Academic literature on the topic 'LBM (Lattice Boltzmann Method)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LBM (Lattice Boltzmann Method).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "LBM (Lattice Boltzmann Method)":

1

Maier, Robert S., and Robert S. Bernard. "Accuracy of the Lattice-Boltzmann Method." International Journal of Modern Physics C 08, no. 04 (August 1997): 747–52. http://dx.doi.org/10.1142/s0129183197000631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The accuracy of the lattice-Boltzmann method (LBM) is moderated by several factors, including Mach number, spatial resolution, boundary conditions, and the lattice mean free path. Results obtained with 3D lattices suggest that the accuracy of certain two-dimensional (2D) flows, such as Poiseuille and Couette flow, persist even when the mean free path between collisions is large, but that of the 3D duct flow deteriorates markedly when the mean free path exceeds the lattice spacing. Accuracy in general decreases with Knudsen number and Mach number, and the product of these two quantities is a useful index for the applicability of LBM to 3D low-Reynolds-number flow. The influence of boundary representations on LBM accuracy is captured by the proposed index, when the accuracy of the prescribed boundary conditions is consistent with that of LBM.
2

Zhou, Jian Guo. "Macroscopic Lattice Boltzmann Method." Water 13, no. 1 (December 30, 2020): 61. http://dx.doi.org/10.3390/w13010061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The lattice Boltzmann method (LBM) is a highly simplified model for fluid flows using a few limited fictitious particles. It has been developed into a very efficient and flexible alternative numerical method in computational physics, demonstrating its great power and potential for resolving more and more challenging physical problems in science and engineering covering a wide range of disciplines such as physics, chemistry, biology, material science and image analysis. The LBM is implemented through the two routine steps of streaming and collision using the three parameters of the lattice size, particle speed and collision operator. A fundamental question is if the two steps are integral to the method or if the three parameters can be reduced to one for a minimal lattice Boltzmann method. In this paper, it is shown that the collision step can be removed and the standard LBM can be reformulated into a simple macroscopic lattice Boltzmann method (MacLAB). This model relies on macroscopic physical variables only and is completely defined by one basic parameter of the lattice size δx, bringing the LBM into a precise “lattice” Boltzmann method. The viscous effect on flows is naturally embedded through the particle speed, making it an ideal automatic simulator for fluid flows. Three additional advantages compared to the existing LBMs are that: (i) physical variables can directly be retained as the boundary conditions; (ii) much less computational memory is required; and (iii) the model is unconditionally stable. The findings are demonstrated and confirmed with numerical tests including flows that are independent of and dependent on fluid viscosity, 2D and 3D cavity flows and an unsteady Taylor–Green vortex flow. This provides an efficient and powerful model for resolving physical problems in various disciplines of science and engineering.
3

Li, Yanbing, and Xiaowen Shan. "Lattice Boltzmann method for adiabatic acoustics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1944 (June 13, 2011): 2371–80. http://dx.doi.org/10.1098/rsta.2011.0109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The lattice Boltzmann method (LBM) has been proved to be a useful tool in many areas of computational fluid dynamics, including computational aero-acoustics (CAA). However, for historical reasons, its applications in CAA have been largely restricted to simulations of isothermal (Newtonian) sound waves. As the recent kinetic theory-based reformulation establishes a theoretical framework in which LBM can be extended to recover the full Navier–Stokes–Fourier (NS) equations and beyond, in this paper, we show that, at least at the low-frequency limit (sound frequency much less than molecular collision frequency), adiabatic sound waves can be accurately simulated by the LBM provided that the lattice and the distribution function ensure adequate recovery of the full NS equations.
4

Mendl, Christian B. "Matrix-valued quantum lattice Boltzmann method." International Journal of Modern Physics C 26, no. 10 (June 24, 2015): 1550113. http://dx.doi.org/10.1142/s0129183115501132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We devise a lattice Boltzmann method (LBM) for a matrix-valued quantum Boltzmann equation, with the classical Maxwell distribution replaced by Fermi–Dirac functions. To accommodate the spin density matrix, the distribution functions become 2 × 2 matrix-valued. From an analytic perspective, the efficient, commonly used BGK approximation of the collision operator is valid in the present setting. The numerical scheme could leverage the principles of LBM for simulating complex spin systems, with applications to spintronics.
5

Wen, Mengke, Weidong Li, and Zhangyan Zhao. "A hybrid scheme coupling lattice Boltzmann method and finite-volume lattice Boltzmann method for steady incompressible flows." Physics of Fluids 34, no. 3 (March 2022): 037114. http://dx.doi.org/10.1063/5.0085370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We present a new hybrid method coupling the adaptive mesh refinement lattice Boltzmann method (AMRLBM) and the finite-volume lattice Boltzmann method (FVLBM) to improve both the simulation efficiency and adaptivity for steady incompressible flows with complex geometries. The present method makes use of the domain decomposition, in which the FVLBM sub-domain is applied to the region adjacent to the walls, and is coupled to the lattice Boltzmann method (LBM) sub-domain in the rest of the flow field to enhance the ability of the LBM to deal with irregular geometries without sacrificing the high efficiency and accuracy property of the LBM. In the LBM sub-domain, a cell-centered lattice structure-based AMRLBM is used and, in the FVLBM sub-domain, the gas-kinetic Bhatnagar–Gross–Krook (BGK) scheme-based FVLBM is adopted to reduce the numerical dissipation and enhance the efficiency of FVLBM. Moreover, not like the conventional LBM and Navier–Stokes equation solver-based hybrid schemes, the present hybrid scheme combines two kinds of lattice Boltzmann equation solvers, that is, AMRLBM and FVLBM, which makes the present scheme much simpler and better consistency than the conventional hybrid schemes. To assess the accuracy and efficacy of the proposed method, various benchmark studies, including the Kovasznay flow, the lid-driven cavity flow with Reynolds number [Formula: see text], 400, and 1000, and the steady flow past a cylinder with [Formula: see text] and 40, are also conducted. The numerical results show that the present scheme can be an efficient and reliable method for steady incompressible flows.
6

