos de 2000 e 2010 foram explorados. Os Planos de Mobilidade analisados não apresentam medidas para avaliação de desigualdades espaciais. Além disso, é possível identificar que a população de baixa renda tem baixa acessibilidade a todos os equipamentos urbanos, especialmente hospitais e centros culturais. A zona leste da cidade apresenta um grupo de baixa renda com nível intermediário de acessibilidade a escolas públicas e centros esportivos, evidenciando a heterogeneidade nas regiões periféricas da cidade. Finalmente, um quadro de referência é proposto para incorporação de técnicas de AM no planejamento de transportes.
Zhou, Tianyu. "Deep Learning Models for Route Planning in Road Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235216.
Full textTraditionella algoritmer för att hitta den kortaste vägen kan effektivt hitta de optimala vägarna i grafer med enkel heuristik. Att formulera en enkel heuristik är dock utmanande för vägnätverk eftersom det finns flera faktorer att överväga, såsom vägsegmentlängd, kantcentralitet och hastighetsbegränsningar. Denna studie undersöker hur ett neuralt nätverk kan lära sig att ta dessa faktorer som indata och finna en väg utifrån start- och slutpunkt. Forskningsfrågan är formulerad som: Är neuronnätverket tillämpliga på realtidsplaneringsuppgifter i ett vägnät?. Det föreslagna måttet för att utvärdera effektiviteten hos det neuronnätverket är ankomstgrad. Kvaliteten på genererade vägar utvärderas av tidseffektivitet. Prestandan hos modellen jämförs också mellan sökningen i dynamiska och statiska grafer, med hjälp av ovanstående mätvärden. Undersökningen bedrivs i flera steg. Det första steget är att generera slumpmässiga grafer, vilket gör det möjligt för oss att övervaka träningsdiagrammets storlek och egenskaper utan att ta hand om för många detaljer i ett vägnät. Nästa steg är att, som ett bevis på konceptet, undersöka om ett neuronnätverk kan lära sig att korsa enkla grafer med flera strategier, eftersom vägnätverk är i praktiken komplexa grafer. Slutligen skalas studien upp genom att inkludera faktorer som kan påverka sökningen i riktiga vägnät. Träningsdata utgörs av optimala vägar i en graf som genereras av en algoritm för att finna den kortaste vägen. Modellen appliceras sedan i nya grafer för att hitta en väg mellan start och slutpunkt. Ankomstgrad och tidseffektivitet beräknas och jämförs med den motsvarande optimala sökvägen. De experimentella resultaten visar att effektiviteten, dvs ankomstgraden av modellen är 90% och vägkvaliteten dvs tidseffektiviteten har en median på 0,88 och en stor varians. Experimentet visar att modellen har bättre prestanda i dynamiska grafer än i statiska grafer. Sammantaget är svaret på forskningsfrågan positivt. Det finns dock fortfarande utrymme att förbättra modellens effektivitet och de vägar som genereras av modellen. Detta arbete visar att ett neuronnätverk tränat för att göra lokalt optimala val knappast kan ge globalt optimal lösning. Vi visar också att vår metod, som bara gör lokalt optimala val, kan anpassa sig till dynamiska grafer med begränsad prestandaförlust.
Zhang, Tianfang. "Machine learning multicriteria optimization in radiation therapy treatment planning." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-257509.
