Academic literature on the topic 'Lattices theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lattices theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lattices theory"
Day, Alan. "Doubling Constructions in Lattice Theory." Canadian Journal of Mathematics 44, no. 2 (April 1, 1992): 252–69. http://dx.doi.org/10.4153/cjm-1992-017-7.
Full textFlaut, Cristina, Dana Piciu, and Bianca Liana Bercea. "Some Applications of Fuzzy Sets in Residuated Lattices." Axioms 13, no. 4 (April 18, 2024): 267. http://dx.doi.org/10.3390/axioms13040267.
Full textHarremoës, Peter. "Entropy Inequalities for Lattices." Entropy 20, no. 10 (October 12, 2018): 784. http://dx.doi.org/10.3390/e20100784.
Full textJežek, J., P. PudláK, and J. Tůma. "On equational theories of semilattices with operators." Bulletin of the Australian Mathematical Society 42, no. 1 (August 1990): 57–70. http://dx.doi.org/10.1017/s0004972700028148.
Full textFrapolli, Nicolò, Shyam Chikatamarla, and Ilya Karlin. "Theory, Analysis, and Applications of the Entropic Lattice Boltzmann Model for Compressible Flows." Entropy 22, no. 3 (March 24, 2020): 370. http://dx.doi.org/10.3390/e22030370.
Full textMcCulloch, Ryan. "Finite groups with a trivial Chermak–Delgado subgroup." Journal of Group Theory 21, no. 3 (May 1, 2018): 449–61. http://dx.doi.org/10.1515/jgth-2017-0042.
Full textGrabowski, Adam. "Stone Lattices." Formalized Mathematics 23, no. 4 (December 1, 2015): 387–96. http://dx.doi.org/10.1515/forma-2015-0031.
Full textBronzan, J. B. "Hamiltonian lattice gauge theory: wavefunctions on large lattices." Nuclear Physics B - Proceedings Supplements 30 (March 1993): 916–19. http://dx.doi.org/10.1016/0920-5632(93)90356-b.
Full textGe, Mo-Lin, Liangzhong Hu, and Yiwen Wang. "KNOT THEORY, PARTITION FUNCTION AND FRACTALS." Journal of Knot Theory and Its Ramifications 05, no. 01 (February 1996): 37–54. http://dx.doi.org/10.1142/s0218216596000047.
Full textNEBE, GABRIELE. "ON AUTOMORPHISMS OF EXTREMAL EVEN UNIMODULAR LATTICES." International Journal of Number Theory 09, no. 08 (December 2013): 1933–59. http://dx.doi.org/10.1142/s179304211350067x.
Full textDissertations / Theses on the topic "Lattices theory"
Race, David M. (David Michael). "Consistency in Lattices." Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc331688/.
Full textRadu, Ion. "Stone's representation theorem." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3087.
Full textGragg, Karen E. (Karen Elizabeth). "Dually Semimodular Consistent Lattices." Thesis, North Texas State University, 1988. https://digital.library.unt.edu/ark:/67531/metadc330641/.
Full textCheng, Y. "Theory of integrable lattices." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.568779.
Full textHeeney, Xiang Xia Huang. "Small lattices." Thesis, University of Hawaii at Manoa, 2000. http://hdl.handle.net/10125/25936.
Full textviii, 87 leaves, bound : ill. ; 29 cm.
Thesis (Ph. D.)--University of Hawaii at Manoa, 2000.
Craig, Andrew Philip Knott. "Lattice-valued uniform convergence spaces the case of enriched lattices." Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1005225.
Full textJipsen, Peter. "Varieties of lattices." Master's thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/15851.
Full textAn interesting problem in universal algebra is the connection between the internal structure of an algebra and the identities which it satisfies. The study of varieties of algebras provides some insight into this problem. Here we are concerned mainly with lattice varieties, about which a wealth of information has been obtained in the last twenty years. We begin with some preliminary results from universal algebra and lattice theory. The next chapter presents some properties of the lattice of all lattice sub-varieties. Here we also discuss the important notion of a splitting pair of varieties and give several characterisations of the associated splitting lattice. The more detailed study of lattice varieties splits naturally into the study of modular lattice varieties and non-modular lattice varieties, dealt with in the second and third chapter respectively. Among the results discussed there are Freese's theorem that the variety of all modular lattices is not generated by its finite members, and several results concerning the question which varieties cover a given variety. The fourth chapter contains a proof of Baker's finite basis theorem and some results about the join of finitely based lattice varieties. Included in the last chapter is a characterisation of the amalgamation classes of certain congruence distributive varieties and the result that there are only three lattice varieties which have the amalgamation property.
