Journal articles on the topic 'Learning artifact'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Learning artifact.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fahrenbach, Florian, Kate Revoredo, and Flavia Maria Santoro. "Valuing prior learning." European Journal of Training and Development 44, no. 2/3 (December 12, 2019): 209–35. http://dx.doi.org/10.1108/ejtd-05-2019-0070.
Full textKromrey, M. L., D. Tamada, H. Johno, S. Funayama, N. Nagata, S. Ichikawa, J. P. Kühn, H. Onishi, and U. Motosugi. "Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning–based filter using convolutional neural network." European Radiology 30, no. 11 (June 17, 2020): 5923–32. http://dx.doi.org/10.1007/s00330-020-07006-1.
Full textHasasneh, Ahmad, Nikolas Kampel, Praveen Sripad, N. Jon Shah, and Jürgen Dammers. "Deep Learning Approach for Automatic Classification of Ocular and Cardiac Artifacts in MEG Data." Journal of Engineering 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/1350692.
Full textDeepika, J., T. Senthil, C. Rajan, and A. Surendar. "Machine learning algorithms: a background artifact." International Journal of Engineering & Technology 7, no. 1.1 (December 21, 2017): 143. http://dx.doi.org/10.14419/ijet.v7i1.1.9214.
Full textGraffieti, Gabriele, and Davide Maltoni. "Artifact-Free Single Image Defogging." Atmosphere 12, no. 5 (April 29, 2021): 577. http://dx.doi.org/10.3390/atmos12050577.
Full textLee, Seung-Bo, Hakseung Kim, Young-Tak Kim, Frederick A. Zeiler, Peter Smielewski, Marek Czosnyka, and Dong-Joo Kim. "Artifact removal from neurophysiological signals: impact on intracranial and arterial pressure monitoring in traumatic brain injury." Journal of Neurosurgery 132, no. 6 (June 2020): 1952–60. http://dx.doi.org/10.3171/2019.2.jns182260.
Full textWu, Chao, Xiaonan Zhao, Mark Welsh, Kellianne Costello, Kajia Cao, Ahmad Abou Tayoun, Marilyn Li, and Mahdi Sarmady. "Using Machine Learning to Identify True Somatic Variants from Next-Generation Sequencing." Clinical Chemistry 66, no. 1 (December 30, 2019): 239–46. http://dx.doi.org/10.1373/clinchem.2019.308213.
Full textWeiss, Dennis M. "Learning to be human with sociable robots." Paladyn, Journal of Behavioral Robotics 11, no. 1 (February 18, 2020): 19–30. http://dx.doi.org/10.1515/pjbr-2020-0002.
Full textBedi, Pradeep, S. B. Goyal, Dileep Kumar Yadav, Sunil Kumar, and Monika Sharma. "Hybrid Learning Model for Metal Artifact Reduction." Journal of Physics: Conference Series 1714 (January 2021): 012021. http://dx.doi.org/10.1088/1742-6596/1714/1/012021.
Full textParmaxi, Antigoni, and Panayiotis Zaphiris. "Emerging Technologies for Artifact Construction in Learning." Computers in Human Behavior 99 (October 2019): 366–67. http://dx.doi.org/10.1016/j.chb.2019.05.034.
Full textShvarts, Anna, Rosa Alberto, Arthur Bakker, Michiel Doorman, and Paul Drijvers. "Embodied instrumentation in learning mathematics as the genesis of a body-artifact functional system." Educational Studies in Mathematics 107, no. 3 (June 3, 2021): 447–69. http://dx.doi.org/10.1007/s10649-021-10053-0.
Full textJiang, Hao, John M. Carroll, and Roderick Lee. "Extending the task-artifact framework with organizational learning." Knowledge and Process Management 17, no. 1 (January 2010): 22–35. http://dx.doi.org/10.1002/kpm.338.
Full textWalker, Caren M., Alexandra Rett, and Elizabeth Bonawitz. "Design Drives Discovery in Causal Learning." Psychological Science 31, no. 2 (January 21, 2020): 129–38. http://dx.doi.org/10.1177/0956797619898134.