Full textInom strålterapiplanering har den senaste forskningen använt maskininlärning baserat på historiskt levererade planer för att automatisera den process i vilken kliniskt acceptabla planer produceras. Jämfört med traditionella angreppssätt, såsom upprepad optimering av en viktad målfunktion eller flermålsoptimering (MCO), har automatiska planeringsmetoder generellt sett fördelarna av lägre beräkningstider och minimal användarinteraktion, men saknar däremot flexibiliteten hos allmänna ramverk som exempelvis MCO. Maskininlärningsmetoder kan vara speciellt känsliga för avvikelser i dosprediktionssteget på grund av särskilda egenskaper hos de optimeringsfunktioner som vanligtvis används för att återskapa dosfördelningar, och lider dessutom av problemet att det inte finns något allmängiltigt orsakssamband mellan prediktionsnoggrannhet och kvalitet hos optimerad plan. I detta arbete presenterar vi ett sätt att förena idéer från maskininlärningsbaserade planeringsmetoder med det väletablerade MCO-ramverket. Mer precist kan vi, givet förkunskaper i form av antingen en tidigare optimerad plan eller en uppsättning av historiskt levererade kliniska planer, automatiskt generera Paretooptimala planer som täcker en dosregion motsvarande uppnåeliga såväl som kliniskt acceptabla planer. I det förra fallet görs detta genom att introducera dos--volym-bivillkor; i det senare fallet görs detta genom att anpassa en gaussisk blandningsmodell med viktade data med förväntning--maximering-algoritmen, modifiera den med exponentiell lutning och sedan använda speciellt utvecklade optimeringsfunktioner för att ta hänsyn till prediktionsosäkerheter.Numeriska resultat för konceptuell demonstration erhålls för ett fall av prostatacancer varvid behandlingen levererades med volymetriskt modulerad bågterapi, där det visas att metoderna utvecklade i detta arbete är framgångsrika i att automatiskt generera Paretooptimala planer med tillfredsställande kvalitet och variation medan kliniskt irrelevanta dosregioner utesluts. I fallet då historiska planer används som förkunskap är beräkningstiderna markant kortare än för konventionell MCO.
Varnai, Peter. "Reinforcement Learning Endowed Robot Planning under Spatiotemporal Logic Specifications." Licentiate thesis, KTH, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263611.
Full textQC 20191111
Gritsenko, Artem. "Learning From Demonstrations in Changing Environments: Learning Cost Functions and Constraints for Motion Planning." Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-theses/1246.
Full textLee, Yang Won. "Institutional learning--the public housing process." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/75997.
Full textForbes, Charles L. (Charles Lockwood). "Organizational learning--from information to knowledge." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10605.
Full textDESHPANDE, AMIT A. "Virtual Enterprise Resource Planning for Production Planning and Control Education." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1211238271.
Full textBarnes, Sheri K. "Evidence of heterarchial planning within higher education institutions : learning garden planning and development at Rowan University /." Full text available online, 2007. http://www.lib.rowan.edu/find/theses.
Full textCervera, Mateu Enric. "Perception-Based Learning for Fine Motion Planning in Robot Manipulation." Doctoral thesis, Universitat Jaume I, 1997. http://hdl.handle.net/10803/10377.
Full textThe main sources of uncertainty are modeling, sensing, and control. Fine motion problems involve a small-scale space and contact between objects.
Though modern manipulators are very precise and repetitive, complex tasks may be difficult --or even impossible-- to model at the desired degree of exactitude; moreover, in real-world situations, the environment is not known a-priori and visual sensing does not provide enough accuracy.
In order to develop successful strategies, it is necessary to understand what can be perceived, what action can be learnt --associated-- according to the perception, and how can the robot optimize its actions with regard to defined criteria.
The thesis describes a robot programming architecture for learning fine motion tasks.
Learning is an autonomous process of experience repetition, and the target is to achieve the goal in the minimum number of steps. Uncertainty in the location is assumed, and the robot is guided mainly by the sensory information acquired by a force sensor.
The sensor space is analyzed by an unsupervised process which extracts features related with the probability distribution of the input samples. Such features are used to build a discrete state of the task to which an optimal action is associated, according to the past experience. The thesis also includes simulations of different sensory-based tasks to illustrate some aspects of the learning processes.
The learning architecture is implemented on a real robot arm with force sensing capabilities. The task is a peg-in-hole insertion with both cylindrical and non-cylindrical workpieces.
Martínez, Martínez David. "Learning relational models with human interaction for planning in robotics." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/458884.