Liu, Xin Hua, Hao Liu, and Yong Zhi Liu. "Theory and Application of Lattice Boltzmann Method." Applied Mechanics and Materials 79 (July 2011): 270–75. http://dx.doi.org/10.4028/www.scientific.net/amm.79.270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The research progress and results of Lattice Boltzmann method (LBM) for the engineering technology fields are reviewed. Firstly, the basic ideas and principles of Lattice Boltzmann method are briefly introduced. Secondly, the boundary conditions of Lattice Boltzmann method are proposed. Thirdly, the applications in several fields such as single-phase flows, multiphase flows, porous media flows, compressible flows and mathematics are summarized. Finally, the direction of future development for Lattice Boltzmann method was discussed.
7

Li, Weidong, and Li-Shi Luo. "Finite Volume Lattice Boltzmann Method for Nearly Incompressible Flows on Arbitrary Unstructured Meshes." Communications in Computational Physics 20, no. 2 (July 21, 2016): 301–24. http://dx.doi.org/10.4208/cicp.211015.040316a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractA genuine finite volume method based on the lattice Boltzmann equation (LBE) for nearly incompressible flows is developed. The proposed finite volume lattice Boltzmann method (FV-LBM) is grid-transparent, i.e., it requires no knowledge of cell topology, thus it can be implemented on arbitrary unstructured meshes for effective and efficient treatment of complex geometries. Due to the linear advection term in the LBE, it is easy to construct multi-dimensional schemes. In addition, inviscid and viscous fluxes are computed in one step in the LBE, as opposed to in two separate steps for the traditional finite-volume discretization of the Navier-Stokes equations. Because of its conservation constraints, the collision term of the kinetic equation can be treated implicitly without linearization or any other approximation, thus the computational efficiency is enhanced. The collision with multiple-relaxation-time (MRT) model is used in the LBE. The developed FV-LBM is of second-order convergence. The proposed FV-LBM is validated with three test cases in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the Blasius boundary layer; and (c) the steady flow past a cylinder at the Reynolds numbers Re=10, 20, and 40. The results verify the designed accuracy and efficacy of the proposed FV-LBM.
8

Sun, Yifang, Sen Zou, Guang Zhao, and Bei Yang. "THE IMPROVEMENT AND REALIZATION OF FINITE-DIFFERENCE LATTICE BOLTZMANN METHOD." Aerospace technic and technology, no. 1 (February 26, 2021): 4–13. http://dx.doi.org/10.32620/aktt.2021.1.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The Lattice Boltzmann Method (LBM) is a numerical method developed in recent decades. It has the characteristics of high parallel efficiency and simple boundary processing. The basic idea is to construct a simplified dynamic model so that the macroscopic behavior of the model is the same as the macroscopic equation. From the perspective of micro-dynamics, LBM treats macro-physical quantities as micro-quantities to obtain results by statistical averaging. The Finite-difference LBM (FDLBM) is a new numerical method developed based on LBM. The first finite-difference LBE (FDLBE) was perhaps due to Tamura and Akinori and was examined by Cao et al. in more detail. Finite-difference LBM was further extended to curvilinear coordinates with nonuniform grids by Mei and Shyy. By improving the FDLBE proposed by Mei and Shyy, a new finite difference LBM is obtained in the paper. In the model, the collision term is treated implicitly, just as done in the Mei-Shyy model. However, by introducing another distribution function based on the earlier distribution function, the implicitness of the discrete scheme is eliminated, and a simple explicit scheme is finally obtained, such as the standard LBE. Furthermore, this trick for the FDLBE can also be easily used to develop more efficient FVLBE and FELBE schemes. To verify the correctness and feasibility of this improved FDLBM model, which is used to calculate the square cavity model, and the calculated results are compared with the data of the classic square cavity model. The comparison result includes two items: the velocity on the centerline of the square cavity and the position of the vortex center in the square cavity. The simulation results of FDLBM are very consistent with the data in the literature. When Re=400, the velocity profiles of u and v on the centerline of the square cavity are consistent with the data results in Ghia's paper, and the vortex center position in the square cavity is also almost the same as the data results in Ghia's paper. Therefore, the verification of FDLBM is successful and FDLBM is feasible. This improved method can also serve as a reference for subsequent research.
9

Tong, Ying, and Jian Xia. "The hydrodynamic FORCE of fluid–structure interaction interface in lattice Boltzmann simulations." International Journal of Modern Physics B 34, no. 14n16 (May 30, 2020): 2040085. http://dx.doi.org/10.1142/s0217979220400858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The hydrodynamic force (HF) evaluation plays a critical role in the numerical simulation of fluid–structure interaction (FSI). By directly using the distribution functions of lattice Boltzmann equation (LBE) to evaluate the HF, the momentum exchange algorithm (MEA) has excellent features. Particularly, it is independent of boundary geometry and avoids integration on the complex boundary. In this work, the HF of lattice Boltzmann simulation (LBS) is evaluated by using the MEA. We conduct a comparative study to evaluate two lattice Boltzmann models for constructing the flow solvers, including the LBE with single-relaxation-time (SRT) and multiple-relaxation-time (MRT) collision operators. The second-order boundary condition schemes are used to address the curve boundary. The test case of flow past a cylinder asymmetrically placed in a channel is simulated. Comparing the numerical solutions of Lattice Boltzmann method (LBM) with those of Navier–Stokes equations in the literature, the influence of collision relaxation model, boundary conditions and lattice resolution is investigated. The results demonstrate that the MRT-LB improves the numerical stability of the LBM and the accuracy of HF.
10

Wang, Yan, Chang Shu, Chiang Juay Teo, Jie Wu, and Liming Yang. "Three-Dimensional Lattice Boltzmann Flux Solver and Its Applications to Incompressible Isothermal and Thermal Flows." Communications in Computational Physics 18, no. 3 (September 2015): 593–620. http://dx.doi.org/10.4208/cicp.300514.160115a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractA three-dimensional (3D) lattice Boltzmann flux solver (LBFS) is presented in this paper for the simulation of both isothermal and thermal flows. The present solver combines the advantages of conventional Navier-Stokes (N-S) solvers and lattice Boltzmann equation (LBE) solvers. It applies the finite volume method (FVM) to solve the N-S equations. Different from the conventional N-S solvers, its viscous and inviscid fluxes at the cell interface are evaluated simultaneously by local reconstruction of LBE solution. As compared to the conventional LBE solvers, which apply the lattice Boltzmann method (LBM) globally in the whole computational domain, it only applies LBM locally at each cell interface, and flow variables at cell centers are given from the solution of N-S equations. Since LBM is only applied locally in the 3D LBFS, the drawbacks of the conventional LBM, such as limitation to uniform mesh, tie-up of mesh spacing and time step, tedious implementation of boundary conditions, are completely removed. The accuracy, efficiency and stability of the proposed solver are examined in detail by simulating plane Poiseuille flow, lid-driven cavity flow and natural convection. Numerical results show that the LBFS has a second order of accuracy in space. The efficiency of the LBFS is lower than LBM on the same grids. However, the LBFS needs very less non-uniform grids to get grid-independence results and its efficiency can be greatly improved and even much higher than LBM. In addition, the LBFS is more stable and robust.

