To see the other types of publications on this topic, follow the link: Leachate.

Dissertations / Theses on the topic 'Leachate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Leachate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Gulati, Loveenia. "Characteristics and Treatment of Landfill Leachate and Optimization of Leachate Oxidation with Fenton's Reagent." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/76771.

Full text
Abstract:
The purpose of this study was to characterize the leachate from a landfill in Pennsylvania that had been pretreated by activated sludge and propose the most efficient treatment for this effluent. These samples had been pretreated in a sequencing batch reactor that also was operated to remove nitrogen by nitrification/denitrification. The SBR samples were found to have low BOD, high COD, high TOC and a very low BOD/COD ratio. These SBR decant samples have poor UV transmittance and hence quench UV light. Five treatment methods were evaluated, coagulation, ultrafiltration, combined coagulation/ultrafiltration, combined ultrafiltration/oxidation and combined filtration/fentons. These processes were tested for their ability to remove BOD and TOC and also to evaluate the improvement in UV transmittance. It was found that coagulation; Ultrafiltration and Ultrafiltration combined with coagulation do not work in improving the transmittance properties though there is a significant BOD and TOC removal with these processes. Ultrafiltration combined with oxidation was found to work the best in terms of TOC removal. In this study, four oxidants, KMnO?, H?O?, NaOCl and Fenton's reagent were used. It was observed that Fenton's reagent was capable of removing 90% TOC at a dose of 1g/L each of iron salt and hydrogen peroxide at a pH of 4.5. Since Fentons reagent was found to be the most effective method, hence, efforts were made to optimize the oxidation process with Fenton's. The two parameters which were studied were the initial pH and the chemical dosage. The initial pH was varied from a value of 2.5 to 6.5. The range of iron salt and peroxide dose used was from 0.05 to 0.1 g/L. Additional studies were conducted using samples filtered through a 0.45 um filter and oxidized with Fenton's reagent. The Fenton's process for oxidation of filtrates from the 0.45?m filter was also optimized with respect to pH and chemical dosage to determine the most economical operating conditions. The maximum transmittance of 57% was obtained for an iron dose of 0.075 g/L and a peroxide dose of 0.075 g/L at a pH of 4.5. This is in comparison to the transmittance of unoxidized 1K ultrafiltrate which was found to be 21.5%. There was a significant difference in the performance of 1K and 0.45um filtrates in terms of TOC removal and percentage transmittance. The oxidation process for improving the UV transmittance of leachate can therefore be economically optimized depending upon the desired efficiency by varying the operational parameters.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
2

Pouliot, Julie-Marie. "Biological treatment of landfill leachate." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0005/MQ42192.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nair, Arjun. "Effect of Leachate Blending on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24404.

Full text
Abstract:
Anaerobic digestion of the Organic Fraction of Municipal Solid Waste (OFMSW) generates a mixture of methane (CH4), carbon dioxide (CO2) and water (H2O). Beyond the field capacity the water generated is collected and recirculated as leachate in Bioreactor Landfills (BLs.) Leachate recirculation has a profound advantage on biodegradation of the Organic Fraction of Municipal Solid Waste (OFMSW) in the landfills. Mature leachate from older sections of landfills (>20 years) and young leachate were blended prior to recirculation in the ratios 3/3 mature, 3/3 young, 1/3 mature-2/3 young and 2/3 old-1/3 young and their effect on biodegradation and biogas production monitored. In addition to analysis of the effect of blending old and new leachates, the study also analyses the effect of an open vs. a closed recirculation loop and the effect of organic loading rates of OFMSW in landfills. Data collected from initial batch tests supplement column bioreactors simulating bioreactor landfills with real world OFMSW from operational landfill facilities in Ontario, Canada. The results are conclusive that the biogas generation can be improved by up to 92% by blending the leachate in an open loop recirculation system as compared to a conventional closed loop system employed in landfills today.
APA, Harvard, Vancouver, ISO, and other styles
4

Zalesny, Jill Annette. "Phytoremediation of landfill leachate using Populus." [Ames, Iowa : Iowa State University], 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cheung, Kwai Chung. "Purification of landfill leachate by microalgae." HKBU Institutional Repository, 1991. https://repository.hkbu.edu.hk/etd_ra/7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Chi. "Struvite Precipitation of Ammonia from Landfill Leachate." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34492.

Full text
Abstract:
The application of struvite (magnesium ammonium phosphate,!MgNH&PO& ∙ 6H+O) precipitation and its recycling use for the purpose of ammonia removal from both synthetic solutions and landfill leachate were investigated in this study. The results demonstrated that chemical precipitation by struvite formation is efficient for ammonia removal from aqueous solutions. In addition, by recycling the thermal residue of struvite, continuously removing ammonia can technically be achieved. In the struvite precipitation, ammonia removal significantly depended on the pH and chemical molar ratios of NH& ,:!Mg+,:!PO& ./. For synthetic solution (TAN=1,000 mg/L), remarkable TAN removal efficiency of over 98% has been reported when the molar ratio of NH& ,:!Mg+,:!PO& ./ equals 1.0:1.2:1.2, 1.0:1.3:1.3, 1.0:1.3:1.4 and 1.0:1.5:1.5 at optimum pH 9. The optimum combinations of reagents applied in landfill leachate (TAN=1,878 mg/L) were!NH& ,:!Mg+,:!PO& ./ =1.0:1.3:1.3, 1.0:1.4:1.3, 1.0:1.5:1.4 and 1.0:1.5:1.5 at optimum pH 9.5, all of which displayed excellent TAN removal efficiencies of over 99%. Response surface method (RSM) helped to analyze the data and optimize the results. The struvite pyrolysate provided best performance of removing ammonia in both simulated wastewater and landfill leachate at a dosage of 60 g/L, when struvite was previously heated at 105 􀀁 by oven for 2.5 h. In the recycling phase, the struvite pyrolysate resulting from NaOH-mediated pyrolysis was more effective at continuously treating ammonia synthetic solution than was direct heating, with an initial mode of 87.4% at the beginning to 75.1% in the fifth round and direct heating of struvite from 80.9% in the first cycle and 60.6% in the final cycle. The struvite pyrolysate formed by NaOH-mediated pyrolysis performed with greater ability to continuously eliminate ammonia from landfill leachate (97.2% removal at the beginning and 72.3% in the fifth round), than did directly heated struvite (98.4% in the first cycle and 81.3% in the final cycle). Additionally, microwave irradiation could also dissociate struvite, which subsequently demonstrated moderate TAN removal in recycling phases.
APA, Harvard, Vancouver, ISO, and other styles
7

Brachman, Richard W. I. "Mechanical performance of landfill leachate collection pipes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0006/NQ42503.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shimoga, Ramesh. "Structural behavior of jointed leachate collection pipes." Ohio : Ohio University, 1999. http://www.ohiolink.edu/etd/view.cgi?ohiou1175621396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abdel, Warith Mostafa. "Migration of leachate solutin through clay soil." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75428.