Full textLa planificación automática ha probado ser de gran utilidad para resolver problemas en los que un agente tiene que ejecutar acciones para maximizar una función de recompensa. A medida que los planificadores han sido capaces de resolver problemas cada vez más complejos, ha habido un creciente interés por utilizar dichos planificadores para mejorar la eficiencia de tareas robóticas. Sin embargo, los planificadores requieren un modelo del dominio, el cual puede ser creado a mano o aprendido. Aunque aprender modelos automáticamente puede ser costoso, recientemente han aparecido métodos que permiten la interacción persona-máquina y generalizan el conocimiento para reducir la cantidad de experiencias requeridas para aprender. En esta tesis proponemos nuevos métodos que permiten a un agente sin conocimiento previo de la tarea resolver problemas de forma más eficiente mediante el uso de planificación automática. Comenzaremos mostrando cómo aplicar planificación probabilística para mejorar la eficiencia de robots en tareas de manipulación (como limpiar suciedad o recoger una mesa). Los planificadores son capaces de obtener las secuencias de acciones que producen los mejores resultados a largo plazo, superando a las estrategias reactivas. Por otro lado, presentamos nuevos algoritmos de aprendizaje por refuerzo en los que el agente puede solicitar demostraciones a un profesor. Dichas demostraciones permiten al agente acelerar el aprendizaje o aprender nuevas acciones. En particular, proponemos un algoritmo que permite al usuario establecer la mínima suma de recompensas que es aceptable obtener, donde una recompensa más alta implica que se requerirán más demostraciones. Además, el modelo aprendido será analizado para identificar qué partes están incompletas o son problemáticas. Esta información permitirá al agente evitar errores irrecuperables y también guiar al profesor cuando se solicite una demostración. Finalmente, se ha introducido un nuevo método de aprendizaje para modelos de dominios que, además de obtener modelos relacionales de acciones probabilísticas, también puede aprender efectos exógenos. Mostraremos cómo integrar este método en algoritmos de aprendizaje por refuerzo para poder abordar una mayor cantidad de problemas. En resumen, hemos mejorado el uso de técnicas de aprendizaje y planificación para resolver tareas desconocidas a priori. Estas mejoras permiten a un agente aprovechar mejor los planificadores, aprender más rápido, elegir entre reducir el número de acciones ejecutadas o el número de demostraciones solicitadas, evitar errores irrecuperables, interactuar con un profesor para resolver problemas complejos, y adaptarse al comportamiento de otros agentes aprendiendo sus dinámicas. Todos los métodos propuestos han sido comparados con trabajos del estado del arte, y han sido evaluados en distintos escenarios, incluyendo tareas robóticas.
Yik, Tak Fai Computer Science & Engineering Faculty of Engineering UNSW. "Locomotion of bipedal humanoid robots: planning and learning to walk." Awarded by:University of New South Wales. Computer Science & Engineering, 2007. http://handle.unsw.edu.au/1959.4/40446.
Full textLiemhetcharat, Somchaya. "Representation, Planning, and Learning of Dynamic Ad Hoc Robot Teams." Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/304.
Full textÜre, Nazim Kemal. "Multiagent planning and learning using random decompositions and adaptive representations." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97359.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 129-139).
