Academic literature on the topic 'Lattice theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lattice theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lattice theory"
Day, Alan. "Doubling Constructions in Lattice Theory." Canadian Journal of Mathematics 44, no. 2 (April 1, 1992): 252–69. http://dx.doi.org/10.4153/cjm-1992-017-7.
Full textHarremoës, Peter. "Entropy Inequalities for Lattices." Entropy 20, no. 10 (October 12, 2018): 784. http://dx.doi.org/10.3390/e20100784.
Full textFlaut, Cristina, Dana Piciu, and Bianca Liana Bercea. "Some Applications of Fuzzy Sets in Residuated Lattices." Axioms 13, no. 4 (April 18, 2024): 267. http://dx.doi.org/10.3390/axioms13040267.
Full textMcCulloch, Ryan. "Finite groups with a trivial Chermak–Delgado subgroup." Journal of Group Theory 21, no. 3 (May 1, 2018): 449–61. http://dx.doi.org/10.1515/jgth-2017-0042.
Full textJežek, J., P. PudláK, and J. Tůma. "On equational theories of semilattices with operators." Bulletin of the Australian Mathematical Society 42, no. 1 (August 1990): 57–70. http://dx.doi.org/10.1017/s0004972700028148.
Full textBallal, Sachin, and Vilas Kharat. "Zariski topology on lattice modules." Asian-European Journal of Mathematics 08, no. 04 (November 17, 2015): 1550066. http://dx.doi.org/10.1142/s1793557115500667.
Full textJežek, Jaroslav, and George F. McNulty. "The existence of finitely based lower covers for finitely based equational theories." Journal of Symbolic Logic 60, no. 4 (December 1995): 1242–50. http://dx.doi.org/10.2307/2275885.
Full textFuta, Yuichi, and Yasunari Shidama. "Lattice of ℤ-module." Formalized Mathematics 24, no. 1 (March 1, 2016): 49–68. http://dx.doi.org/10.1515/forma-2016-0005.
Full textBronzan, J. B. "Hamiltonian lattice gauge theory: wavefunctions on large lattices." Nuclear Physics B - Proceedings Supplements 30 (March 1993): 916–19. http://dx.doi.org/10.1016/0920-5632(93)90356-b.
Full textJANSEN, KARL. "LATTICE FIELD THEORY." International Journal of Modern Physics E 16, no. 09 (October 2007): 2638–79. http://dx.doi.org/10.1142/s0218301307008355.
Full textDissertations / Theses on the topic "Lattice theory"
Race, David M. (David Michael). "Consistency in Lattices." Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc331688/.
Full textRadu, Ion. "Stone's representation theorem." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3087.
Full textEndres, Michael G. "Topics in lattice field theory /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9713.
Full textBowman, K. "A lattice theory for algebras." Thesis, Lancaster University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234611.
Full textMichels, Amanda Therese. "Aspects of lattice gauge theory." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297217.
Full textBuckle, John Francis. "Computational aspects of lattice theory." Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/106446/.
Full textCraig, Andrew Philip Knott. "Lattice-valued uniform convergence spaces the case of enriched lattices." Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1005225.
Full textPugh, David John Rhydwyn. "Topological structures in lattice gauge theory." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279896.
Full textSchaich, David. "Strong dynamics and lattice gauge theory." Thesis, Boston University, 2012. https://hdl.handle.net/2144/32057.
Full textIn this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ~ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses and other properties of the new particles predicted by these theories. I find S > 0.1 in the specific theories I study. Although this result still disagrees with experiment, it is much closer to the experimental value than is the conventional wisdom S > 0.3. These results encourage further lattice studies to search for experimentally viable strongly-interacting theories of EWSB.
Schenk, Stefan. "Density functional theory on a lattice." kostenfrei, 2009. http://d-nb.info/998385956/34.
Full textBooks on the topic "Lattice theory"
Bunk, B., K. H. Mütter, and K. Schilling, eds. Lattice Gauge Theory. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2231-3.
Full textGrätzer, George. General Lattice Theory. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9326-8.
Full textGrätzer, George. Lattice Theory: Foundation. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1.
Full textservice), SpringerLink (Online, ed. Lattice Theory: Foundation. Basel: Springer Basel AG, 2011.
Find full textStern, Manfred. Semimodular lattices: Theory and applications. Cambridge: Cambridge University Press, 1999.