Full text
Abstract:
The problem of domestic solid wastes buried in landfill sites is viewed from the aspect of leachate contamination and migration in the substrate. Generally, this occurs through the penetration of the contaminant into the liner material. This study assesses the efficiency of natural clay barriers as an expedient economic lining material.
Various chemical constituents of the landfill leachate of an actual waste containment site at Lachenaie (35 km east of Montreal) were determined from samples collected from specially designed basins.
In companion laboratory tests, these leachate samples were permeated through laboratory columns that contained the natural clay compacted at the optimum water content. The columns were constructed so as to permit simulation of slow, saturated, anaerobic flow of leachate through the clay lining surrounding the landfill and leachate basins. Leachates were permeated through the soil columns for periods of four to five months, during which effluents were collected periodically and analyzed for different chemical species and physical parameters. These chemical analyses measured changes in the concentration of: (a) cations (Na, K, Ca, and Mg), (b) anions (Cl, HCO$ sb3$, and CO$ sb3$), (c) total organic carbon (TOC), and (d) heavy metals (Fe, Zn, Pb, and Cu). The physical parameters measured included: (a) pH, and (b) specific conductivity.
Subsequent to the leaching tests, the column contents were cut into six sections and analyzed to determine the distribution profiles of the adsorbed and retained contaminants at various time durations.
Predictions, using a dispersion-convection model for concentration profile development for either adsorbed or retained contaminants, were compared with the experimentally determined profiles (both in leaching columns and landfill laboratory model).
Another set of experiments was also conducted to evaluate the effect of some organic fluids on the geotechnical properties of different clay soils (natural clay and two reference clay soils: illite and kaolinite).
The results from this study have demonstrated that the natural clay soil can be used to adequately contain the different contaminant species usually present in the leachate solutions. Furthermore, the data suggested that under favourable soil conditions, landfill leachates containing low levels of trace metals will not pose a substantial contamination threat to the subsurface environment, provided that a proper thickness of barrier is used. (Abstract shortened with permission of author.)
APA, Harvard, Vancouver, ISO, and other styles
10

Nie, Jing. "Landfill Leachate Treatment by Fenton's Reagent Oxidation." Thesis, University of Louisiana at Lafayette, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1585908.

Full text
Abstract:

Fenton's Reagent Oxidation can significantly enhance the COD removal efficiency of landfill leachate. The results presented in this thesis show that the maximum amount of COD that could be removed by Fenton's Reagent Oxidation was about 80% of the initial value. Such a maximum removal was achieved using reagent dosage of 300 mg/L of H2O2, 55.84 mg/L of Fe 2+, and a pH of 3 at 25°C.

A mechanistic model was developed based on the kinetic reactions. A coefficient α, representing the proportional constant between organic matter and COD was firstly introduced to this model. This model fit the data well. The modeling coefficients of α, [·OH] and k7 are 0.013mol mg-1, 1.65×10-9 M and 1.55×10-9 M-1 s-1, respectively. Hydroxyl radical concentration was calculated and the results confirm the pseudo steady state assumption. Response surface design and analysis results predicted that COD remaining can achieve the lowest value of 48 mg/L with the treatment conditions of a reaction time of 3.8 hours, a pH of 2.3, and a mass ratio of H2 O2 to Fe2+ of 38 at 60°C.

APA, Harvard, Vancouver, ISO, and other styles
11

Ochieng', Otieno Frederick A. "Impact of recirculation on landfill leachate quality." Thesis, University of Newcastle Upon Tyne, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Freewood, Robert John. "Landfill leachate attenuation characteristics of colliery spoil." Thesis, University of Sheffield, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Duarte, Inês Alexandra Barros Serra. "The main leachate emissions of uncontrolled landfills." Master's thesis, Faculdade de Ciências e Tecnologia, 2014. http://hdl.handle.net/10362/12312.

Full text
Abstract:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, Perfil de Engenharia Sanitária
One of the biggest current problems is the proper management of solid waste and other waste streams. All types of waste have a potential pollutant affecting soil resources and water resources, mainly in landfills that may not have adequate protection measures and do not know the waste placed in them. Through the study on laboratory scale it is possible to check which potential emissions to the level of leachates of uncontrolled landfills. The leachates can be compared. It is possible to say which ones have more heavy metals and organic fraction emissions. This study analyzed samples of leachate from two landfill waste in North-East Italy, near Verona, two old uncontrolled landfills. The leachate samples come from the simulation of biological reactors, operated in aerobic and anaerobic condition. The leachates were characterized in terms of pH, heavy metals such as Cd, Cr, Cu, Fe, Mn, Ni Pb, Zn, As and Hg and organic fraction (TOC, TKN and NO3). The heavy metal and organic fraction concentrations were found low in order of micrograms, and in the organic fraction in order of milligrams, per litre of leachates. In general, the concentrations in the anaerobic bioreactors were higher than in the aerobic bioreactors. The study showed that pH is a very important factor regarding the mobility of the metals in the leachate. The quality of the leachates in study have little potential for water pollution since they exhibit basic pH values (around 8), even if the residues are saturated, that is, the ability of field reached.
APA, Harvard, Vancouver, ISO, and other styles
14

Sousa, João Alexandre Bastos. "" Landfill leachate treatment: a new photobioreactor technology"." Master's thesis, Instituto de Ciências Biomédicas Abel Salazar, 2009. http://hdl.handle.net/10216/25559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Simoes, Ana M. "Natural attenuation of landfill leachate by clays." Thesis, University of Southampton, 2005. https://eprints.soton.ac.uk/79337/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Clabaugh, Matthew McConnell. "Nitrification of Landfill Leachate by Biofilm Columns." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/33547.

Full text
Abstract:
Landfill leachate characteristics vary depending on the operation type of the landfill and the age of the landfill. At landfills operated as bioreactors, where leachate recirculation is practiced, leachate ammonia nitrogen concentrations may accumulate to extremely higher levels than during single pass leaching, thereby requiring treatment before final discharge to a receiving system (Onay, 1998). Usually several physical/chemical wastewater treatment technologies are used to treat the leachate. In most cases the COD and BOD are treated, and then nitrification is performed in a separate sophisticated ex situ system. The additional costs of these systems can be very high. The use of a readily available media for in situ nitrification should be considered a prime objective to avoid extra costs. The possibility of removing ammonia nitrogen from bioreactor landfill leachate using trickling filter biofilm technology was studied in four laboratory scale reactors filled with four different types of packing media. The different packing media were examined to see which media is the most efficient at supporting ammonia removal biofilms. The highest efficiency was achieved by a packing media consisting of pine wood chips. The effects of varied concentration loading, varied hydraulic loading, and nitrification inhibitors were studied. Varied ammonia concentration did not have a huge impact on the ammonia removal rates (77-87%) in the reactor with pine wood media. The ammonia removal rates showed a strong dependence on hydraulic loading rate with the lowest loading rate producing the highest removal rates. Landfill leachate from the Middle Peninsula Landfill in Glens, Virginia was determined not to contain nitrifying inhibitors. Using a wood media filter chip and a low hydraulic loading rate was determined to be the best method to remove ammonia nitrogen from landfill bioreator leachate.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
17

Sousa, João Alexandre Bastos. "" Landfill leachate treatment: a new photobioreactor technology"." Dissertação, Instituto de Ciências Biomédicas Abel Salazar, 2009. http://hdl.handle.net/10216/25559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Akyol, Selin. "Assessment Of Quality And Quantity Of Leachate From The Municipal Solid Waste Landfill Of Bursa." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606535/index.pdf.