Multiagent planning problems are ubiquitous in engineering. Applications range from control of robotic missions and manufacturing processes to resource allocation and traffic monitoring problems. A common theme in all of these missions is the existence of stochastic dynamics that stem from the uncertainty in the environment and agent dynamics. The combinatorial nature of the problem and the exponential dependency of the planning space on the number of agents render many of the existing algorithms practically infeasible for real-life applications. A standard approach to improve the scalability of planning algorithms is to take advantage of the domain knowledge, such as decomposing the problem to a group of sub-problems and exploiting decouplings among the agents, but such domain knowledge is not always available. In addition, many existing multiagent planning algorithms rely on the existence of a model, but in many real-life situations models are often approximated, wrong, or just unavailable. The convergence rate of the multiagent learning process can be improved by sharing the learned models across the agents. However, many realistic applications involve heterogeneous teams, where the agents have dissimilar transition dynamics. Developing multiagent learning algorithms for such heterogeneous teams is significantly harder, since the learned models cannot be naively transferred across agents. This thesis develops scalable multiagent planning and learning algorithms for heterogeneous teams by using embedded optimization processes to automate the search for decouplings among agents, thus decreasing the dependency on the domain knowledge. Motivated by the low computational complexity and theoretical guarantees of the Bayesian Optimization Algorithm (BOA) as a meta-optimization method for tuning machine learning applications, the developed multiagent planning algorithm, Randomized Coordination Discovery (RCD) extends the BOA to automate the search for finding coordination structures among the agents in Multiagent Markov Decision Processes. The resulting planning algorithm infers how the problem can be decomposed among agents based on the sampled trajectories from the model, without needing any prior domain knowledge or heuristics. In addition, the algorithm is guaranteed to converge under mild assumptions and outperforms the compared multiagent planning methods across different large-scale multiagent planning problems. The multiagent learning algorithms developed in this thesis use adaptive representations and collaborative filtering methods to develop strategies for learning heterogeneous models. The goal of the multiagent learning algorithm is to accelerate the learning process by discovering the similar parts of agents transition models and enable the sharing of these learned models across the team. The proposed multiagent learning algorithms Decentralized Incremental Feature Dependency Discovery (Dec-iFDD) and its extension Collaborative Filtering Dec-iFDD (CF-Dec-iFDD) provide improved scalability and rapid learning for heterogeneous teams without having to rely on domain knowledge and extensive parameter tuning. Each agent learns a linear function approximation of the actual model, and the number of features is increased incrementally to automatically adjust the model complexity based on the observed data. These features are compact representations of the key characteristics in the environment dynamics, so it is these features that are shared between agents, rather than the models themselves. The agents obtain feedback from other agents on the model error reduction associated with the communicated features. Although this process increases the communication cost of exchanging features, it greatly improves the quality/utility of what is being exchanged, leading to improved convergence rate. Finally, the developed planning and learning algorithms are implemented on a variety of hardware flight missions, such as persistent multi-UAV health monitoring and forest fire management scenarios. The experimental results demonstrate the applicability of the proposed algorithms on complex multiagent planning and learning problems.
by Nazim Kemal Ure.
Ph. D.
Robertson, Laura, Eric Dunlap, Ryan A. Nivens, and Kelli Barnett. "Sailing into Integration: Planning and Implementing Integrated 5E Learning Cycles." Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/etsu-works/5924.
Full textNowak, Hans II(Hans Antoon). "Strategic capacity planning using data science, optimization, and machine learning." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126914.
Full textThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, May, 2020
Cataloged from the official PDF of thesis.
Includes bibliographical references (pages 101-104).
Raytheon's Circuit Card Assembly (CCA) factory in Andover, MA is Raytheon's largest factory and the largest Department of Defense (DOD) CCA manufacturer in the world. With over 500 operations, it manufactures over 7000 unique parts with a high degree of complexity and varying levels of demand. Recently, the factory has seen an increase in demand, making the ability to continuously analyze factory capacity and strategically plan for future operations much needed. This study seeks to develop a sustainable strategic capacity optimization model and capacity visualization tool that integrates demand data with historical manufacturing data. Through automated data mining algorithms of factory data sources, capacity utilization and overall equipment effectiveness (OEE) for factory operations are evaluated. Machine learning methods are then assessed to gain an accurate estimate of cycle time (CT) throughout the factory. Finally, a mixed-integer nonlinear program (MINLP) integrates the capacity utilization framework and machine learning predictions to compute the optimal strategic capacity planning decisions. Capacity utilization and OEE models are shown to be able to be generated through automated data mining algorithms. Machine learning models are shown to have a mean average error (MAE) of 1.55 on predictions for new data, which is 76.3% lower than the current CT prediction error. Finally, the MINLP is solved to optimality within a tolerance of 1.00e-04 and generates resource and production decisions that can be acted upon.
by Hans Nowak II.