Dissertations / Theses on the topic "LBM (Lattice Boltzmann Method)":

1

Chang, Qingming. "LATTICE BOLTZMANN METHOD (LBM) FOR THERMAL MULTIPHASE FLUID DYNAMICS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1133469811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Haughey, Kyle J. "Boundless Fluids Using the Lattice-Boltzmann Method." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Computer-generated imagery is ubiquitous in today's society, appearing in advertisements, video games, and computer-animated movies among other places. Much of this imagery needs to be as realistic as possible, and animators have turned to techniques such as fluid simulation to create scenes involving substances like smoke, fire, and water. The Lattice-Boltzmann Method (LBM) is one fluid simulation technique that has gained recent popularity due to its relatively simple basic algorithm and the ease with which it can be distributed across multiple processors. Unfortunately, current LBM simulations also suffer from high memory usage and restrict free surface fluids to domains of fixed size. This thesis modifies the LBM to utilize a recursive run-length-encoded (RLE) grid data structure instead of the standard fixed array of grid cells, which reduces the amount of memory required for LBM simulations as well as allowing the domain to grow and shrink as necessary to accomodate a liquid surface. The modified LBM is implemented within the open-source 3D animation package Blender and compared to Blender's current LBM simulator using the metrics of memory usage and time required to complete a given simulation. Results show that, although the RLE-based simulator can take several times longer than the current simulator to complete a given simulation, the memory usage is significantly reduced, making an RLE-based simulation preferable in a few specific circumstances.
3

Walther, Édouard. "Contribution de la Lattice Boltzmann Method à l’étude de l’enveloppe du bâtiment." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN004/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les enjeux de réduction des consommations d’énergie, d’estimation de la durabilité ainsi que l’évolution des pratiques constructives et réglementaires génèrent une augmentation significative du niveau de détail exigé dans la simulation des phénomènes physiques du Génie Civil pour une prédiction fiable du comportement des ouvrages. Le bâtiment est le siège de phénomènes couplés multi-échelles, entre le microscopique (voire le nanoscopique) et le macroscopique, impliquant des études de couplages complexes entre matériaux, à l’instar des phénomènes de sorption-désorption qui influent sur la résistance mécanique, les transferts de masse, la conductivité, le stockage d’énergie ou la durabilité d’un ouvrage. Les méthodes numériques appliquées permettent de résoudre certains de ces problèmes en ayant recours aux techniques de calcul multi-grilles, de couplage multi-échelles ou de parallélisation massive afin de réduire substantiellement les temps de calcul. Dans le présent travail, qui traite de plusieurs simulations ayant trait à la physique du bâtiment, nous nous intéressons à la pertinence d’utilisation de la méthode "Lattice Boltzmann". Il s’agit d’une méthode numérique construite sur une grille – d’où l’appellation de lattice – dite "mésoscopique" qui, à partir d’un raisonnement de thermodynamique statistique sur le comportement d’un groupes de particules microscopiques de fluide, permet d’obtenir une extrapolation consistante vers son comportement macroscopique. Après une étude les avantages comparés de la méthode et sur le comportement oscillatoire qu'elle exhibe dans certaines configurations, on présente :- une application au calcul des propriétés diffusives homogénéisée des matériaux cimentaires en cours d'hydratation, par résolution sur le cluster du LMT.- une application à l'énergétique du bâtiment avec la comportement d'une paroi solaire dynamique, dont le calcul a été porté sur carte graphique afin d'en évaluer le potentiel
Reducing building energy consumption and estimating the durability of structures are ongoing challenges in the current regulatory framework and construction practice. They suppose a significant increase of the level of detail for simulating the physical phenomena of Civil Engineering to achieve a reliable prediction of structures.Building is the centre of multi-scale, coupled phenomena ranging from the micro (or even nano) to the macro-scale, thus implying complex couplings between materials such as sorption-desorption process which influences the intrinsic properties of matter such as mechanical resistance, mass transfer, thermal conductivity, energy storage or durability.Applied numerical methods allow for the resolution of some of these problems by using multi-grid computing, multi-scale coupling or massive parallelisation in order to substantially reduce the computing time.The present work is intended to evaluate the suitability of the “lattice Boltzmann method” applied to several applications in building physics. This numerical method, said to be “mesoscopic”, starts from the thermodynamic statistical behaviour of a group of fluid particles, mimicking the macroscopic behaviour thanks to a consistent extrapolation across the scales.After having studied the comparative advantages of the method and the oscillatory behaviour it displays under some circumstances, we present - An application to the diffusive properties of cementitious materials during hydration via numerical homogenization and cluster-computing numerical campaign - An application to building energy with the modeling of a solar active wall in forced convection simulated on a graphical processing unit
4

Koosukuntla, Narender Reddy. "Towards Development of a Multiphase Simulation Model Using Lattice Boltzmann Method (LBM)." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1321629685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gokaltun, Seckin. "Lattice Boltzmann Method for Flow and Heat Transfer in Microgeometries." FIU Digital Commons, 2008. http://digitalcommons.fiu.edu/etd/64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
6

