Academic literature on the topic 'LDV'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LDV.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "LDV"
van den Broek, M. F., R. Spörri, C. Even, P. G. Plagemann, E. Hänseler, H. Hengartner, and R. M. Zinkernagel. "Lactate dehydrogenase-elevating virus (LDV): lifelong coexistence of virus and LDV-specific immunity." Journal of Immunology 159, no. 4 (August 15, 1997): 1585–88. http://dx.doi.org/10.4049/jimmunol.159.4.1585.
Full textStokes, William, Carol Fenton, Fiona Clement, Matthew James, Paul Ronksley, and Karen L. Tang. "The Efficacy and Safety of 12 Weeks of Sofosbuvir and Ledipasvir versus Sofosbuvir, Ledipasvir, and Ribavirin in Patients with Chronic Hepatitis C, Genotype 1, Who Have Cirrhosis and Have Failed Prior Therapy: A Systematic Review and Meta-Analysis." Canadian Journal of Gastroenterology and Hepatology 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/6468309.
Full textPlagemann, Peter G. W., Quentin A. Jones, and William A. Cafruny. "N-Glycans on the short ectodomain of the primary envelope glycoprotein play a major role in the polyclonal activation of B cells by lactate dehydrogenase-elevating virus." Journal of General Virology 81, no. 9 (September 1, 2000): 2167–75. http://dx.doi.org/10.1099/0022-1317-81-9-2167.
Full textKiel, J. W., G. L. Riedel, G. R. DiResta, and A. P. Shepherd. "Gastric mucosal blood flow measured by laser-Doppler velocimetry." American Journal of Physiology-Gastrointestinal and Liver Physiology 249, no. 4 (October 1, 1985): G539—G545. http://dx.doi.org/10.1152/ajpgi.1985.249.4.g539.
Full textArechvo, Irina, Nikoloz Lasurashvili, Matthias Bornitz, Zurab Kevanishvili, and Thomas Zahnert. "Laser Doppler vibrometry of the middle ear in humans: derivation dependence, variability, and bilateral differences." Medicina 45, no. 11 (November 11, 2009): 878. http://dx.doi.org/10.3390/medicina45110113.
Full textCheng, Guofeng, Yang Tian, Brian Doehle, Betty Peng, Amoreena Corsa, Yu-Jen Lee, Ruoyu Gong, et al. "In VitroAntiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir." Antimicrobial Agents and Chemotherapy 60, no. 3 (January 11, 2016): 1847–53. http://dx.doi.org/10.1128/aac.02524-15.
Full textLi, Yanlu, Emiel Dieussaert, and Roel Baets. "Miniaturization of Laser Doppler Vibrometers—A Review." Sensors 22, no. 13 (June 23, 2022): 4735. http://dx.doi.org/10.3390/s22134735.
Full textRobertson, Shelly J., Christoph G. Ammann, Ronald J. Messer, Aaron B. Carmody, Lara Myers, Ulf Dittmer, Savita Nair, et al. "Suppression of Acute Anti-Friend Virus CD8+ T-Cell Responses by Coinfection with Lactate Dehydrogenase-Elevating Virus." Journal of Virology 82, no. 1 (October 24, 2007): 408–18. http://dx.doi.org/10.1128/jvi.01413-07.
Full textLuchins, Kerith R., Darya Mailhiot, Betty R. Theriault, and George P. Langan. "Detection of Lactate Dehydrogenase Elevating Virus in a Mouse Vivarium Using an Exhaust Air Dust Health Monitoring Program." Journal of the American Association for Laboratory Animal Science 59, no. 3 (May 1, 2020): 328–33. http://dx.doi.org/10.30802/aalas-jaalas-19-000107.
Full textCasadevall, M., J. Panes, J. M. Pique, J. Bosch, J. Teres, and J. Rodes. "Limitations of laser-Doppler velocimetry and reflectance spectrophotometry in estimating gastric mucosal blood flow." American Journal of Physiology-Gastrointestinal and Liver Physiology 263, no. 5 (November 1, 1992): G810—G815. http://dx.doi.org/10.1152/ajpgi.1992.263.5.g810.
Full textDissertations / Theses on the topic "LDV"
Furey, Deborah A. "LDV Measurements in a Navy CPS fan /." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-08142009-040414/.
Full textFelis-Carrasco, Francisco. "Atomisation et dispersion d'un jet liquide : approches numérique et expérimentale." Thesis, Ecole centrale de Marseille, 2017. http://www.theses.fr/2017ECDM0001/document.