Find full textKrätzel, Ekkehard. Lattice points. Dordrecht: Kluwer Academic Publishers, 1988.
Find full textSatz, Helmut, Isabel Harrity, and Jean Potvin, eds. Lattice Gauge Theory ’86. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1909-2.
Full textSatz, H. Lattice Gauge Theory '86. Boston, MA: Springer US, 1987.
Find full textH, Satz, Harrity Isabel, Potvin Jean, North Atlantic Treaty Organization. Scientific Affairs Division., and International Workshop "Lattice Gauge Theory 1986" (1986 : Brookhaven National Laboratory), eds. Lattice gauge theory '86. New York: Plenum Press, 1987.
Find full textos, Paul Erd. Lattice points. Harlow: Longman Scientific & Technical, 1989.
Find full textBook chapters on the topic "Lattice theory"
Zheng, Zhiyong, Kun Tian, and Fengxia Liu. "Random Lattice Theory." In Financial Mathematics and Fintech, 1–32. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7644-5_1.
Full textAl-Haj Baddar, Sherenaz W., and Kenneth E. Batcher. "Lattice Theory." In Designing Sorting Networks, 61–71. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1851-1_10.
Full textRitter, Gerhard X., and Gonzalo Urcid. "Lattice Theory." In Introduction to Lattice Algebra, 81–109. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003154242-3.
Full textYadav, Santosh Kumar. "Lattice Theory." In Discrete Mathematics with Graph Theory, 271–304. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21321-2_6.
Full textGrätzer, George. "Lattice Constructions." In Lattice Theory: Foundation, 255–306. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1_4.
Full textStone, Michael. "Lattice Field Theory." In Graduate Texts in Contemporary Physics, 185–200. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0507-4_15.
Full textYanagihara, Ryosuke. "Lattice Field Theory." In Springer Theses, 37–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6234-8_3.
Full textGrätzer, George. "First Concepts." In General Lattice Theory, 1–77. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_1.
Full textGrätzer, George. "Distributive Lattices." In General Lattice Theory, 79–168. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_2.
Full textGrätzer, George. "Congruences and Ideals." In General Lattice Theory, 169–210. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_3.
Full textConference papers on the topic "Lattice theory"
Monahan, Christopher. "Automated Lattice Perturbation Theory." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0021.
Full textLambrou, Eliana, Luigi Del Debbio, R. D. Kenway, and Enrico Rinaldi. "Searching for a continuum 4D field theory arising from a 5D non-abelian gauge theory." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0107.
Full textBursa, F., and Michael Kroyter. "Lattice String Field Theory." In The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0047.
Full textKieburg, Mario, Jacobus Verbaarschot, and Savvas Zafeiropoulos. "A classification of 2-dim Lattice Theory." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0337.
Full textShao, Yingchao, Li Fu, Fei Hao, and Keyun Qin. "Rough Lattice: A Combination with the Lattice Theory and the Rough Set Theory." In 2016 International Conference on Mechatronics, Control and Automation Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mcae-16.2016.23.
Full textBietenholz, Wolfgang, Ivan Hip, and David Landa-Marban. "Spectral Properties of a 2d IR Conformal Theory." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0486.
Full textZubkov, Mikhail. "Gauge theory of Lorentz group on the lattice." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0095.
Full textVeernala, Aarti, and Simon Catterall. "Four Fermion Interactions in Non Abelian Gauge Theory." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0108.
Full textBergner, Georg, Jens Langelage, and Owe Philipsen. "Effective lattice theory for finite temperature Yang Mills." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0133.
Full textHesse, Dirk, Stefan Sint, Francesco Di Renzo, Mattia Dalla Brida, and Michele Brambilla. "The Schrödinger Functional in Numerical Stochastic Perturbation Theory." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0325.
Full textReports on the topic "Lattice theory"
McCune, W., and R. Padmanabhan. Single identities for lattice theory and for weakly associative lattices. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/510566.
Full textYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/10156563.
Full textYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/5082303.
Full textBecher, Thomas G. Continuum methods in lattice perturbation theory. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/808671.
Full textHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6441616.
Full textHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6590163.
Full textBrower, Richard C. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1127446.
Full textNegele, John W. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1165874.
Full textReed, Daniel, A. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), May 2008. http://dx.doi.org/10.2172/951263.
Full textCreutz, M. Lattice gauge theory and Monte Carlo methods. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/6530895.
Full text