BOCANEGRA, CIFUENTES JOHAN AUGUSTO. "Lattice Boltzmann Method: applications to thermal fluid dynamics and energy systems." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1060259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In many energy systems fluids play a fundamental role, and computational simulations are a valuable tool to study their complex dynamics. The Lattice Boltzmann Method (LBM) is a relatively new numerical method for computational fluid dynamics, but its applications can be extended to physical phenomena beyond fluid flows. This thesis presents applications of the LBM to thermal fluid dynamics and energy systems. Specific applications considered are: application to nuclear reactor engineering problems; thermal fluid dynamic behavior of a Natural Circulation Loop; nanoparticles gravitational sedimentation; acoustical problems. The main original contributions derived from this work are: first, the systematic description of the current status of LBM applications to nuclear reactors problems, including test cases and benchmark simulations; second, the development and validation of a LBM model for a single-phase natural circulation loop; third, the development and validation of a LBM model for gravitational sedimentation of nanoparticles, and fourth, the systematic description of the current status of LBM applications to acoustics, including simulations of test cases. The development of this thesis was not limited to simulations; experimental studies in parallel connected natural circulation loops of small inner diameter were conducted, showing the wide applicability of the one-dimensional theoretical models used to validate the LBM results. Additional contributions derived from this work: 1. the applicability of the method to study neutron transport and nuclear waste disposal using porous materials was shown. 2. changes in the thermophysical performance of the natural circulation loop when the loop reached a non-laminar (transition) regime were found at a Reynolds number lower than the typical range. 3. variable diffusion and sedimentation parameters were effective to model the experimental sedimentation curves. In conclusion, this work shows that the LBM is a versatile and powerful computational tool that can be used beyond the common Computational Fluid Dynamics applications.
In many energy systems fluids play a fundamental role, and computational simulations are a valuable tool to study their complex dynamics. The Lattice Boltzmann Method (LBM) is a relatively new numerical method for computational fluid dynamics, but its applications can be extended to physical phenomena beyond fluid flows. This thesis presents applications of the LBM to thermal fluid dynamics and energy systems. Specific applications considered are: application to nuclear reactor engineering problems; thermal fluid dynamic behavior of a Natural Circulation Loop; nanoparticles gravitational sedimentation; acoustical problems. The main original contributions derived from this work are: first, the systematic description of the current status of LBM applications to nuclear reactors problems, including test cases and benchmark simulations; second, the development and validation of a LBM model for a single-phase natural circulation loop; third, the development and validation of a LBM model for gravitational sedimentation of nanoparticles, and fourth, the systematic description of the current status of LBM applications to acoustics, including simulations of test cases. The development of this thesis was not limited to simulations; experimental studies in parallel connected natural circulation loops of small inner diameter were conducted, showing the wide applicability of the one-dimensional theoretical models used to validate the LBM results. Additional contributions derived from this work: 1. the applicability of the method to study neutron transport and nuclear waste disposal using porous materials was shown. 2. changes in the thermophysical performance of the natural circulation loop when the loop reached a non-laminar (transition) regime were found at a Reynolds number lower than the typical range. 3. variable diffusion and sedimentation parameters were effective to model the experimental sedimentation curves. In conclusion, this work shows that the LBM is a versatile and powerful computational tool that can be used beyond the common Computational Fluid Dynamics applications.
7

Wissocq, Gauthier. "Investigation of lattice Boltzmann methods for turbomachinery secondary air system simulations." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ce manuscrit présente une étude du potentiel des méthodes lattice Boltzmann pour traiter des écoulements circulant dans les systèmes de refroidissement des turbomachines. La combinaison de phénomènes physiques complexes donne naissance à des structures instationnaires, non-axisymmétriques et de période a priori inconnue. Leur bonne modélisation représente un défi pour la simulation numérique en mécanique des fluides. Ce travail peut être divisé en trois sous-parties. Une étude physique des instabilités à l'origine des structures tourbillonnaires est d'abord effectuée par analyse de stabilité linéaire des écoulements. Ensuite, les méthodes lattice Boltzmann sont introduites et leurs problèmes de stabilités numériques sont étudiés via des analyses basées sur l'approche de von Neumann. Enfin, la méthode est évaluée sur des simulations académiques de complexité croissante représentatives des systèmes d'air secondaire, nécessitant des simulations à flux de chaleur conjugués
This thesis provides an investigation on the use of lattice Boltzmann methods to treat turbomachinery secondary cooling systel flows. The combination of complex physical phenomena (rotating environment with high temperature fluctuations) gives rise to unsteady, non-axisymmetric structures with a priori unknown periodicity. Their modelling, required for a correct heat transfer prediction, represents a challenge for numerical simulations in fluid mechanics. This work can be divided into three sub-sections. A physical study of the instabilities at the origin of unsteady structures is first carried out by analyzing the linear stability of the flows. Lattice Boltzmann methods are then introduced and their numerical stability issues are studied through analyses based on the von Neumann approach. Finally, the method is assessed on academic simulations of increasing complexity representative of secondary air systems, requiring conjugate heat transfer simulations
8

Caiazzo, Alfonso. "Asymptotic Analysis of lattice Boltzmann method for Fluid-Structure interaction problems." Doctoral thesis, Scuola Normale Superiore, 2007. http://hdl.handle.net/11384/85682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The lattice Boltzmann method (LBM) is a numerical solver for the Navier-Stokes equation, based on an underlying molecular dynamic model. Recently, it has been extended towards the simulation of complex fluids. In this thesis, we use the asymptotic expansion technique to investigate the standard scheme, the initialization problem and possible developments towards moving boundary and fluid-structure interaction problems. At the same time, it will be shown how the mathematical analysis can be used to understand and improve the algorithm. First of all, we elaborate the tool "asymptotic analysis", explaining the methods and the strategy we use for the investigation. A first application to the LBM is described, recovering the approximation of the Navier-Stokes solution starting from the lattice Boltzmann equation. As next, we extend the analysis, to investigate the origin and the dynamic of initial layers. A class of initialization algorithms to generate accurate initial values within the LB framework is described in detail. Then we study the features of a simple moving boundary LBM. In particular, we concentrate on the initialization of new uid nodes created by the variations of the computational fluid domain. Finally, to set up an LBM for uid structure interaction, efficient routines to evaluate forces are required. We describe the Momentum Exchange algorithm (MEA). Precise accuracy estimates are derived, and the analysis leads to the construction of an improved method to evaluate the interface stresses. In conclusion, we test the defined code and validate the results of the analysis on several simple benchmarks.
9