Bystrik, Anna. "On Delocalization Effects in Multidimensional Lattices." Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278868/.
Full textMadison, Kirk William. "Quantum transport in optical lattices /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textOcansey, Evans Doe. "Enumeration problems on lattices." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80393.
Full textENGLISH ABSTRACT: The main objective of our study is enumerating spanning trees (G) and perfect matchings PM(G) on graphs G and lattices L. We demonstrate two methods of enumerating spanning trees of any connected graph, namely the matrix-tree theorem and as a special value of the Tutte polynomial T(G; x; y). We present a general method for counting spanning trees on lattices in d 2 dimensions. In particular we apply this method on the following regular lattices with d = 2: rectangular, triangular, honeycomb, kagomé, diced, 9 3 lattice and its dual lattice to derive a explicit formulas for the number of spanning trees of these lattices of finite sizes. Regarding the problem of enumerating of perfect matchings, we prove Cayley’s theorem which relates the Pfaffian of a skew symmetric matrix to its determinant. Using this and defining the Pfaffian orientation on a planar graph, we derive explicit formula for the number of perfect matchings on the following planar lattices; rectangular, honeycomb and triangular. For each of these lattices, we also determine the bulk limit or thermodynamic limit, which is a natural measure of the rate of growth of the number of spanning trees (L) and the number of perfect matchings PM(L). An algorithm is implemented in the computer algebra system SAGE to count the number of spanning trees as well as the number of perfect matchings of the lattices studied.
AFRIKAANSE OPSOMMING: Die hoofdoel van ons studie is die aftelling van spanbome (G) en volkome afparings PM(G) in grafieke G en roosters L. Ons beskou twee metodes om spanbome in ’n samehangende grafiek af te tel, naamlik deur middel van die matriks-boom-stelling, en as ’n spesiale waarde van die Tutte polinoom T(G; x; y). Ons behandel ’n algemene metode om spanbome in roosters in d 2 dimensies af te tel. In die besonder pas ons hierdie metode toe op die volgende reguliere roosters met d = 2: reghoekig, driehoekig, heuningkoek, kagomé, blokkies, 9 3 rooster en sy duale rooster. Ons bepaal eksplisiete formules vir die aantal spanbome in hierdie roosters van eindige grootte. Wat die aftelling van volkome afparings aanbetref, gee ons ’n bewys van Cayley se stelling wat die Pfaffiaan van ’n skeefsimmetriese matriks met sy determinant verbind. Met behulp van hierdie stelling en Pfaffiaanse oriënterings van planare grafieke bepaal ons eksplisiete formules vir die aantal volkome afparings in die volgende planare roosters: reghoekig, driehoekig, heuningkoek. Vir elk van hierdie roosters word ook die “grootmaat limiet” (of termodinamiese limiet) bepaal, wat ’n natuurlike maat vir die groeitempo van die aantaal spanbome (L) en die aantal volkome afparings PM(L) voorstel. ’n Algoritme is in die rekenaaralgebra-stelsel SAGE geimplementeer om die aantal spanboome asook die aantal volkome afparings in die toepaslike roosters af te tel.
Books on the topic "Lattices theory"
Stern, Manfred. Semimodular lattices: Theory and applications. Cambridge: Cambridge University Press, 1999.
Find full textLattice theory: First concepts and distributive lattices. Mineola, N.Y: Dover Publications, 2009.
Find full textFreese, Ralph S. Free lattices. Providence, R.I: American Mathematical Society, 1995.
Find full textToda, Morikazu. Theory of Nonlinear Lattices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83219-2.
Full textToda, Morikazu. Theory of Nonlinear Lattices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Find full text1951-, Hoffmann R. E., and Hofmann Karl Heinrich, eds. Continuous lattices and their applications. New York: M. Dekker, 1985.