Full textA typical water round-nozzle jet for agricultural applications is presented in this study. The dispersion of a liquid for irrigation or pesticides spraying is a key subject to both reduce water consumption and air pollution. A simplified study case is constructed to tackle both scenarios, where a round dn=1.2 mm nozzle of a length Ln=50dn is considered. The injection velocity is chosen to be UJ=35 m/s, aligned with gravity, placing the liquid jet in a turbulent atomization regime. The flow is considered statistically axisymmetric. Experimental and numerical approaches are considered.An Eulerian mixture multiphase model describes the original two-phase flow. Several U-RANS turbulence models are used: k-ε and RSM; where special attention is taken to the modelling of variable density effects from the mixture formulation. A custom numerical solver is implemented using the OpenFOAM CFD code. A series of study cases are constructed to test the influence of the turbulence modeling and first/second-order closures of the turbulent mass fluxes. LDV and DTV optical techniques are used to gather statistical information from both the liquid and the gas phases of the spray. The experimental campaign is carried out from x/dn=0 to x/dn=800. Concerning the LDV, small (~1 µm) olive-oil tracers are used to capture the gas phase, where a distinction between the liquid droplets and tracers is achieved by a specific set-up of the laser power source and the burst Doppler setting (BP-Filter and SNR). On the dispersed zone, DTV measurements are carried out to measure velocities and sizes of droplets. Special attention to the depth-of-field (DOF) estimation is taken in order to obtain a less biased droplet’s size-velocity correlation.Numerical and experimental results show good agreement on the mean velocity field. A strong dependence on the turbulence model is found. However, the RSM does not capture the same behaviour on the calculated Reynolds stresses. Indeed, neither the experimental anisotropy (R22/R11≈0.05), nor the liquid-gas slip-velocity can be reproduced, even with a second-order closure for the turbulent mass fluxes. The strong density ratio (water/air), flow’s directionality and production of turbulent kinetic energy may be the cause of a weak dispersion and mixing between the two fluids. This mechanism is not yet clarified from a RSM modeling point-of-view
Parisot-Dupuis, Hélène. "Application de l'holographie acoustique en soufflerie par mesures LDV." Thesis, Toulouse, ISAE, 2012. http://www.theses.fr/2012ESAE0035/document.
Full textNearfield Acoustic Holography (NAH) is a powerful acoustic imaging method but its application in flow can be limited by intrusive measurements of acoustic pressure or velocity. In this work, a moving fluid medium NAH procedure using non-intrusive velocity measurements is proposed. This method is based on the convective Kirchhoff-Helmholtz integral formula. The convective Green’s function is then used to derive convective realspace propagators including uniform subsonic airflow effects. Discrete Fourier transforms of these propagators allow then the assessment of acoustic fields from acoustic pressure or normal acoustic velocity measurements. As the aim is to derive an aeroacoustic sources characterisation method from non-inrusive velocity measurements, this study is especially focused on real convective velocity-based propagators. In order to validate this procedure, simulations in the case of combinations of monopolar and dipolar sources correlated or not, radiating invarious uniform subsonic flows, have been performed. NAH provides very favorable results when compared to the theoretical fields. A comparison of results obtained by real convective propagators, developed in this work, and those obtained by the spectral ones, developed by Kwon et al. at the end of 2010 for acoustic pressure measurements, shows the interest of using the real-form for NAH acoustic pressure reconstruction from normal acoustic velocity measurements. The efficiency of the developed procedure is confirmed by a wind tunnel campaign with a flush-mounted loudspeaker radiating in a flow at Mach 0.22 and non-intrusive Laser Doppler Velocimetry (LDV) measurements. Acoustic velocity fields used for the NAH procedure are in this case extracted from LDV measurements by correlation with a reference microphone. The feasibility of taking into account mean flow variations in the direction of NAH reconstruction is also checked
Pandey, Preetanshu. "Application evaluation of a prototype backscatter imaging LDV system (BILS)." Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2660.
Full textTitle from document title page. Document formatted into pages; contains xi, 100 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 83-86).
Choi, Hae-Jin. "Kinematics measurements of regular, irregular, and rogue waves by PIV/LDV." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4797.
Full textЗемлянський, Володимир Михайлович. "the two-wave ldv with cophased reception of the doppler signals." Thesis, Національний авіаційний університет, 2014. http://er.nau.edu.ua/handle/NAU/11708.
Full textDaughtrey, William D. "Development of an underwater LDV for use in the high radiation case." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/17256.