Banete, Olimpia. "TOWARDS MODELING HEAT TRANSFER USING A LATTICE BOLTZMANN METHOD FOR POROUS MEDIA." Thesis, Laurentian University of Sudbury, 2014. https://zone.biblio.laurentian.ca/dspace/handle/10219/2200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
I present in this thesis a fluid flow and heat transfer model for porous media using the lattice Boltzmann method (LBM). A computer simulation of this process has been developed and it is written using MATLAB software. The simulation code is based on a two dimensional model, D2Q9. Three physical experiments were designed to prove the simulation model through comparision with numerical results. In the experiments, physical properties of the air flow and the porous media were used as input for the computer model. The study results are not conclusive but show that the LBM model may become a reliable tool for the simulation of natural convection heat transfer in porous media. Simulations leading to improved understanding of the processes of air flow and heat transfer in porous media may be important into improving the efficiency of methods of air heating or cooling by passing air through fragmented rock.
10

Cao, Weijin. "Investigation of the applicability of the lattice Boltzmann method to free-surface hydrodynamic problems in marine engineering." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0011/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La simulation numérique des écoulements à surface libre pour les applications du génie maritime est un problème qui présente de grands défis dans le domaine de la dynamique des fluides numérique (CFD). On propose dans cette thèse une solution, qui consiste à utiliser la méthode de Boltzmann sur réseau régularisée (RLBM) avec un modèle de surface libre basé sur le volume-de-fluide (VOF), et on étudie sa faisabilité et sa fiabilité. Les connaissances théoriques de la méthode de Boltzmann sur réseau (LBM) sont présentées dans un premier temps, sur la base d'un développement polynomial d'Hermite et d'une analyse de Chapman-Enskog. De cette perspective, l’idée de la RLBM se résume comme étant la régularisation d'Hermite des fonctions de distribution. Dans les cas tests suivants du vortex de Taylor-Green et de la cavité entraînée, il est vérifié que la RLBM posse possède une précision de second ordre et une stabilité améliorée. On a alors ensuite implémenté le modèle de surface libre dans la RLBM. Sur la simulation d'une onde de gravité visqueuse stationnaire et d'un écoulement de dambreak, il est montré que la régularisation stabilise fortement le calcul en réduisant les oscillations de pression, ce qui est très bénéfique pour obtenir des écoulements à surface libre précis, et que la RLBM n'introduit pas non plus de dissipation numérique supplémentaire. De plus, une nouvelle méthode de reconstruction des fonctions de distribution à la surface libre est proposée. Le modèle proposé est ainsi plus consistent avec la RLBM, ce qui offre un moyen efficace pour simuler des écoulements à surface libre à un grand nombre de Reynolds en génie maritime
The numerical simulation of the freesurface flows for marine engineering applications is a very challenging issue in the field of computational fluid dynamics (CFD). In this thesis, we propose a solution, which is to use the regularized lattice Boltzmann method (RLBM) with a volume-of-fluid (VOF) based single-phase free-surface lattice Boltzmann (LB) model, and we investigate its feasibility and its reliability. The theoretical insights of the lattice Boltzmann method (LBM) are given at first, through the Hermite expansion and the Chapman-Enskog analysis. From this perspective, the idea of the RLBM is summarized as the Hermite regularization of the distribution functions. On the test-cases of the Taylor-Green vortex and the lid-driven cavity flow, the RLBM is verified to have a 2nd-order accuracy and an improved stability. The adopted free-surface model is then implemented into the RLBM and validated through simulating a viscous standing wave and a dambreak flow problems. It is shown that the regularization not only strongly stabilizes the calculation by reducing spurious pressure oscillations, which is very beneficial for obtaining accurate free-surface motions, but also does not introduce any extra numerical dissipation. Furthermore, a new reconstruction method for the distribution functions at the free-surface is proposed. The present model is more consistent with the RLBM, which provides an effective way for simulating high-Reynoldsnumber free-surface flows in marine engineering

Books on the topic "LBM (Lattice Boltzmann Method)":

1

Mohamad, A. A. Lattice Boltzmann Method. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-455-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mohamad, A. A. Lattice Boltzmann Method. London: Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-7423-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krüger, Timm, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva, and Erlend Magnus Viggen. The Lattice Boltzmann Method. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44649-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Luo, Li-Shi. Applications of the Lattice Boltzmann method to complex and turbulent flows. Hampton, Va: ICASE, NASA Langley Research Center, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohamad, A. A. Lattice Boltzmann method: Fundamentals and engineering applications with computer codes / A. A. Mohamad. London: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lallemand, Pierre. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Han, Mengtao, and Ryozo Ooka. Large-Eddy Simulation Based on the Lattice Boltzmann Method for Built Environment Problems. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1264-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yeh, Chou, and Langley Research Center, eds. On higher order dynamics in lattice-based models using Chapman-Enskog method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Succi, Sauro. Entropic Lattice Boltzmann. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The LB with enhanced collisions opened the way to the top-down design of LB schemes, with major gains in flexibility and computational efficiency. However, compliance with the second principle was swept under the carpet in the process, with detrimental effects on the numerical stability of the method. It is quite fortunate that, albeit forgotten, the above compliance did not get lost in the top-down procedure. Entropic LB schemes, the object of the present chapter, explain the whys and hows of this nice smile of Lady Luck.
10

Succi, Sauro. Lattice Boltzmann Models for Microflows. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The Lattice Boltzmann method was originally devised as a computational alternative for the simulation of macroscopic flows, as described by the Navier–Stokes equations of continuum mechanics. In many respects, this still is the main place where it belongs today. Yet, in the past decade, LB has made proof of a largely unanticipated versatility across a broad spectrum of scales, from fully developed turbulence, to microfluidics, all the way down to nanoscale flows. Even though no systematic analogue of the Chapman–Enskog asymptotics is available in this beyond-hydro region (no guarantee), the fact remains that, with due extensions of the basic scheme, the LB has proven capable of providing several valuable insights into the physics of flows at micro- and nano-scales. This does not mean that LBE can solve the actual Boltzmann equation or replace Molecular Dynamics, but simply that it can provide useful insights into some flow problems which cannot be described within the realm of the Navier–Stokes equations of continuum mechanics. This Chapter provides a cursory view of this fast-growing front of modern LB research.