Find full textservice), SpringerLink (Online, ed. Lattice Theory: Foundation. Basel: Springer Basel AG, 2011.
Find full textBook chapters on the topic "Lattices theory"
Aigner, Martin. "Lattices." In Combinatorial Theory, 30–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59101-3_3.
Full textZheng, Zhiyong, Kun Tian, and Fengxia Liu. "Random Lattice Theory." In Financial Mathematics and Fintech, 1–32. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7644-5_1.
Full textCorsini, Piergiulio, and Violeta Leoreanu. "Lattices." In Applications of Hyperstructure Theory, 121–60. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3714-1_5.
Full textTrifković, Mak. "Lattices." In Algebraic Theory of Quadratic Numbers, 45–59. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7717-4_3.
Full textBeran, Ladislav. "Elementary Theory of Orthomodular Lattices." In Orthomodular Lattices, 28–69. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5215-7_2.
Full textMeyer-Nieberg, Peter. "Spectral Theory of Positive Operators." In Banach Lattices, 247–319. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76724-1_4.
Full textGrätzer, George. "Distributive Lattices." In General Lattice Theory, 79–168. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_2.
Full textConstantinescu, Corneliu, Wolfgang Filter, Karl Weber, and Alexia Sontag. "Vector Lattices." In Advanced Integration Theory, 21–278. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-007-0852-5_4.
Full textGrätzer, George. "Distributive Lattices." In Lattice Theory: Foundation, 109–205. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1_2.
Full textKopytov, V. M., and N. Ya Medvedev. "Lattices." In The Theory of Lattice-Ordered Groups, 1–9. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8304-6_1.
Full textConference papers on the topic "Lattices theory"
Cosmadakis, Stavros S. "Database theory and cylindric lattices." In 28th Annual Symposium on Foundations of Computer Science. IEEE, 1987. http://dx.doi.org/10.1109/sfcs.1987.17.
Full textSalomon, A. J., and O. Amrani. "On decoding product lattices." In IEEE Information Theory Workshop, 2005. IEEE, 2005. http://dx.doi.org/10.1109/itw.2005.1531883.
Full textHorowitz, Alan. "Fermions on Simplicial Lattices and their Dual Lattices." In The 36th Annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.334.0235.
Full textZamir, R. "Lattices are everywhere." In 2009 Information Theory and Applications Workshop (ITA). IEEE, 2009. http://dx.doi.org/10.1109/ita.2009.5044976.
Full textYao, Y. Y. "Concept lattices in rough set theory." In IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04. IEEE, 2004. http://dx.doi.org/10.1109/nafips.2004.1337404.
Full textKnuth, K. H. "Valuations on Lattices and their Application to Information Theory." In 2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006. http://dx.doi.org/10.1109/fuzzy.2006.1681717.
Full textBoutros, Joseph J., Nicola di Pietro, and Nour Basha. "Generalized low-density (GLD) lattices." In 2014 IEEE Information Theory Workshop (ITW). IEEE, 2014. http://dx.doi.org/10.1109/itw.2014.6970783.
Full textMeurice, Yannick. "QCD calculations with optical lattices?" In XXIX International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.139.0040.
Full textHotzy, Paul, Kirill Boguslavski, David I. Müller, and Dénes Sexty. "Highly anisotropic lattices for Yang-Mills theory." In The 40th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.453.0150.
Full textKapetanovic, Dzevdan, Hei Victor Cheng, Wai Ho Mow, and Fredrik Rusek. "Optimal lattices for MIMO precoding." In 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6034112.
Full textReports on the topic "Lattices theory"
McCune, W., and R. Padmanabhan. Single identities for lattice theory and for weakly associative lattices. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/510566.
Full textYang, Jianke. Theory and Applications of Nonlinear Optics in Optically-Induced Photonic Lattices. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada565296.
Full textYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/10156563.
Full textYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/5082303.
Full textBecher, Thomas G. Continuum methods in lattice perturbation theory. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/808671.
Full textHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6441616.
Full textHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6590163.
Full textBrower, Richard C. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1127446.
Full textNegele, John W. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1165874.
Full textReed, Daniel, A. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), May 2008. http://dx.doi.org/10.2172/951263.
Full text