Full textIslind, Anna Sigridur, and Ulrika Lundh Snis. "Learning in home care: a digital artifact as a designated boundary object-in-use." Journal of Workplace Learning 29, no. 7/8 (September 11, 2017): 577–87. http://dx.doi.org/10.1108/jwl-04-2016-0027.
Full textFeng, Yulong, Wei Xiao, Teng Wu, Jianwei Zhang, Jing Xiang, and Hong Guo. "An Automatic Identification Method for the Blink Artifacts in the Magnetoencephalography with Machine Learning." Applied Sciences 11, no. 5 (March 9, 2021): 2415. http://dx.doi.org/10.3390/app11052415.
Full textTANAKA, Shinnosuke, and Etsuko T. HARADA. "The effect of older adults' timidity to use new artifacts on learning how to use artifact." Proceedings of the Annual Convention of the Japanese Psychological Association 77 (September 19, 2013): 3AM—086–3AM—086. http://dx.doi.org/10.4992/pacjpa.77.0_3am-086.
Full textGhani, Muhammad Usman, and W. Clem Karl. "Deep Learning Based Sinogram Correction for Metal Artifact Reduction." Electronic Imaging 2018, no. 15 (January 28, 2018): 472–1. http://dx.doi.org/10.2352/issn.2470-1173.2018.15.coimg-472.
Full textHan, Yoseob, Junyoung Kim, and Jong Chul Ye. "Differentiated Backprojection Domain Deep Learning for Conebeam Artifact Removal." IEEE Transactions on Medical Imaging 39, no. 11 (November 2020): 3571–82. http://dx.doi.org/10.1109/tmi.2020.3000341.
Full textMachado, Juliano, Amauri Machado, and Alexandre Balbinot. "Deep learning for surface electromyography artifact contamination type detection." Biomedical Signal Processing and Control 68 (July 2021): 102752. http://dx.doi.org/10.1016/j.bspc.2021.102752.
Full textVu, Tri, Mucong Li, Hannah Humayun, Yuan Zhou, and Junjie Yao. "A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer." Experimental Biology and Medicine 245, no. 7 (March 25, 2020): 597–605. http://dx.doi.org/10.1177/1535370220914285.
Full textHasibuan, Henny Triyana, Danardana Murwani, Sri Umi Mientarti Widjaja, and Mit Witjaksono. "Accounting Training Module Development to Boost Agriculture Financial Literacy on Palm Farmers." International Education Studies 10, no. 9 (August 27, 2017): 78. http://dx.doi.org/10.5539/ies.v10n9p78.
Full textWolfer, David P., Marijana Stagljar-Bozicevic, Mick L. Errington, and Hans-Peter Lipp. "Spatial Memory and Learning in Transgenic Mice: Fact or Artifact?" Physiology 13, no. 3 (June 1998): 118–23. http://dx.doi.org/10.1152/physiologyonline.1998.13.3.118.
Full textArtiemjew, Piotr, Agnieszka Chojka, and Jacek Rapiński. "Deep Learning for RFI Artifact Recognition in Sentinel-1 Data." Remote Sensing 13, no. 1 (December 22, 2020): 7. http://dx.doi.org/10.3390/rs13010007.
Full textLi, Xinyang, Cuntai Guan, Haihong Zhang, and Kai Keng Ang. "Discriminative Ocular Artifact Correction for Feature Learning in EEG Analysis." IEEE Transactions on Biomedical Engineering 64, no. 8 (August 2017): 1906–13. http://dx.doi.org/10.1109/tbme.2016.2628958.
Full textMcIntosh, James R., Jiaang Yao, Linbi Hong, Josef Faller, and Paul Sajda. "Ballistocardiogram Artifact Reduction in Simultaneous EEG-fMRI Using Deep Learning." IEEE Transactions on Biomedical Engineering 68, no. 1 (January 2021): 78–89. http://dx.doi.org/10.1109/tbme.2020.3004548.
Full textChen, Yang, Luyao Shi, Qianjing Feng, Jian Yang, Huazhong Shu, Limin Luo, Jean-Louis Coatrieux, and Wufan Chen. "Artifact Suppressed Dictionary Learning for Low-Dose CT Image Processing." IEEE Transactions on Medical Imaging 33, no. 12 (December 2014): 2271–92. http://dx.doi.org/10.1109/tmi.2014.2336860.