Full text
Abstract:
In this study, regularly measured long-term leachate data from Bursa Municipal Solid Waste Landfill (MSWL) were analyzed using conventional statistical, time series and factor analyses to investigate in detail the temporal variability of leachate quality and quantity, trend, randomness, seasonality and the auto- and cross- correlations of leachate pollutants. Evaluating the results of data analyses, leachate management recommendations, including sampling strategies in monitoring programs and treatment alternatives for old and fresh leachates, were developed. Statistically analyzed leachate parameters included BOD, COD, pH, SS, electrical conductivity, total CrO4, Cr6+, Fe, Cu, Zn, Pb, Cd, CN-, Cl, F, total P, NH4-N, total N, SO4, S2-, total alkalinity and leachate flow rate. Results indicated that the majority of pollutant concentrations varied in large ranges. Leachate parameters usually showed non-normal distributions and high variability in the closed T Valley compared to the open Main Valley. The majority of leachate parameters was autocorrelated and had statistically significant correlations amongst themselves. Factor analysis showed that different inter-relationships were present between leachate parameters for closed and open valleys. The sampling frequency and the number of leachate parameters need to be measured were determined to be higher for open landfills than for closed landfills. It was recommended that leachates, having high organic strength, in open landfill be treated using biological and physical/chemical processes. However, after the closure of the landfill, physical/chemical processes were recommended for leachate treatment, as it gradually completes transition from fresh to old leachate.
APA, Harvard, Vancouver, ISO, and other styles
19

Yu, Dong. "Landfill Leachate Treatment Case Study, SRV Atervinning, Sweden." Thesis, KTH, Industriell ekologi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-32772.

Full text
Abstract:
SRV återvinning AB is a joint-stock waste company located in the south of Stockholm. Since the first operation, three landfills have been practiced successively. The landfill generates about 200,000 to 250,000 cubic meters of leachate per year. An on-site leachate treatment plant consists of sequencing batch reactor (SBR) and constructed wetland was build for Landfill III. The research was to find out: - the capacity and efficiency of the existing on-site leachate treatment plant; - to analyse the costs and environmental benefits of different alternatives; and - using the above results, to assess and suggest supplementary methods to treat total landfill leachate concerning the site-specific conditions. This thesis contains a literature review of leachate production and composition as well as leachate treatment technologies. The technologies are described, evaluated or compared. The contents of this thesis divided into 11 chapters. Various calculations and assumptions that have been developed for effective controlling and treating leachate from landfills. Chapter 1 is devoted to basic facts of the leachate problems at SRV återvinning AB. Chapter 2 presented the methodologies that have been set up for solutions and suggestions. Chapter 3 provides a general background of the generation and compositions of waste leachate. A general overview of leachate treatment methods and systems is presented in Chapter 4. Costs of different leachate treatment methods is also exhibited. Chapter 5 provides a detailed current situation review of SRV återvinning AB on landfilling site, leachate quality and quantity and the existing treatment plant. Chapter 6 showed the previous application experience from other treatment plant. The calculation and comparison procedure for the capacity and efficiency of the plant at the landfill is presented in Chapter 7. Different alternatives to solve the leachate problem concerning the site-specification are proposed in Chapter 8. Their applicability, effectiveness are analyzed. Chapter 9 provides detailed discussion of alternatives and calculation procedure. After the conclusion of the thesis, recommendations for the further work are presented. This thesis will provide SRV återvinning AB different alternatives to solve leachate problems. Finally, considering the site-specification, economic perspective and environmental benefits, applying reverse osmosis after SBR as final step; the combination of aerated lagoon, sand filter and soil infiltration are proposed. Furthermore, the control of leachate production is also taken into account. Eventually, recommendations for the further work were presented.
www.ima.kth.se
APA, Harvard, Vancouver, ISO, and other styles
20

Scott, Jennifer (Jennifer E. )., of Western Sydney Hawkesbury University, and Faculty of Science and Technology. "Designing a constructed wetland to treat landfill leachate." THESIS_FST_XXX_Scott_J.xml, 1995. http://handle.uws.edu.au:8081/1959.7/600.

Full text
Abstract:
The aim of this project was to identify a suitable solution to the problem of landfill leachate at the North Katoomba landfill site. Options were affected by a range of constraints including economics, location and the intrusion of ground water into the landfill. The initial goal was to contain and treat the leachate on site, with the eventual target to discharge into the nearest receiving waters. A constructed wetland option was devised and researched, involving identification of the major pollutants contained within the leachate, developing a concept design and estimating the likely removal efficiencies expected. Investigations identified the primary pollution parameters as microbial and nutrients. Metals were found to be low in concentration although the wetland has the capacity to deal with these pollutants should they become part of the pollution plume. A bench scale constructed wetland system was developed to give an indication of the removal efficiencies. The results suggest that a constructed wetland system would be appropriate for treating landfill leachate at the North Katoomba site. It is recommended that a constructed wetland be established in the field to determine the long term treatment prospects and the potential management problems in a practical application.
Master of Science (Hons)
APA, Harvard, Vancouver, ISO, and other styles
21

Nehrenheim, Emma. "Metal retention from leachate using Industrial Waste Products." Licentiate thesis, Västerås : Department of Public Technology, Mälardalen University, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Linderoth, Maria. "Biochemical characterisation of landfill leachate toxicity in fish." Doctoral thesis, Stockholm : Department of Applied Environmental Science (ITM), Stockholm university, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Nandela, V. K. Reddy. "Clogging of drainage material in leachate collection systems." Ohio : Ohio University, 1992. http://www.ohiolink.edu/etd/view.cgi?ohiou1172864667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shoaeioskouei, Saba. "Perfluorinated compounds in landfill leachate from discarded carpets." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42522.

Full text
Abstract:
Perfluorinated compounds (PFCs) are a class of anthropogenic chemicals incorporated over six decades into a wide range of industrial and consumer-use products including surface treatments for carpets and textiles, paper and packaging, non-stick cookware, firefighting foams and insecticides. The extremely strong carbon-fluorine bond, "the strongest in organic chemistry", makes them thermally and chemically stable, and resistant to degradation. Several studies on toxicology of PFCs demonstrate negative health effects of these compounds. Some PFCs were added to the Stockholm convention on Persistent Organic Pollutants (POPs) in 2009, due to their persistence, toxicity, and widespread occurrence in the environment. Stain-resistant carpets comprise a major part of global historical PFC production and use. Landfills are a major source of PFC emissions to the environment as final destinations for discarded consumer articles, including carpets. This thesis explores how various PFCs leach from carpets to landfill leachate, and how factors like temperature, pH and contacting efficiency affect the transfer of PFCs into aqueous media. Experiments were conducted in which a number of carpets manufactured in ~2000 to 2005 were contacted with landfill leachate and distilled water. Transfer of different PFCs into the aqueous phase increased with contacting time, with differences between 1 and 24 h much greater than between 24 and 168 h. A temperature increase from 5 to 35oC resulted in a significant increase in PFC leaching. Increasing the pH from 5 to 8 resulted in an increase followed by a decrease in leaching of most PFCs. The overall leaching rates of PFCAs into distilled water were somewhat greater than into landfill leachate. The majority of PFC exchange between carpets and leachate was more dependent on some factor (e.g. adsorption or desorption) rather than external mass transfer.
APA, Harvard, Vancouver, ISO, and other styles
25

Williamson, Kimberley. "Soil - vegetation based remediation studies of landfill leachate." Thesis, Bangor University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chu, Kuang-Chi Kevin Yelias. "Landfill Leachate Sorption Potential of Kate Valley Soils." Thesis, University of Canterbury. Civil Engineering, 2014. http://hdl.handle.net/10092/10041.