Book chapters on the topic "LBM (Lattice Boltzmann Method)":

1

Zhang, Junfeng, and Daniel Y. Kwok. "Lattice Boltzmann Method (LBM)." In Encyclopedia of Microfluidics and Nanofluidics, 1598–604. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Junfeng, and Daniel Y. Kwok. "Lattice Boltzmann Method (LBM)." In Encyclopedia of Microfluidics and Nanofluidics, 1–8. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-3-642-27758-0_800-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Fengshou, Branko Damjanac, and Jason Furtney. "DEM Coupled with Lattice-Boltzmann Method (LBM)." In Coupled Thermo-Hydro-Mechanical Processes in Fractured Rock Masses, 133–59. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25787-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Han, Mengtao, and Ryozo Ooka. "From LBE to LBM: Using the LBM to Solve Built Environment Problems." In Large-Eddy Simulation Based on the Lattice Boltzmann Method for Built Environment Problems, 115–27. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1264-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Han, Mengtao, and Ryozo Ooka. "Turbulence Models and LBM-Based Large-Eddy Simulation (LBM-LES)." In Large-Eddy Simulation Based on the Lattice Boltzmann Method for Built Environment Problems, 101–13. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1264-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Han, Mengtao, and Ryozo Ooka. "LBM-LES in an Isothermal Indoor Flow Problem." In Large-Eddy Simulation Based on the Lattice Boltzmann Method for Built Environment Problems, 145–71. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1264-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Han, Mengtao, and Ryozo Ooka. "LBM-LES in Ideal 3D Lid-Driven Cavity Flow Problems." In Large-Eddy Simulation Based on the Lattice Boltzmann Method for Built Environment Problems, 131–43. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1264-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rapaka, S., T. Mansi, B. Georgescu, M. Pop, G. A. Wright, A. Kamen, and Dorin Comaniciu. "LBM-EP: Lattice-Boltzmann Method for Fast Cardiac Electrophysiology Simulation from 3D Images." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012, 33–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33418-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Han, Mengtao, and Ryozo Ooka. "LBM-LES in the Outdoor Wind Environment Problem Around a Single Building." In Large-Eddy Simulation Based on the Lattice Boltzmann Method for Built Environment Problems, 173–212. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1264-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Mingyang, Song Yan, Aimin Du, and Sichuan Xu. "The Cracks Effect Analysis on In-Plane Diffusivity in Proton Exchange Membrane Fuel Cell Catalyst Layer by Lattice Boltzmann Method." In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 141–50. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractCrack is always considered as a kind of defect on a catalyst layer in a proton exchange membrane fuel cell (PEMFC), and its enhancement on mass transfer ability has always been ignored. In this work, the crack effect analysis on in-plane (IP) diffusivity on a catalyst layer is numerically evaluated by a D2Q9 lattice Boltzmann method (LBM). The effects on some key parameters like crack length, width, quantity and shape are carried out. The IP concentration distribution of crack CL shows deviation from the theoretical value, and this is because of the tortuosity caused by the CL cracks. The crack shape has almost no effect on the IP effective diffusivity, and the crack length shows a little bit more influence than the crack width and quantity. The crack ratio of the CL is the dominant effect on the IP mass diffusivity enhancement, and the lower the CL porosity is, the higher this enhancement achieve.

Conference papers on the topic "LBM (Lattice Boltzmann Method)":

1

Sajjadi, H., M. Salmanzadeh, and G. Ahmadi. "Indoor Airflow Simulation Using Lattice Boltzmann Method." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Indoor air quality (IAQ) is very important to human health and comfort as increasingly people spent most of their time in indoor environment. Numerical simulation of indoor airflows has become a significant tool for investigation of the indoor air quality. Cost effective computational methods with reasonable accuracy have the advantage of being more accessible to designers compared to more precise but expensive DNS methods. Recently developed Lattice-Boltzmann Method (LBM) has proved to be a powerful numerical technique for simulating fluid flows in various applications. In comparison with the conventional CFD methods, the advantages of LBM are: simple calculation procedure, simple and efficient implementation for parallel computation, and easy and robust handling of complex geometries. The indoor airflow is typically in turbulent flow regimes. Due to the high costs of more accurate direct numerical simulation (DNS) and large eddy simulation (LES), in this study the Reynolds Averaged Navier-Stokes (RANS) method was used for analyzing the turbulent flow conditions. The RANS governing equations, and in particular, the k-ε turbulence model was incorporated into the Lattice-Boltzmann computational method. The simulation results showed that the combined LBM-RANS provide a reasonably accurate description of the airflow behavior in the room at modest computational cost.
2

Seta, Takeshi. "Particulate Flow Simulation by the Immersed Boundary Lattice Boltzmann Method." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-04008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We demonstrate the applicability of the immersed boundary lattice Boltzmann method (IB-LBM) based on the implicit correction method to the simulation of rigid body motion in a viscous fluid and to the natural convection calculation. We compare the accuracy of the IB-LBM based on the implicit correction method with one of the IB-LBM based on the direct forcing method that eliminates the necessity of the determination of free parameters. In the simulations of the cylindrical Couette flow and of the heat transfer between two concentric cylinders, the implicit correction method indicates the first-order accuracy in the number of Lagrangian points. The accuracy of the IB-LBM based on the direct forcing method is independent of the number of the boundary points. The IB-LBM based on the implicit correction method is more accurate than one based on the direct forcing method.
3