Full textHammerl, Marianne, and Hans-Joachim Grabitz. "Affective-Evaluative Learning in Humans: A Form of Associative Learning or Only an Artifact?" Learning and Motivation 31, no. 4 (November 2000): 345–63. http://dx.doi.org/10.1006/lmot.2000.1059.
Full textRyu, Kyeong Hwa, Hye Jin Baek, Sung-Min Gho, Kanghyun Ryu, Dong-Hyun Kim, Sung Eun Park, Ji Young Ha, Soo Buem Cho, and Joon Sung Lee. "Validation of Deep Learning-Based Artifact Correction on Synthetic FLAIR Images in a Different Scanning Environment." Journal of Clinical Medicine 9, no. 2 (January 29, 2020): 364. http://dx.doi.org/10.3390/jcm9020364.
Full textSjödén, Per-Olow, and Trevor Archer. "Exteroceptive cues in taste-aversion learning, no artifact: Reply to Holder." Animal Learning & Behavior 16, no. 2 (June 1988): 235–39. http://dx.doi.org/10.3758/bf03209071.
Full textLossau (née Elss), T., H. Nickisch, T. Wissel, M. Morlock, and M. Grass. "Learning metal artifact reduction in cardiac CT images with moving pacemakers." Medical Image Analysis 61 (April 2020): 101655. http://dx.doi.org/10.1016/j.media.2020.101655.
Full textAllman, Derek, Austin Reiter, and Muyinatu A. Lediju Bell. "Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning." IEEE Transactions on Medical Imaging 37, no. 6 (June 2018): 1464–77. http://dx.doi.org/10.1109/tmi.2018.2829662.
Full textWong, Lung-Hsiang, Ching Sing Chai, Guat Poh Aw, and Ronnel B. King. "Enculturating seamless language learning through artifact creation and social interaction process." Interactive Learning Environments 23, no. 2 (March 4, 2015): 130–57. http://dx.doi.org/10.1080/10494820.2015.1016534.
Full textYoo, Tae Keun, Joon Yul Choi, and Hong Kyu Kim. "CycleGAN-based deep learning technique for artifact reduction in fundus photography." Graefe's Archive for Clinical and Experimental Ophthalmology 258, no. 8 (May 2, 2020): 1631–37. http://dx.doi.org/10.1007/s00417-020-04709-5.
Full textAbolghasemi, Vahid, and Saideh Ferdowsi. "EEG–fMRI: Dictionary learning for removal of ballistocardiogram artifact from EEG." Biomedical Signal Processing and Control 18 (April 2015): 186–94. http://dx.doi.org/10.1016/j.bspc.2015.01.001.
Full textGhani, Muhammad Usman, and W. Clem Karl. "Fast Enhanced CT Metal Artifact Reduction Using Data Domain Deep Learning." IEEE Transactions on Computational Imaging 6 (2020): 181–93. http://dx.doi.org/10.1109/tci.2019.2937221.
Full textFlemin, David. "Learning to Link Artifact and Value: The Arguments of Student Designers." Language and Learning Across the Disciplines 2, no. 1 (1997): 58–84. http://dx.doi.org/10.37514/lld-j.1997.2.1.05.
Full textTsukamoto, Hikari, and Isao Muro. "Development of Motion Artifact Generator for Deep Learning in Brain MRI." Japanese Journal of Radiological Technology 77, no. 5 (2021): 463–70. http://dx.doi.org/10.6009/jjrt.2021_jsrt_77.5.463.
Full textAbdi, Mohamad, Xue Feng, Changyu Sun, Kenneth C. Bilchick, Craig H. Meyer, and Frederick H. Epstein. "Suppression of artifact‐generating echoes in cine DENSE using deep learning." Magnetic Resonance in Medicine 86, no. 4 (May 22, 2021): 2095–104. http://dx.doi.org/10.1002/mrm.28832.
Full textKhan, Shujaat, Jaeyoung Huh, and Jong Chul Ye. "Variational Formulation of Unsupervised Deep Learning for Ultrasound Image Artifact Removal." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 68, no. 6 (June 2021): 2086–100. http://dx.doi.org/10.1109/tuffc.2021.3056197.