Full textGarcía, Vizcaino David. "Sistema láser de medida de velocidad por efecto doppler de bajo coste para aplicaciones industriales e hidrodinámicas." Doctoral thesis, Universitat Politècnica de Catalunya, 2005. http://hdl.handle.net/10803/6892.
Full textempresas fabricantes de cables, entre otros.
Empresas europeas y americanas, como Dantec Electronik y TSI, por citar las más representativas, comercializan aparatos LDA de propósito general de altas prestaciones. Hasta la fecha estos sistemas sólo podían ser adquiridos por importantes centros de investigación o grandes empresas, debido a su elevado coste. El futuro comercial de la velocimetría láser Doppler exige la fabricación de aparatos más económicos y adaptados a las necesidades del cliente. Muchos de los sistemas actuales son voluminosos,
difíciles de manejar y con potencias de trabajo elevadas. Se está llevando a cabo un importante trabajo para conseguir reducir el tamaño y coste de los equipos sin perder sus principales prestaciones. Asimismo la alta velocidad y capacidad de cálculo de los ordenadores personales actuales debe hacer innecesaria la inclusión de procesadores específicos para estos equipos.
Presentamos el diseño y construcción de un sistema integral de medida de dos componentes de la velocidad, sistema 2D-LDA, para aplicaciones industriales e hidrodinámicas de baja potencia.
Siguiendo la filosofía delineada arriba, el diseño de nuestro sistema LDA fue realizado utilizando únicamente una fuente laser y un módulo detector. Los sistemas LDA de medida de dos componentes de velocidad comercialmente disponibles, por el contrario, emplean dos longitudes de onda óptica y dos fotodetectores independientes. Las emisiones azul y verde típicas de los láseres de ion-Ar son las longitudes de onda a menudo elegidas en este tipo de medidas.
Por otra parte, se ha empleado los dos canales de entrada de una tarjeta de adquisición de uso general para realizar el disparo multinivel. Esta configuración permite trabajar en cada momento con la parte de señal burst teóricamente más adecuada, con mayor valor de relación señal a ruido.
Este trabajo ha sido financiado por la CICYT Proyecto PETRI 95-0249-OP:
REALIZACIÓN DE SISTEMAS LÁSER PORTÁTILES DE MEDIDA DE VELOCIDAD POR EFECTO DOPPLER (LDA-LDV) DE BAJO COSTE PARA APLICACIONES INDUSTRIALES E HIDRODINÁMICAS.
The practical use of the Doppler effect at optical wavelengths was proposed at the early beginning of the development of the laser, in the sixties. However, it was only in the eighties when the results of the experimental work could finally get out of the laboratories, and the first Laser Velocimeters were commercially available. In the nineties this kind of systems became rapidly popular. Nowadays the Laser Velocimeters based on the Doppler frequency shift find a lot of important applications, especially in some industrial processes and in hydrodynamic and aerodynamic research.
The unique characteristics of the Laser Doppler Velocimetry (LDV) only recently have encountered a rival technique in the Particle Image Velocimetry (PIV), for applications on fluids. The main features of LDV systems are the accuracy and the speed of the measurements, the high spatial resolution and, of course, the non-intrusive character of the technique. Moreover this kind of systems present advantages not only in fluid applications: actually it can compete with the microwave radar in the estimation of the velocity of solid targets. This becomes possible due to the
progressive reduction of prices of optoelectronic devices and the improvement of its performances. The monitoring of the traffic velocity and the control of machinery in the manufacture of paper, wires and cables or thread can be mentioned among these applications.
European an American companies, as Dantek Electronic or TSI, to mention the two most representative, commercialize high performance general-purpose LDV systems. Up to the date these instruments are sizeable and expensive, and its use requires some special training. There is not doubt that the future market of the LDV systems goes through a substantial decrease of prices and, indeed, through the possibility of custom-built designs. The potential number of users would increase then in an important manner. Many efforts are now being devoted by researchers in that direction. Moreover, the important improvement of capabilities of the desktop computers makes unnecessary the special electronic processors that, up to now, have been provided by the manufacturers of LDV systems as a part of them.
In this Thesis the design and realization of a complete Laser Doppler Anemometer is presented. The system can measure two components of a fluid velocity (2D-LDA) and originally it was conceived to be used in industrial and hydrodynamics applications.
Following the philosophy outlined above, the design of our LDA system was performed with only one laser source and one detector module. The common commercially available LDAs, on the contrary, designed to measure two components of velocity, use two different optical wavelengths and two independent photodiodes.