Hsu, C. T., S. W. Chiang, and K. F. Sin. "A Novel Dynamics Lattice Boltzmann Method for Gas Flows." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The lattice Boltzmann method (LBM), where discrete velocities are specifically assigned to ensure that a particle leaves one lattice node always resides on another lattice node, has been developed for decades as a powerful numerical tool to solve the Boltzmann equation for gas flows. The efficient implementation of LBM requires that the discrete velocities be isotropic and that the lattice nodes be homogeneous. These requirements restrict the applications of the currently-used LBM schemes to incompressible and isothermal flows. Such restrictions defy the original physics of Boltzmann equation. Much effort has been devoted in the past decades to remove these restrictions, but of less success. In this paper, a novel dynamic lattice Boltzmann method (DLBM) that is free of the incompressible and isothermal restrictions is proposed and developed to simulate gas flows. This is achieved through a coordinate transformation featured with Galilean translation and thermal normalization. The transformation renders the normalized Maxwell equilibrium distribution with directional isotropy and spatial homogeneity for the accurate and efficient implementation of the Gaussian-Hermite quadrature. The transformed Boltzmann equation contains additional terms due to local convection and acceleration. The velocity quadrature points in the new coordinate system are fixed while the correspondent points in the physical space change from time to time and from position to position. By this dynamic quadrature nature in the physical space, we term this new scheme as the dynamic quadrature scheme. The lattice Boltzmann method (LBM) with the dynamic quadrature scheme is named as the dynamic lattice Boltzmann method (DLBM). The transformed Boltzmann equation is then solved in the new coordinate system based on the fixed quadrature points. Validations of the DLBM have been carried with several benchmark problems. Cavity flows problem are used. Excellent agreements are obtained as compared with those obtained from the conventional schemes. Up to date, the DLBM algorithm can run up to Mach number at 0.3 without suffering from numerical instability. The application of the DLBM to the Rayleigh-Bernard thermal instability problem is illustrated, where the onset of 2D vortex rolls and 3D hexagonal cells are well-predicted and are in excellent agreement with the theory. In summary, a novel dynamic lattice Boltzmann method (DLBM) has been proposed with algorithm developed for numerical simulation of gas flows. This new DLBM has been demonstrated to have removed the incompressible and isothermal restrictions encountered by the traditional LBM.
4

Vural, Yasemin, Suryanarayana R. Pakalapati, and Ismail B. Celik. "A Continuity Outlet Boundary Condition for the Lattice Boltzmann Method." In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A continuity outlet boundary condition for the Lattice Boltzmann Method (LBM) is proposed based on the assurance of the mass conservation of the system. The main advantage of the proposed boundary condition over the conventional Computational Fluid Dynamics (CFD) techniques is that the macroscopic properties, e.g. velocity, pressure etc. are not needed to be prescribed at the outlet, these properties are automatically calculated with the imposed boundary condition. This is especially useful in practice where the macroscopic properties at the outlet are difficult or impossible to be measured and described as in the biological flows. In order to test the feasibility of the proposed method, the LBM simulations are first verified for its capability to simulate flow in a symmetrically bifurcated channel. Then asymmetrically bifurcated geometries representing the blood vessels have been designed with different bifurcation angles. The new boundary condition is also tested for multi-component LBM simulations. For these cases, LBM predictions have been compared with the predictions for the commercial CFD software, namely ANSYS FLUENT at different Reynolds numbers. The results show that there is a good agreement between the LBM and FLUENT predictions, and this proves the capability of the proposed boundary condition as a viable method that can be used in practice.
5

Bazargan, Majid, and Mostafa Varmazyar. "Modeling of Free Convection Heat Transfer to a Supercritical Fluid in a Square Enclosure by the Lattice Boltzmann Method." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
During the last decade a number of numerical computations based on the finite volume approach have been reported studying various aspects of heat transfer near the critical point. In this paper, a Lattice Boltzmann Method (LBM) has been developed to simulate laminar free convection heat transfer to a supercritical fluid in a square enclosure. The LBM is an ideal mesoscopic approach to solve nonlinear macroscopic conservation equations due to its simplicity and capability of parallelization. The Lattice Boltzmann Equation (LBE) represents the minimal form of the Boltzmann kinetic equation. The LBE is a very elegant and simple equation, for a discrete density distribution function and is the basis of the LBM. For the mass and momentum equations, an LBM is used while the heat equation is solved numerically by a finite volume scheme. In this study, inter-particle forces are taken into account for non-ideal gases in order to simulate the velocity profile more accurately. The laminar free convection cavity flow has been extensively used as a benchmark test to evaluate the accuracy of the numerical code. It is found that the numerical results of this study are in good agreement with the experimental and numerical results reported in the literature. The results of the LBM–FVM combination are found to be in excellent agreement with the FVM–FVM combination for the Navier-Stokes and heat transfer equations.
6

Premnath, Kannan N., Jean-Christophe Nave, and Sanjoy Banerjee. "Computation of Multiphase Flows With Lattice Boltzmann Methods." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Lattice Boltzmann methods (LBM) have several features that make them attractive for computation of large fluid mechanics problems in complex geometries. For example, in comparison with the conventional projection methods that are widely used in computational fluid dynamics, LBM does not require solution of a pressure Poisson equation which usually accounts for ~ 80% of the computational time required per time step, and it is also local, making parallelization straightforward, and run time on distributed memory architectures linearly scalable. LBM has therefore been considered for direct simulation of multiphase flows, but its application has been limited because of instabililties that arise when the viscosities become small and/or the density mismatch between the fluids is large. Current approaches to computation of multiphase systems using LBM are reviewed, and new approaches based on multiple relaxation times and a regularization procedure which maintain stability at low viscosities are discussed and a technique using time-splitting, that alleviates the density ratio constraint, is proposed. Applications of the LBM to magnetohydrodynamic (MHD) multiphase flows will be discussed.
7

Gupta, Amit, and Ranganathan Kumar. "Simulation of Droplet Flows Using Lattice Boltzmann Method." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this work, the mesoscale approach of two-dimensional lattice Boltzmann method (LBM) has been employed to study droplet collision with a dry wall. The impact of drops with solid walls is simulated by using the pseudo-potential method of LBM. Simulations have been conducted for 2<We<162, and it is shown that the maximum spreading of the drop on the solid surface depends on the surrounding density, velocity of impact, surface tension, and the surface wetting characteristics. For a short time interval right after the impact the spreading diameter is shown to follow a parabolic dependence with time. The spread factor is seen to be higher as the Weber number increases. Under certain conditions when the drop has a high impact velocity and/or low surface tension, the kinetic energy of impact dominates over the dissipation and surface energy, leading to breakup of the drop into smaller drops. This breakup is shown to depend upon the wetting/non-wetting nature of the surface used. The spread factor is found to be a maximum at the time of breakup.
8