Full textMottron, Laurent, and Danilo Bzdok. "Autism spectrum heterogeneity: fact or artifact?" Molecular Psychiatry 25, no. 12 (April 30, 2020): 3178–85. http://dx.doi.org/10.1038/s41380-020-0748-y.
Full textSidyawati, Lisa, Joni Agung Sudarmanto, Abdul Rahman Prasetyo, and Encik Muhammad Hawari Bin Berahim. "NUSANTARA MASK HERITAGE MALAYSIA: INFOGRAPHIC APPLICATION DEVELOPMENT OF MASKS OF MALAYSIAN INDIGENOUS TRIBES AT THE MUSEUM OF ASIAN ART MALAYSIA BASED ON AUGMENTED REALITY AS MEDIA OF TOURISM EDUCATION." Jurnal IPTA 7, no. 2 (December 30, 2019): 163. http://dx.doi.org/10.24843/ipta.2019.v07.i02.p07.
Full textKanoga, Suguru, Atsunori Kanemura, and Hideki Asoh. "Multi-scale dictionary learning for ocular artifact reduction from single-channel electroencephalograms." Neurocomputing 347 (June 2019): 240–50. http://dx.doi.org/10.1016/j.neucom.2019.02.060.
Full textMaloney, Tim Ryan. "Towards Quantifying Teaching and Learning in Prehistory Using Stone Artifact Reduction Sequences." Lithic Technology 44, no. 1 (January 2, 2019): 36–51. http://dx.doi.org/10.1080/01977261.2018.1564855.
Full textWang, Yongbo, Yuting Liao, Yuanke Zhang, Ji He, Sui Li, Zhaoying Bian, Hao Zhang, et al. "Iterative quality enhancement via residual-artifact learning networks for low-dose CT." Physics in Medicine & Biology 63, no. 21 (October 23, 2018): 215004. http://dx.doi.org/10.1088/1361-6560/aae511.
Full textHsu, Hsiao-Ping, Zou Wenting, and Joan E. Hughes. "Developing Elementary Students’ Digital Literacy Through Augmented Reality Creation: Insights From a Longitudinal Analysis of Questionnaires, Interviews, and Projects." Journal of Educational Computing Research 57, no. 6 (August 29, 2018): 1400–1435. http://dx.doi.org/10.1177/0735633118794515.
Full textTanwar, Gatha, Ritu Chauhan, and Eiad Yafi. "ARTYCUL: A Privacy-Preserving ML-Driven Framework to Determine the Popularity of a Cultural Exhibit on Display." Sensors 21, no. 4 (February 22, 2021): 1527. http://dx.doi.org/10.3390/s21041527.
Full textMcAllister, Dianna, Mauro Mendez, Ariana Bermúdez, and Pascal Tyrrell. "Visualization of Layers Within a Convolutional Neural Network Using Gradient Activation Maps." Journal of Undergraduate Life Sciences 14, no. 1 (December 31, 2020): 6. http://dx.doi.org/10.33137/juls.v14i1.35833.
Full textSari, Winda Purnama, and Destri Ratna Ma'rifah. "PENGEMBANGAN LKPD MOBILE LEARNING BERBASIS ANDROID DENGAN PBL UNTUK MENINGKATKAN CRITICAL THINKING MATERI LINGKUNGAN." Jurnal Pendidikan Biologi 11, no. 2 (April 15, 2020): 49. http://dx.doi.org/10.17977/um052v11i2p49-58.
Full textEryilmaz, Evren, Terry Ryan, Jakko Pol, Sumonta Kasemvilas, and Justin Mary. "Fostering Quality and Flow of Online Learning Conversations by Artifact-Centered Discourse Systems." Journal of the Association for Information Systems 14, no. 1 (January 2013): 22–48. http://dx.doi.org/10.17705/1jais.00321.
Full textRadüntz, Thea, Jon Scouten, Olaf Hochmuth, and Beate Meffert. "Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features." Journal of Neural Engineering 14, no. 4 (May 12, 2017): 046004. http://dx.doi.org/10.1088/1741-2552/aa69d1.
Full text