Full text
Abstract:
Kate Valley is a municipal waste landfill situated in Waipara, Northern Canterbury. It is a joint venture between the 6 local regional councils and Transwaste Canterbury Ltd to help dispose of waste quantities generated in the wider Canterbury region. Landfill waste disposal also generates waste streams. Major waste streams can include methane gas production and liquid leachate. One practice which can turn liquid leachate waste streams into a nutrient source for plants is land irrigation. It is important to have a thorough understanding of the interactions involved with leachate, soil structure, soil microbiology, flora. This thesis investigates the sorption mechanisms between Kate Valley soil and leachates, through batch and column experiments. Sorption mechanisms between leachate and soil were investigated through batch and column tests. Ex-situ soil samples were extracted from Kate Valley, along with raw leachate samples for batch tests at a soil to liquid ratio of 30 g vs. 70 ml respectively. Tested dilution leachate strengths ranged from raw to 50x raw leachate dilution; meanwhile soil samples were categorized into 3 groups based on soil depth: 0-20 cm, 20-40 cm, and 40-60 cm. Column tests were conducted on 3 extracted in-situ soil column monoliths. Column test irrigation conditions included: control case, 2x and 10x raw leachate dilution, and 200 mg/L KBr (bromide column), where the same soil column was used for bromine testing after control testing had ceased. Batch results suggest deeper soils are less effective at sorption of ammonia, where partitioning coefficient ranged from 9.5x*10-7 to 6.4*10-7 L/mg for 0-20 cm soil to 40-60 cm soil respectively. Column results generally showed lower partitioning capacity than batch results, at 4*10-8 and 5*10-8 L/mg for 10x and 2x dilution leachate irrigation respectively. Discrepancies in experimental data have been attributed to: different dilution leachates tested between batch and column tests, making it difficult for direct comparison; extreme soil to liquid ratios employed in experiments; direct data comparison between the “full-contact” experimental data (between leachate and soil), obtained from batch tests with column results, where not all soil may have been fully exposed for shrinkage of boundary layers of soil particles; and oxygen exposure of samples during testing and sampling, possibly encouraging nitrification.
APA, Harvard, Vancouver, ISO, and other styles
27

Batarseh, Eyad. "Chemical and Biological Treatment of Mature Landfill Leachate." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2698.

Full text
Abstract:
This dissertation is about treatment of the nonbiodegradable organic content of landfill leachate by chemical oxidation combined with biological treatment. It is divided into three parts. In the first part, ferrate was compared to Fenton's reagent for the purpose of removing non-biodegradable organic compounds from mature leachate. Oxidation conditions (time, pH, and dose) were optimized to yield maximum organic removal using two leachate samples from 20 and 12-year old solid waste cells. Results from this research demonstrated that ferrate and Fenton's reagent had similar optimum pH ranges (3-5), but different organic removal capacities, ranging from 54 to 79 % of initial leachate organic contents. An advantage of ferrate was that it was relatively effective over a wide pH range (Fenton's reagent lost its reactivity outside optimum pH range). Advantages associated with Fenton's reagent include a higher organic removal capacity, production of more oxidized organic compounds (measured as chemical oxygen demand/dissolved organic carbon), and production of more biodegradable byproducts (measured as 5-day biochemical oxygen demand/chemical oxygen demand). Finally, both treatments were found to oxidize larger molecules (>1000 dalton) and produce smaller molecules, as indicated by an increase in smaller molecule contribution to organic carbon. In part two, effects of Fenton's reagent treatment on biodegradability of three landfill leachates collected from a Florida landfill were evaluated using biochemical oxygen demand (BOD), biochemical methane potential (BMP), and tertamethylammonium hydroxide (TMAH) thermochemolysis gas chromatography/mass spectrometry (GC/MS). The hypothesis was that Fenton's reagent will remove refractory compounds that inhibit biodegradation and will produce smaller, more biodegradable organic molecules which will result in an increase in BOD and BMP values. Both BOD and BMP results demonstrated that Fenton's reagent treatment did not convert mature leachate to biodegradable leachate, as indicated by a low BOD5 expressed as C /dissolved organic carbon (DOC) ratio of almost 0.15 in treated samples and a low net methane production / theoretical methane potential (less than 0.15). Ultimate BOD only slightly increased. However the first-order BOD reaction rate increased by more than five fold, suggesting that Fenton's reagent removed refractory and inhibitory compounds. BMP results demonstrated that the ratio of CO2/CH4 produced during anaerobic biodegradation did not increase in treated leachate (compared to untreated), indicating that small biodegradable organic acids produced by oxidation were removed by coagulation promoted by Fenton's reagent. Finally, the TMAH thermochemolysis results showed that several of the refractory and inhibitory compounds were detected fewer times in treated samples and that carboxylic acids did not appear in treated samples. In the third part of this dissertation the application of flushing/Fenton's reagent oxidation to produce sustainable solid waste cells was evaluated. A treatment similar to pump and treat process utilizing Fenton's reagent on-site treated leachate combined with in-situ aeration was proposed. Treated leachate would be recycled to the landfill cell flushes releasable nonbiodegradable carbon from the cell and oxidizes it externally. This technique was demonstrated to have treatment cost and time benefits over other alternatives for producing completely stable solid waste cells such as anaerobic flushing and biological and/or mechanical pretreatment of solid waste (used in the EU).
Ph.D.
Department of Civil and Environmental Engineering
Engineering and Computer Science
Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
28

Langler, Glenn J. "Aquatic toxicity and environmental impact of landfill leachate." Thesis, University of Brighton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Alvarez-Vazquez, H. "Membrane bioreactors for sewage and stabilised leachate treatment." Thesis, Cranfield University, 2005. http://dspace.lib.cranfield.ac.uk/handle/1826/11104.