Falcucci, Giacomo, Elio Jannelli, Stefano Ubertini, Gino Bella, Alessandro De Maio, and Silvia Palpacelli. "Lattice Boltzmann Simulation of Diesel Injection." In ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ht2012-58175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The evaluation and improvement of internal combustion engine performance is a challenge of major importance and it has been the object of research efforts over the last centuries. Phenomena like fuel cavitation inside diesel injector nozzles, the formation of spray and its break-up in the combustion chamber as well as the impingement of fuel droplets on engine walls are known to have a great influence on energy release during combustion and on pollutant formation and emissions, as well. In this work, a methodology based on the Lattice Boltzmann Method (LBM) is used to directly simulate phenomena affecting diesel injection. LBM is a numerical method based on Boltzmann’s Kinetic Equation, which has been successfully employed in recent years for the simulation of phenomena of technical interest. The results of LB simulations are displayed and compared to experimental data from literature, proving the accuracy of the proposed investigation method.
9

Fu, S. C., W. W. F. Leung, and R. M. C. So. "A Lattice Boltzmann Method Based Numerical Scheme for Microchannel Flows." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Lattice Boltzmann method (LBM) has been recently developed into an alternative and promising numerical scheme for modeling fluid physics and fluid flows. The equation is hyperbolic and can be solved locally, explicitly, and efficiently on parallel computers. LBM has been applied to different types of complex flows with varying degree of success, but rarely to micro-scale flow. Due to its small scale, micro-channel flow exhibits many interesting phenomena that are not observed in its macro-scale counterpart. It is known that the Navier-Stokes equations can still be used to treat micro-channel flows if a slip wall boundary condition is assumed. The setting of boundary conditions in LBM has been a difficult task, and reliable boundary setting methods are limited. This paper reports on the development of an algorithm to solve the Boltzmann equation with a splitting method that allows the application of a slip wall boundary condition. Moreover, the fluid viscosity is accounted for as an additional term in the equilibrium particle distribution function, which offers the ability to simulate both Newtonian and non-Newtonian fluids. An LBM based numerical scheme, which is suitable for micro-channel flows, is proposed. A two-dimensional nine-velocity lattice model is developed for the numerical simulation. Validation of the numerical scheme is carried out against micro-channel, micro-tube and driven cavity flows, and excellent agreement is obtained between numerical calculations and analytical solutions of these flows.
10

Kucinschi, Bogdan R., and Abdollah A. Afjeh. "Simulation of Flow in Thin Fluid Films Using the Lattice Boltzmann Method." In STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The present work deals with the application of the Lattice Boltzmann Method (LBM), which is a relatively new Computational Fluid Dynamics approach, to fluid film lubrication. LBM accounts for the inertia forces, while being easier to implement than Navier-Stokes solvers for complex geometric configurations. The LBM solution for a classic case is presented in comparison with the analytic Reynolds solution and the numeric solution obtained with Navier-Stokes solvers.

Reports on the topic "LBM (Lattice Boltzmann Method)":

1

Dawson, Leelinda, and Yansen Wang. Terrain and Urban Data Preprocessing System for the Atmospheric Boundary Layer Environment – Lattice Boltzmann Model (ABLE-LBM). DEVCOM Army Research Laboratory, October 2023. http://dx.doi.org/10.21236/ad1213050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Radhi, Mohanad. Passive Separation of Binary Fluid Mixtures in Microchannels Using Lattice Boltzmann Method. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fredrich, J. T., W. B. Lindquist, D. R. Noble, and R. M. O'Connor. Development, Implementation, and Experimental Validation of the Lattice Boltzmann Method for Modeling Three-Dimensional Complex Flows. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/3865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kwon, Kyung, Liang-Shih Fan, Qiang Zhou, and Hui Yang. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1183009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

England, William, and Jeffrey Allen. Thermal, microchannel, and immersed boundary extension validation for the Lattice-Boltzmann method : Report 2 in “discrete nano-scale mechanics and simulations” series. Information Technology Laboratory (U.S.), August 2017. http://dx.doi.org/10.21079/11681/22863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aursjø, Olav, Aksel Hiorth, Alexey Khrulenko, and Oddbjørn Mathias Nødland. Polymer flooding: Simulation Upscaling Workflow. University of Stavanger, November 2021. http://dx.doi.org/10.31265/usps.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
There are many issues to consider when implementing polymer flooding offshore. On the practical side one must handle large volumes of polymer in a cost-efficient manner, and it is crucial that the injected polymer solutions maintain their desired rheological properties during transit from surface facilities and into the reservoir. On the other hand, to predict polymer flow in the reservoir, one must conduct simulations to find out which of the mechanisms observed at the pore and core scales are important for field behavior. This report focuses on theoretical aspects relevant for upscaling of polymer flooding. To this end, several numerical tools have been developed. In principle, the range of length scales covered by these tools is extremely wide: from the nm (10-9 m) to the mm (10-3 m) range, all the way up to the m and km range. However, practical limitations require the use of other tools as well, as described in the following paragraphs. The simulator BADChIMP is a pore-scale computational fluid dynamics (CFD) solver based on the Lattice Boltzmann method. At the pore scale, fluid flow is described by classical laws of nature. To a large extent, pore scale simulations can therefore be viewed as numerical experiments, and they have great potential to foster understanding of the detailed physics of polymer flooding. While valid across length scales, pore scale models require a high numerical resolution, and, subsequently, large computational resources. To model laboratory experiments, the NIORC has, through project 1.1.1 DOUCS, developed IORCoreSim. This simulator includes a comprehensive model for polymer rheological behavior (Lohne A. , Stavland, Åsen, Aursjø, & Hiorth, 2021). The model is valid at all continuum scales; however, the simulator implementation is not able to handle very large field cases, only smaller sector scale systems. To capture polymer behavior at the full field scale, simulators designed for that specific purpose must be used. One practical problem is therefore: How can we utilize the state-of-the-art polymer model, only found in IORCoreSim, as a tool to decrease the uncertainty in full field forecasts? To address this question, we suggest several strategies for how to combine different numerical tools. In the Methodological Approach section, we briefly discuss the more general issue of linking different scales and simulators. In the Validation section, we present two case studies demonstrating the proposed strategies and workflows.

To the bibliography