M.B.A.
S.M.
M.B.A. Massachusetts Institute of Technology, Sloan School of Management
S.M. Massachusetts Institute of Technology, Department of Mechanical Engineering
Fowler, Michael C. "Intelligent Knowledge Distribution for Multi-Agent Communication, Planning, and Learning." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/97996.
Full textDoctor of Philosophy
This dissertation addresses a fundamental question behind when multiple autonomous sys- tems, like drone swarms, in the field need to coordinate and share data: what information should be sent to whom and when, with the limited resources available to each agent? Intelligent Knowledge Distribution is a framework that answers these questions. Communication requirements for multi-agent systems can be rather high when an accurate picture of the environment and the state of other agents must be maintained. To reduce the impact of multi-agent coordination on networked systems, e.g., power and bandwidth, this dissertation introduces new concepts to enable Intelligent Knowledge Distribution (IKD), including Constrained-action POMDPs and concurrent decentralized (CoDec) POMDPs for an agnostic plug-and-play capability for fully autonomous systems. The IKD model was able to demonstrate its validity as a "plug-and-play" library that manages communications between agents that ensures the right information is being transmitted at the right time to the right agent to ensure mission success.
Voshell, Martin G. "Planning Support for Running Large Scale Exercises as Learning Laboratories." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1238162734.
Full textFarnan, Emma. "Community planning in Northern Ireland : learning from Scotland and Wales." Thesis, Ulster University, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686635.
Full textBailey, Shelley Henthorne Dunn Caroline. "Parent involvement in transition planning for students with learning disabilities." Auburn, Ala., 2009. http://hdl.handle.net/10415/1985.
Full textNICOLA, GIORGIO. "Human-Aware Task e Motion Planning attraverso Deep Reinforcement Learning." Doctoral thesis, Università degli studi di Padova, 2022. http://hdl.handle.net/11577/3445088.
Full textThis thesis investigates the application of Deep Reinforcement Learning to develop humanaware task and motion planners. Human-robot applications introduce a set of criticalities to the problem of Task and Motion Planning that is already complex. Indeed, human-robot scenarios are non-determinism and highly dynamic; thus, it is necessary to compute plans quickly and adapt to an ever-changing environment. Therefore, this thesis studied the planning problem as a sequential decision-making problem modeled as Markov Decision Process solved via Reinforcement Learning. Markov Decision Processes are a possible answer to the problem of non-deterministic and dynamic environments. Indeed, on the one hand, are stochastic models, and on the other hand, rather than computing a complete plan at the beginning of each activity, step by step, the optimal action to perform is computed based on the current status of the environment. In particular, it is firstly investigated the task planning and the motion planning problems separately; subsequently, the combined problem is studied. The proposed solutions proved to be able to compute quick and effective task plans, motion plans, task and motion plans in dynamic e non-deterministic applications like humanrobot cooperation. In all the applications, it was noticed that the agent was able to identify hazardous situations and minimize the risk, for example, in task planning by choosing the task with lower failure probability or in motion planning by avoiding region of space with a high probability of collision. Furthermore, it was possible to ensure safety by combining human-aware Task and Motion Planning with current industry safety standards.
Wight, John Bradford. "The territory/function dialectic : a social learning paradigm of regional development planning." Thesis, University of Aberdeen, 1985. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU361633.
Full textSills, Elizabeth Schave. "Classroom negotiations : implementing new strategies for learning." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/70290.
Full textMcKinney, Shaune LaSheane. "Implementing Assistive Technology through Program Planning." ScholarWorks, 2015. https://scholarworks.waldenu.edu/dissertations/1448.
Full textMorales, Aguirre Marco Antonio. "Metrics for sampling-based motion planning." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2462.
Full text