Full text
Abstract:
The project aimed to extend the limited knowledge ofMBR (Membrane Bioreactor) operation for the treatment of stabilised (old) landfillleachate using an air-lift tubular membrane configuration and comparing the results with those obtained for sewage treatment under largely identical conditions. SRT (solids retention time) was used as the principal fixed variable in the two trials so as to allow comparison of process performance for the two different feedwaters. Supplementary tests were also conducted on: 1. bench-scale porous pots, used to identify the optimum HRT (hydraulic retention time) value for leachate treatment, and 2. intermittent aeration, used to minimise aeration demand. At bench scale removals of69 ± 1% and 99.9 ± 0.1% chemical oxygen demand (COD) and ammonia (NH/) respectively were achieved at an HR T of 5 d and temperatures ~ 21°C. For this trial the mixed liquor volatile suspended solids/mixed liquor suspended solids (MLVSSnvn.SS) ratio was 0.7 ± 0.03 and the volumetric loading rate (VLR) 0.4±0.02 kgCOD m- 3 dol and 0.15 ± 0.003 kgNlI/ m-3 dol; the COD and NH/ food to microorganism ratio (FIM) ratio values were respectively 0.1 ± 0.01 and 0.04 ± 0.004 dol; specific oxygen utilisation rate (SOUR) was 16 ± 7 mg02.gVSS- 1 .h- 1 and nitrifiers:heterotrophs ratio was around 80:20. This compared with similar nitrifiers proportions (i.e. 70 to 80%) reported in the literature. During pilot trials COD removals at the stabilised period were consistently larger for sewage (69 - 83%) than leachates at the pseudo stability phase (28 - 56%), the latter being somewhat lower than values reported in the literature for full-scale plants. However, for both feedwaters maximum was obtained at VLRs between 0.99 and 1.2 kgCOD.m- 3 .d- 1 • NRt + removals were readily achieved with values ~ 88.6%. Biomass characteristics, namely particle size distribution (PSD), extracellular polymeric substances (EPS) concentrations and dynamic viscosity (11) were found to be similar for both sewage and leachate sludges, while soluble microbial products (SMP), MLVSS!.MLSS, F/M, SOUR, and heterotrophslnitrifiers proportions differed. most likely i due to impact of the feedwater character. Microbial dynamics and speciation were highly dependent on feed water quality showing that highly variable feeds such as leachate and sewage would develop inconsistent bacterial communities but analogous to each other. Constant feeds, on the other hand, would develop highly consistent bacterial community profiles. Nevertheless species richness or abundance of neither group (i.e. inconsistent and consistent communities) was significantly correlated to microbial foulants production such as SMP andlor EPS. Even further it was found that either microbial community would have no effect on COD or TOC (total organic carbon) levels of the treated feeds. Critical flux (Je) tests revealed fouling of leachate biomass to be more severe than that imposed by sewage biomass. and that fouling by the leachate biomass is predominantly attributable to the feedwater itself. No correlation between fouling and conventional biomass foulants (i.e. SMP and EPS proteins and carbohydrates) was evident, whilst a stronger correlation of fouling was shown with TOC of the SMP fraction. The ceramic membrane material tested was, as expected, more resistant to fouling than the polymeric membranes used. The highest le values on continuous air-sparging for sewage and leachate were 36 and 24 L.m"2.h"1 respectively. for polymeric membranes, and about 30 L.m"z.h"l during intermittent air-lift conditions for sewage, while absent for leachate. For ceramic membranes no le values were observed at continuous air-sparging. whilst no fouling was evident for either polymeric or ceramic materials challenged with leachate operating with intermittent aeration (0.5 -1 Hz) up to a flux (1) ofl3 and 44 L.m"l.h"l. Cylindrical geometry lumens were found to be more effective during air-lift operations than square lumens.
APA, Harvard, Vancouver, ISO, and other styles
30

Alvarez-Vazquez, Héctor. "Membrane bioreactors for sewage and stabilised leachate treatment." Thesis, Cranfield University, 2005. http://dspace.lib.cranfield.ac.uk/handle/1826/11104.

Full text
Abstract:
The project aimed to extend the limited knowledge ofMBR (Membrane Bioreactor) operation for the treatment of stabilised (old) landfillleachate using an air-lift tubular membrane configuration and comparing the results with those obtained for sewage treatment under largely identical conditions. SRT (solids retention time) was used as the principal fixed variable in the two trials so as to allow comparison of process performance for the two different feedwaters. Supplementary tests were also conducted on: 1. bench-scale porous pots, used to identify the optimum HRT (hydraulic retention time) value for leachate treatment, and 2. intermittent aeration, used to minimise aeration demand. At bench scale removals of69 ± 1% and 99.9 ± 0.1% chemical oxygen demand (COD) and ammonia (NH/) respectively were achieved at an HR T of 5 d and temperatures ~ 21°C. For this trial the mixed liquor volatile suspended solids/mixed liquor suspended solids (MLVSSnvn.SS) ratio was 0.7 ± 0.03 and the volumetric loading rate (VLR) 0.4±0.02 kgCOD m- 3 dol and 0.15 ± 0.003 kgNlI/ m-3 dol; the COD and NH/ food to microorganism ratio (FIM) ratio values were respectively 0.1 ± 0.01 and 0.04 ± 0.004 dol; specific oxygen utilisation rate (SOUR) was 16 ± 7 mg02.gVSS- 1 .h- 1 and nitrifiers:heterotrophs ratio was around 80:20. This compared with similar nitrifiers proportions (i.e. 70 to 80%) reported in the literature. During pilot trials COD removals at the stabilised period were consistently larger for sewage (69 - 83%) than leachates at the pseudo stability phase (28 - 56%), the latter being somewhat lower than values reported in the literature for full-scale plants. However, for both feedwaters maximum was obtained at VLRs between 0.99 and 1.2 kgCOD.m- 3 .d- 1 • NRt + removals were readily achieved with values ~ 88.6%. Biomass characteristics, namely particle size distribution (PSD), extracellular polymeric substances (EPS) concentrations and dynamic viscosity (11) were found to be similar for both sewage and leachate sludges, while soluble microbial products (SMP), MLVSS!.MLSS, F/M, SOUR, and heterotrophslnitrifiers proportions differed. most likely i due to impact of the feedwater character. Microbial dynamics and speciation were highly dependent on feed water quality showing that highly variable feeds such as leachate and sewage would develop inconsistent bacterial communities but analogous to each other. Constant feeds, on the other hand, would develop highly consistent bacterial community profiles. Nevertheless species richness or abundance of neither group (i.e. inconsistent and consistent communities) was significantly correlated to microbial foulants production such as SMP andlor EPS. Even further it was found that either microbial community would have no effect on COD or TOC (total organic carbon) levels of the treated feeds. Critical flux (Je) tests revealed fouling of leachate biomass to be more severe than that imposed by sewage biomass. and that fouling by the leachate biomass is predominantly attributable to the feedwater itself. No correlation between fouling and conventional biomass foulants (i.e. SMP and EPS proteins and carbohydrates) was evident, whilst a stronger correlation of fouling was shown with TOC of the SMP fraction. The ceramic membrane material tested was, as expected, more resistant to fouling than the polymeric membranes used. The highest le values on continuous air-sparging for sewage and leachate were 36 and 24 L.m"2.h"1 respectively. for polymeric membranes, and about 30 L.m"z.h"l during intermittent air-lift conditions for sewage, while absent for leachate. For ceramic membranes no le values were observed at continuous air-sparging. whilst no fouling was evident for either polymeric or ceramic materials challenged with leachate operating with intermittent aeration (0.5 -1 Hz) up to a flux (1) ofl3 and 44 L.m"l.h"l. Cylindrical geometry lumens were found to be more effective during air-lift operations than square lumens.
APA, Harvard, Vancouver, ISO, and other styles
31

Kylefors, Katarina. "Landfill leachate management : short and long term perspectives." Licentiate thesis, Luleå tekniska universitet, 1997. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kakalanga, Sumbu. "Nickel pollution abatement from landfill leachate using biomaterials." Thesis, Cape Peninsula University of Technology, 2012. http://hdl.handle.net/20.500.11838/748.