On the other hand, a general-purpose acquisition card with two input channels has been used to implement a multilevel trigger. The configuration performed here permits to work in each moment with the part of the burst having the best signal to noise ratio.
This work has been supported by the Spanish Government, CICYT project PETRI 95-0249-OP.
Bergan, Carl Werdelin. "Transient LDV-measurements in the draft tube of a high head Francis turbine." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-26064.
Full textWu, Howard Honezern. "LDV measurements and numerical modeling of the turbulent flow in a stirred mixer." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184528.
Full textBooks on the topic "LDV"
Terry, Len. Whoopsies of life: Comic capers from LDV to retirement. Worthing: L. Terry, 2002.
Find full textRiethmuller, M. L. LDV and pressure measurements of gas particle flows in bends. Rhode Saint Genèse, Belgium: Von Karman Institute for Fluid Dynamics, 1987.
Find full textRiethmuller, M. L. LDV and pressure measurements of gas particle flows in bends. Rhode Saint Genese, Belgium: von Karman Institute for Fluid Dynamics, 1987.
Find full textDi Maio, Dario, and Javad Baqersad, eds. Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76335-0.
Full textDi Maio, Dario, and Javad Baqersad, eds. Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-04098-6.
Full textDi Maio, Dario, and Javad Baqersad, eds. Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47721-9.
Full textNiezrecki, Christopher, Javad Baqersad, and Dario Di Maio, eds. Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12935-4.
Full textHajivassiliou, V. A. The method of simulated scores for the estimation of LDV models. London: Suntory and Toyota International Centres for Economics and Related Disciplines, London School of Economics and Political Science, 1997.
Find full textTangirala, V. LDV/Rayleigh scattering measurements to study the blowoff of swirling flames. New York: AIAA, 1986.
Find full textLeprince, F. Skin friction determination by LDV measurements in a viscous sublayer: Analysis of systematic errors. Rhode Saint Genese, Belgium: Von Karman Institute for Fluid Dynamics, 1985.
Find full textBook chapters on the topic "LDV"
Schuth, Michael, and Wassili Buerakov. "Laser-Doppler-Anemometrie (LDA/LDV)." In Handbuch Optische Messtechnik, 265–69. München: Carl Hanser Verlag GmbH & Co. KG, 2017. http://dx.doi.org/10.3139/9783446436619.033.
Full textNilsson, Gert E. "Perimed’s LDV Flowmeter." In Laser-Doppler Blood Flowmetry, 57–72. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-2083-9_4.
Full textValière, Jean-Christophe. "LDV for Acoustics." In Acoustic Particle Velocity Measurements Using Lasers, 61–110. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118649336.ch3.
Full textHolloway, G. Allen. "Medpacific’s LDV Blood Flowmeter." In Laser-Doppler Blood Flowmetry, 47–56. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-2083-9_3.
Full textBorgos, John A. "TSI’s LDV Blood Flowmeter." In Laser-Doppler Blood Flowmetry, 73–92. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4757-2083-9_5.
Full textIkeda, Yuji, Noboru Kurihara, Tsuyoshi Nakajima, and Ryuichi Matsumoto. "Multipoint Simultaneous LDV Optics." In Applications of Laser Anemometry to Fluid Mechanics, 361–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83844-6_20.
Full textBeauvais, R. "Laser-Doppler Velocimetry (LDV)." In Optical Measurements, 179–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-02967-1_10.
Full textHaertig, Jacques, and Alain Boutier. "Post-Processing of LDV Data." In Laser Velocimetry in Fluid Mechanics, 305–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118569610.ch8.
Full textCzarske, Jürgen, and Lars Büttner. "Micro Laser Doppler Velocimetry (μ-LDV)." In Encyclopedia of Microfluidics and Nanofluidics, 1825–29. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_977.
Full textMignanelli, Laura, and Christian Rembe. "Non-contact Health Monitoring with LDV." In Bioanalysis, 1–8. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46691-6_1.
Full textConference papers on the topic "LDV"
Wang, Qi, Chunfeng Gao, Guo Wei, and Xingwu Long. "Online calibration technique for LDV in SINS/LDV integrated navigation systems." In SPIE Defense + Security, edited by Edward M. Carapezza. SPIE, 2017. http://dx.doi.org/10.1117/12.2266141.
Full textPham, Quan, Tanu Malik, Boris Glavic, and Ian Foster. "LDV: Light-weight database virtualization." In 2015 IEEE 31st International Conference on Data Engineering (ICDE). IEEE, 2015. http://dx.doi.org/10.1109/icde.2015.7113366.