Full text
Abstract:
Thesis submitted in fulfilment of the requirements for the degree of Master of Technology: Chemistry in the Faculty of Applied Sciences at the Cape Peninsula University of Technology, 2012
Batch experiments were conducted to assess the removal of Ni(II) from aqueous solutions and landfill leachates using low cost adsorbents eggplant peel (EGP), sweet potato peel (SWP) and banana peel (BNP). Preliminary studies were carried out to optimize biosorbent mass, pH, Ni(II) concentration, temperature and contact time for Ni(II) removal. The optimized conditions were then applied to landfill leachates using the selected low cost adsorbents. Ni(II) removal efficiency for each biosorbent was investigated for each parameter. Results indicated that biosorbents masses, pH, initial concentration as well as solution temperature were important factors influencing Ni(II) removal from aqueous solutions. Percentage Ni(II) removal was 66±0.30, 38±3.97 and 33±1.20 using EGP, SWP and BNP, respectively. Ni(II) removal efficiency increased significantly (P ≤ 0.05) with increasing biosorbent mass, pH and Ni(II) initial concentration while it decreased significantly (P ≤ 0.05) with increasing temperature. Although Ni(II) removal efficiency varied significantly with time and the biosorbents no significant (P 0.05) difference was observed between the time interval whether the experiment was conducted in batch or semi batch mode. Results of FTIR studies indicated that several binding and chelating functional groups such as carboxyl, carbonyl and hydroxyl groups on the biomaterials surfaces could be responsible for Ni(II) biosorption. The optimum biosorbent mass for EGP and SWP was 0.4 g and for BNP was 0.05 g. The values for initial concentration, pH, temperature and contact time were 100 mg/L, 5, 22oC and 2 hours, respectively. Ni(II) removal efficiencies using EGP, SWP and BNP were 66, 38 and 33%, respectively. Taking into account the result and optimum condition obtained on Ni(II) removal efficiency from aqueous solution using EGP, SWP and BNP, the Ni(II) removal efficiency using these biosorbents from landfill leachate was investigated. It was found to be significantly (P ≤ 0.05) lower than what was found from aqueous solution.
APA, Harvard, Vancouver, ISO, and other styles
33

Schwarze, Susann. "Volatile organic compounds in landfill gas as indicators of waste degradation processes." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lo, Huang-Mu. "The impact of increasing the incinerator ash content on landfill site biostabilisation." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sundell, Oscar. "Solvent extraction of antimony and tin from speiss leachate." Thesis, Luleå tekniska universitet, Kemiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-65822.

Full text
Abstract:
This work is a cooperation with Boliden Minerals AB, who recently has been interested in recovering more valuable elements from their byproducts. For this case, solvent extraction was chosen as a potential method of recovering these valuables, as it is a method considered to be ideal for separation of trace elements from large amounts of other substances. The goal for this work was to execute manual extraction experiments as a preparation for a bigger project at LTU. The objectives of this thesis included the investigation of the selectivity for extraction of tin and antimony, using different concentrations of hydrochloric acid in the feed solution, analysis of the equilibrium isotherms for Sn and Sb at 8M of HCl as well as the evaluation of the number of steps needed for future extraction experiments, using the McCabe- Thiele method. By executing manual experiments with a speiss precipitate dissolved in hydrochloric acid, the results obtained indicated that the selectivity increased with a higher content of HCl in the feed solution. Using different ratios between the aqueous and organic phase, the equilibrium curves denoted a pushback effect, causing antimony to migrate back into the aqueous phase at the saturation level of tin. By constructing a McCable-Thiele diagram according to the equilibrium curves, the number of steps could be evaluated to three.
APA, Harvard, Vancouver, ISO, and other styles
36

La, Forge François. "Attenuation of landfill leachate by a natural marshland system." Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/6764.

Full text
Abstract:
Since the early 1980's, leachate originating form the Alice and Fraser municipal landfill has been discharging in a natural marshland system located some 300 meters downgradient form the waste disposal site. However, monitoring of the water quality within the marshland indicates that the contaminant level has not yet surpassed background concentration downstream from the main impact area. A mathematical model was developed in an attempt to predict the mobility of several contaminant species within the marshland environment. Parameters needed for the predictive model were gathered based on the physical configuration of the landfill and marshland associated with laboratory derived data on the attenuation capacity of the marshland soil matrix. The behavior, transport and ultimate fate of contaminants in organic soil is greatly affected by their participation in sorption reactions. The adsorption potential of lead, zinc, calcium, sodium and pentachlorophenol (PCP) by marshland soil was evaluated in laboratory through both, batch and column experiments. A multidimensional finite-difference model based on the Advection-Dispersion Equation was used to predict the migration of the above mentioned contaminants. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
37

Fleming, Ian R. "Biogeochemical processes and clogging of landfill leachate collection systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0007/NQ42518.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hurd, Sarah M. "Low-pressure reverse osmosis membrane treatment of landfill leachate." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0025/MQ52299.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mashal, Ahmad Tawfig. "Treatment of landfill leachate by Fenton and plasma technologies." Thesis, Queen's University Belfast, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.579793.

Full text
Abstract:
Advanced oxidation processes, namely photo-Fenton, Fenton-like, Fenton and UV/H202 and plasma have been investigated for the removal of organic matters from landfill leachate. Fenton's oxidation was the most effective and the most effective ratio 1/10 (Fe2+/H202) COD removal reached 50-80% and the biodegradability increased by 40 to 60 %. The oxidation batch treatment was performed on different synthetic leachate concentration and two types of doses:(single and triple Fenton's reagents. The first single Fenton's reagent removal efficiency of COD was less than those of a triple Fenton's reagents for all tested leachates under similar operating conditions. The COD removal of domestic landfill leachate and a glucose based-synthetic one as a function of the operating variables (H202, Fe2+, Ti02 , UVand Plasma) led to results that ranged between 30% and 90% while the removal efficiencies decreased in the order: photo-Fenton > Fenton-like > Fenton > UVIH202, > UV. Fenton process however generated an important quantity of iron sludge which will require further disposal. The advanced plasma process which relies on cold liquid plasma as source of light for radical productions was used as a new technique to treat landfill leachate solutions. The efficiency of single plasma process and its combination with conventional Fenton catalytic process as an integrated process on COD removal were investigated. The experimental procedure was carried out in a bench-scale continuous stirred tank catalytic reactor where the plasma unit probe was immersed in the liquid phase generating periodic pulses for various periods of time. The process involved the use of both Fe2+ catalyst and hydrogen peroxide while the plasma process required an additional NaCl diluted solution to promote the electrolysis by increasing the conductivity of the operating solutions.
APA, Harvard, Vancouver, ISO, and other styles
40

Spraggs, Rachael Elizabeth. "Novel approaches for removal of ammonium from landfill leachate." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Berge, Nicole. "IN-SITU AMMONIA REMOVAL OF LEACHATE FROM BIOREACTOR LANDFILLS." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3281.