Full textHobson, C. Allan, and Michael J. Lalor. "A Cost-Effective LDV System." In Laser Technologies in Industry. SPIE, 1988. http://dx.doi.org/10.1117/12.968867.
Full textChouinard, E., F. Hamady, and H. Schock. "Airflow Visualization and LDV Measurements in a Motored Rotary Engine Assembly Part 2: LDV Measurements." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/900031.
Full textDutton, J. C., A. L. Addy, and M. Sammy. "LDV measurements in supersonic separated flows." In ICALEO® ‘87: Proceedings of the International Conference on Optical Methods in Flow & Particle Diagnostics. Laser Institute of America, 1987. http://dx.doi.org/10.2351/1.5057941.
Full textChandrasekhara, Muguru S., and R. D. VanDyken. "LDV measurements in dynamically separated flows." In Laser Anemometry: Advances and Applications--Fifth International Conference, edited by J. M. Bessem, R. Booij, H. W. H. E. Godefroy, P. J. de Groot, K. K. Prasad, F. F. M. de Mul, and E. J. Nijhof. SPIE, 1993. http://dx.doi.org/10.1117/12.150518.
Full textGiménez, Jesús, and Lluís Màrquez. "The LDV-COMBO system for SMT." In the Workshop. Morristown, NJ, USA: Association for Computational Linguistics, 2006. http://dx.doi.org/10.3115/1654650.1654678.
Full textWeihong Li, Ming Liu, Zhigang Zhu, and T. S. Huang. "LDV Remote Voice Acquisition and Enhancement." In 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.746.
Full textJonckheere, Edmond A., and Stephan K. Bohacek. "LDV control over compact riemannian manifolds." In 2010 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010. http://dx.doi.org/10.1109/cdc.2010.5717229.
Full textBogy, D. B., and M. Suk. "Application Of LDV And LDA To Tribological Studies In Magnetic Recording Disk Drives." In OE LASE'87 and EO Imaging Symp (January 1987, Los Angeles), edited by Ryszard J. Pryputniewicz. SPIE, 1987. http://dx.doi.org/10.1117/12.939775.
Full textReports on the topic "LDV"
R.F. Kunz, S.W. D'Amico, P.F. Vassallo, and M.A. Zaccaria. LDV Measurement of Confined Parallel Jet Mixing. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/821677.
Full textSherrouse, Peter M. Subsonic Choked Flow LDV Calibrator/Velocity Standard Development. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada539257.
Full textChesnakas, Christopher J., and Stuart D. Jessup. Cavitation and 3-D LDV Tip-Flowfield Measurements of Propeller 5168. Fort Belvoir, VA: Defense Technical Information Center, May 1998. http://dx.doi.org/10.21236/ada347482.
Full textTUTU, N. K., C. R. KRISHNA, J. W. ANDREWS, and T. A. BUTCHER. CHARACTERIZATION OF AIRFLOWS NEAR THE EXIT OF HVAC REGISTERS USING LASER DOPPLER VELOCIMETRY (LDV). Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/809913.
Full textGangopadhyay, Arup, D. G. McWatt, R. J. Zdrodowski, Zak Liu, Larry Elie, S. J. Simko, Ali Erdemir, Giovanni Ramirez, J. Cuthbert, and E. D. Hock. Development of Modified Pag (Polyalkylene Glycol) High VI High Fuel Efficient Lubricant for LDV Applications. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1234442.
Full textBucaro, J. A., J. Vignola, B. H. Houston, and A. J. Romano. Preliminary Observations Regarding LDV Scans of Panels Excited by Broadband Actuators at the US Capitol. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada418869.
Full textCusanelli, Dominic S., and Scott A. Carpenter. Axial Waterjet (AxWJ) Model 5662: Hull Resistance and Model-Scale Powering with LDV Nozzle Design. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada473572.
Full textLyons, Daniel J., and Christopher J. Chesnakas. Bare Hull Resistance Experiments and LDV Wake Surveys for a Trimaran Concept of a Heavy Air Lift Seabasing Ship (HALSS) Represented by Model 5651. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada473766.
Full textAndersson, L., P. Doolan, N. Feldman, A. Fredette, and B. Thomas. LDP Specification. RFC Editor, January 2001. http://dx.doi.org/10.17487/rfc3036.
Full textThomas, B., and E. Gray. LDP Applicability. RFC Editor, January 2001. http://dx.doi.org/10.17487/rfc3037.
Full text