Full text
Abstract:
A new and promising trend in solid waste management is to operate the landfill as a bioreactor. Bioreactor landfills are controlled systems in which moisture addition and/or air injection are used as enhancements to create a solid waste environment capable of actively degrading the biodegradable organic fraction of the waste. Although there are many advantages associated with bioreactor landfills, some challenges remain. One such challenge is the ammonia-nitrogen concentration found in the leachate. The concentrations of ammonia-nitrogen tend to increase beyond concentrations found in leachate from conventional landfills because recirculating leachate increases the rate of ammonification and results in accumulation of higher levels of ammonia-nitrogen concentrations, even after the organic fraction of the waste is stabilized. Because ammonia-nitrogen persists even after the organic fraction of the waste is stabilized, and because of its toxic nature, it is likely that ammonia-nitrogen will determine when the landfill is biologically stable and when post-closure monitoring may end. Thus an understanding of the fate of nitrogen in bioreactor landfills is critical to a successful and economic operation. Ammonia-nitrogen is typically removed from leachate outside of the landfill. However, additional costs are associated with ex-situ treatment of ammonia, as separate treatment units on site must be maintained or the leachate must be pumped to a publicly owned wastewater treatment facility. Therefore, the development of an in-situ nitrogen removal technique would be an attractive alternative. Several recent in-situ treatment approaches have been explored, but lacked the information necessary for field-scale implementation. The objectives of this study were to develop information necessary to implement in-situ ammonia removal at the field-scale. Research was conducted to evaluate the kinetics of in-situ ammonia removal and to subsequently develop guidance for field-scale implementation. An aerobic reactor and microcosms containing digested municipal solid waste were operated and parameters were measured to determine nitrification kinetics under conditions likely found in bioreactor landfills. The environmental conditions evaluated include: ammonia concentration (500 and 1000mg N/L), temperature (25o, 35o and 45oC), and oxygen concentration in the gas-phase (5, 17 and 100%). Results suggest that in-situ nitrification is feasible and that the potential for simultaneous nitrification and denitrification in field-scale bioreactor landfills is significant due to the presence of both aerobic and anoxic areas. All rate data were fitted to the Monod equation, resulting in an equation that describes the impact of pH, oxygen concentration, ammonia concentration, and temperature on ammonia removal. In order to provide design information for a field-scale study, a simple mass balance model was constructed in FORTRAN to forecast the fate of ammonia injected into a nitrifying portion of a landfill. Based on model results, an economic analysis of the in-situ treatment method was conducted and compared to current ex-situ leachate treatment costs. In-situ nitrification is a cost effective method for removing ammonia-nitrogen when employed in older waste environments. Compared to reported on-site treatment costs, the costs associated with the in-situ ammonia removal process fall within and are on the lower end of the range found in the literature. When compared to treating the leachate off-site, the costs of the in-situ ammonia removal process are always significantly lower. Validation of the laboratory results with a field-scale study is needed.
Ph.D.
Department of Civil and Environmental Engineering
Engineering and Computer Science
Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
42

Arab, F. K. "A study of desorption of ammonia from landfill leachate." Thesis, University of Strathclyde, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Score, Jodie. "Sustainable landfill leachate treatment using a willow vegetation filter." Thesis, University of Northampton, 2007. http://nectar.northampton.ac.uk/2671/.

Full text
Abstract:
The utilisation of a willow vegetation filter for the treatment of landfill leachate is an environmentally and economically appealing solution for landfill operators. Investigations into the design and efficacy of the system, the effects of landfill leachate irrigation on soil ecology, soil chemistry and willow growth were undertaken. Two low cost, high density polyethylene-lined experimental willow plots (25x50 m2) were installed at Cranford landfill, Northamptonshire, UK, and irrigated with landfill leachate between June 2001 and October 2005. During the growing season, leachate volume was often reduced to zero. On other occasions, maximum removal efficiencies of between 33 % and 75 % for total Kjeldahl nitrogen, chemical oxygen demand and sodium, potassium and chloride ions were determined in landfill leachate effluent samples. The addition of landfill leachate produced no negative effects on both soil and foliar macronutrients, which were found to be in the range for sufficient or optimum growth and where additional fertilisers would not bring about a further increase in yields. The effects of landfill leachate application on soil microbial communities were explored and were found to be significantly higher for dehydrogenase activity and ammonium oxidising bacteria in the plot receiving a higher rate of leachate application. An economic analysis was carried out to demonstrate the financial viability of a willow vegetation filter as a treatment for landfill leachate. Willow vegetation filters could provide a desirable alternative to conventional treatment systems, such as sequencing batch reactors, as they incur lower capital expenses and potentially similar operational costs. This study also identified additional revenue benefits in the region of £94 per hectare for wood chip heat/energy production. The results from the willow vegetation filter under investigation in this study demonstrated that this type of system can be effective, in terms of volume reduction and removal efficiency in landfill leachate, with no detrimental effect upon the trees or surrounding environment
APA, Harvard, Vancouver, ISO, and other styles
44

Macmillan, Janet Mary. "Modelling of landfill leachate attenuation in acidic groundwater environments." Thesis, Royal Holloway, University of London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zhao, Renzun. "Management strategy of landfill leachate and landfill gas condensate." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77186.

Full text
Abstract:
Studies were conducted to evaluate the impact of landfill leachate discharge on the operation of waste water treatment plants (WWTPs). Two aspects of interferences were found: one is UV quenching substances, which are bio-refractory and able to penetrate the biological treatment processes, consequently interfere the UV disinfection in WWTPs. The other one is organic nitrogen, which can pass the nitrification-denitrification process and contribute to the effluent total nitrogen (TN). Also, treatability study was conducted for landfill gas (LFG) condensate. In a laboratory study, leachate samples were fractionated into humic acids (HA), fulvic acids (FA) and Hydrophilic (Hpi) fractions, the specific UV254 absorbance (SUVA254) of the three fractions follows: HA > FA > Hpi. However, the overall UV254 absorbance of the Hpi fraction was important because there was more hydrophilic organic matter than humic or fulvic acids. It was found that the size distribution of the three fractions follows: HA > FA > Hpi. This indicates that membrane separation following biological treatment is a promising technology for the removal of humic substances from landfill leachates. Leachate samples treated in this manner could usually meet the UV transmittance requirement of the POTWs. Also, nitrogen species in landfill leachates under various stabilization states were investigated. Although the effect of landfill stabilization state on the characteristics of organic matter and ammonia is well documented, there are few investigations into the landfill leachate organic nitrogen under different stabilization stages. Ammonia was found to leach out slower than organic matter and can maintain a constant level within the first a couple of years (< 10 years). The concentration and biodegradability of organic nitrogen were found to decrease with landfill age. A size distribution study showed that most of organic nitrogen in landfill leachates is < 1 kDa. The protein concentration was analyzed and showed a strong correlation with the organic nitrogen. Different slopes of regression curves of untreated and treated leachates indicate that protein is more biodegradable than the other organic nitrogen species in landfill leachates. XAD-8 resin was employed to isolate the hydrophilic fraction of leachate samples, hydrophilic organic nitrogen was found to be more biodegradable/bioavailable than the hydrophobic fractions. Furthermore, biological and physical-chemical treatment methods were applied to a landfill biogas (LFG) condensate to explore the feasible treatment alternatives for organic contaminant and arsenic removal efficiency. Sequencing batch reactor (SBR) showed effectiveness for the degradation of organic matter, even in an environment containing high levels of arsenic. This indicated a relatively low toxicity of organic arsenic as compared to inorganic arsenic. However, for arsenic removal, oxidation-coagulation, including biological oxidation, conventional oxidation and advanced oxidation followed by ferric salt coagulation, and carbon adsorption were not effective for what is believed to be tri-methyl arsenic. Among these, advanced oxidation-coagulation showed the best treatment efficiency (15.1% removal). Only reverse osmosis (RO) could reduce the arsenic concentration to an acceptable level to meet discharge limits. These results implied high stability and low toxicity of organic arsenic.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
46

Davies, Graham Mark. "Predictions of leachate generation from minerals processing waste deposits." Master's thesis, University of Cape Town, 1995. http://hdl.handle.net/11427/8475.

Full text
Abstract:
Includes bibliography.
The minerals processing industry in South Africa produces significant tonnages of waste material which are disposed of commonly in dedicated waste depositories. These deposits pose a potential to pollute the environment if leachate is generated within the deposit and released to the surroundings. Leachate generation is generally investigated using laboratory columnar experiments which attempt to mimic the physical and chemical processes which occur in the deposit. These experiments, termed lysimeter experiments, are time consuming in that they typically last for at least a few months and can last for up to three years. Lysimeter experiments are also costly to conduct. Because of restrictions such as these, relatively few deposits have been characterised to determine the leachate which they generate and thus the risk which they pose to the environment. There is an urgent need to be able to estimate the environmental risks associated with existing waste deposits. The first step towards assessing this risk would be an ability to predict leachate generation within a specific deposit. Such an ability could be used to identify which of the existing deposits produce significant leachate and thus pose a potential hazard to the environment. Equally, if leachate generation from new deposits could be estimated as a function of waste material and characteristics of the waste deposit, this information could be used to improve the engineering design of waste deposits. The work presented in this thesis involved identifying suitable modelling strategies which could be used to determine leachate generation within waste deposits which contain waste material typical of that produced by the minerals processing industry. Two modelling strategies have been investigated. The first modelling strategy involved a macroscopic model in which all effects such as intrinsic chemical kinetics, intra-particle diffusion, external mass transfer and hydrodynamic considerations are lumped into a single parameter. The result of this approach is an effective reaction rate for the release of hazardous constituents from a volume element of the waste deposit. The effective reaction rate is determined by fitting the model to experimental data based on lysimeter tests. The main advantage of this model is that it eliminates the need for a detailed understanding of the individual factors which contribute to leachate generation. This model was investigated both for its inherent simplicity and for use in cases where insufficient information with respect to the intrinsic chemical reaction rates, intra-particle diffusion, external mass transfer or hydrodynamic aspects exist. The main disadvantage of this model is that it has a limited predictive ability in that the individual significance of any one factor which contributes to leachate generation cannot be determined. For this reason a second, more detailed model, termed the heterogenous columnar model, has also been investigated.
APA, Harvard, Vancouver, ISO, and other styles
47

Verrall, Karen Elizabeth. "Extraction and characterisation of colloids in waste repository leachate." Thesis, Loughborough University, 1998. https://dspace.lboro.ac.uk/2134/10558.

Full text
Abstract:
Inorganic colloids are ubiquitous in environmental waters and are thought to be potential transporters of radionuclides and other toxic metals. Colloids present large surface areas to pollutants and contaminants present in waters and are therefore capable of sorbing and transporting them via groundwater and surface water movement. Much research has been and is currently being undertaken to understand more fully the stability of colloids in different water chemistries, factors which affect metal sorption onto colloids, and the processes which affect metal-colloid transport. This thesis first investigates ground water and surface water sampling and characterisation techniques for the investigation of the colloids present in and around a low-level waste repository. Samples were collected anaerobically using micro-purge low-flow methodology (MPLF) and then subjected to sequential ultrafiltration, again anaerobically. After separation into size fractions the solids were analysed for radiochemical content, colloid population and morphology. It was found that colloids were present in large numbers in the groundwaters extracted from the trench waste burial area (anaerobic environment), but in the surface drain waters (aerobic environment) colloid population was comparable t6 levels found in waters extracted from' above the trenches. There was evidence that the non-tritium activity was associated with the colloids and particulates in the trenches, but outside of the trenches the evidence was not conclusive because the activity and colloid concentrations were low. Secondly this thesis investigates the stability of inorganic colloids, mainly haematite, in the presence of humic acid, varying pH and electrolyte concentrations. The applicability of the Schulze-Hardy rule to haematite and haematitelhumic acid mixtures was investigated using photon correlation spectroscopy to measure the rate of fast and slow coagulation after the addition of mono, di and trivalent ions. It was found that humic coated colloids follow the Schulze-Hardy rule for mono and divalent cations, with the exception of copper ions. Trivalent ions do not follow the Schulze-Hardy rule because of their relatively strong complexation with humates. It was also found that the size of the ion has an effect on destabilisation, irrespective of charge.
APA, Harvard, Vancouver, ISO, and other styles
48

Jaroenpoj, Souwalak. "Biogas Production from Co-Digestion of Landfill Leachate and Pineapple Peel." Thesis, Griffith University, 2015. http://hdl.handle.net/10072/367041.

Full text
Abstract:
This research study examined the behaviour of co-digestion of landfill leachate with pineapple peel, focusing on biogas production. Laboratory scale batch experiments were conducted to investigate mono-digestion of leachate and of pineapple peel, and their co-digestion with three different mixing ratios. The inoculum and pineapple peel were derived from the Golden Circle factory and the leachate was collected from the Rochedale Landfill site in Brisbane, Australia. Mono-digestion of leachate had methane yield of 24 L kgVSconsumed-1 and volatile solids (VS) removal efficiency of 37%. The results from mono-digestion of pineapple peel showed the higher methane yield of 317 L kgVSconsumed-1 and higher VS removal efficiency of 80%. The reasons for better performance of digestion in pineapple peel digestion are the pineapple peel had a carbon to nitrogen ratio (C/N) of 24 to 1 that is suitable for anaerobic digestion process and the leachate sample was in mature age, as evidenced from low volatile solids (VS) and chemical oxygen demand (COD) composition and high pH level. Co-digestion batch experiments were run in the same reactors. 25 L of leachate was mixed with three ratios of pineapple peel - one, two and three kgVSpineapple peel m-3. The results showed that co-digestion of the leachate with two kgVSpineapple peel m-3 achieved the highest methane yield of 269 L kgVSconsumed-1 and 80% VS and 89% COD removal efficiency with good stability in the reactor. Further addition of pineapple peel at three kgVSpineapple peel m-3 to the leachate slightly decreased the biogas yield and overall VS and COD removal efficiency. The co-digestion results showed better performance than the mono-digestion of leachate due to synergism from pineapple peel as a co-substrate.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
APA, Harvard, Vancouver, ISO, and other styles
49

Burton, Simon A. Q. "Engineering a sustainable landfill through the treatment and recirculation of nitrified leachate." Thesis, University of Strathclyde, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ström, Emma. "Leachate treatment and anaerobic digestion using aquatic plants and algae." Thesis, Linköping University, Department of Water and Environmental Studies, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57512.

Full text
Abstract:

Phytoremediation as a way to control and lessen nutrient concentrations in landfill leachate is a cheap and environmentally sustainable method. Accumulated nutrients in the plants can then be removed by harvesting and anaerobically digesting the biomass. This study presents two aquatic plants (L. minor (L.) and P. stratiotes (L.)) and one microalgae species (C. vulgaris (L.)), their capacities for growth and nutrient removal in leachate from Häradsudden landfill, Sweden, are investigated. The biogas potential of the two plants is determined via anaerobic digestion in a batch run, followed by a lab-scale reactor run for L. minor only. Results show that growth in leachate directly from the landfill is not possible for the selected species, but at a leachate dilution of 50% or more. Nutrients are removed in leachates with plants to a higher extent than in leachates without, yet the actual amounts do not differ notably between plant species. L. minor proves a better choice than P. stratiotes despite this as growth is superior for L. minor under the experimental conditions of this study. Considering biogas production, L. minor gives more methane than P. stratiotes according to the results from the batch run. The former is however not suitable for large-scale anaerobic digestion unless as an additional feedstock due to practical cultivation issues.

APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography