Academic literature on the topic 'Lateral replaceable unrecoverable plates'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lateral replaceable unrecoverable plates.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lateral replaceable unrecoverable plates"
Mohsenzadeh, Vahid, and Lydell D. A. Wiebe. "Effect of Beam-Column Connection Fixity on Collapse Performance of a Six-Storey Special Concentrically Braced Frame." Key Engineering Materials 763 (February 2018): 157–64. http://dx.doi.org/10.4028/www.scientific.net/kem.763.157.
Full text"New Type of Cutoff Tools and Hard-Alloy Multifaceted Unresharpenable Plates for Their Equipping." Advances in Materials Science and Engineering 2, no. 1 (March 31, 2018). http://dx.doi.org/10.33140/amse/02/01/23.
Full textDissertations / Theses on the topic "Lateral replaceable unrecoverable plates"
Настасенко, Валентин Олексійович. "Проектування збірних різальних інструментів з непереточуваними пластинами бічної установки методом морфологічного аналізу." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/42484.
Full textA thesis for a degree of Doctor of Engineering in the speciality 05.03.01 – Machining processes, machines and tools. - Kherson State Maritime Academy of the Ministry of Education and Science of Ukraine, Kherson, 2019. - National Technical University "Kharkiv Polytechnic Institute" of the Ministry of Education and Science of Ukraine, Kharkiv, 2019. The introduction provides the justification of the choice of the research topic, formulates the purpose, objectives and describes the research methods. The scientific novelty and practical significance of the obtained results are formulated. The data on approbation of results of the dissertation are given, the publications reflecting its contents are listed, the information on the personal contribution of the doctoral candidate is presented. The first section reviews the development of advanced assembled cutting tools with mechanical fastening of replaceable unresharpenable plates (RUPs) and the problems of developing a methodology for their design. It is shown that the transition to tools equipped with RUPs is explained by their advantages, namely: improving the quality, accuracy and productivity of the product processing, the conditions of production of tools with RUPs with increasing their durability and reliability, improving the conditions of chips removal, unification and reduction of nomenclature and standard sizes of RUPs and tool housings for their repeated use and expansion of types and areas of their application. The example of cut-off tools show that the RUPs have two installation options: 1) lateral mounting of three-, four-, and five-edged special-design RUPs - from the side with a screw to a cutter head; 2) lateral RUP installation with one or two cutting edges in the head socket, with their mounting on top with elastic or overhead screw clamps. It is shown that the disadvantage of the first scheme is the small cutting radius (6… 10 mm), the disadvantage of the second scheme is the small number (1… 2) of the cutting edges of plates. To eliminate these shortcomings, it is necessary to look for new technical solutions, which in most cases have the level of inventions, which complicates their creation within the large number of previously known ones. Such search is most effective when developing a methodology based on system methods, so they require detailed analysis and further refinement. It is also shown that similar RUPs with radial mounting are used in interlocking side milling cutters, which increases the width of the slot to a size that is 10… 15% larger than the RUP width. Another disadvantage of the known cutters is the relative complexity of the installation and mechanical fastening of RUPs on the housing. For end cutters, on the example of the milling cutter of the Sestroretsk tool-making plant with lateral RUP mounting for side cutting, their disadvantage is shown to be the inability to perform a fine and semi-fine machining of the plane that is connected to a joggle, since under the lateral installation of the standard RUPs their outside radius is ≥ 0.2 mm, which does not allow to cut off the allowance of less than 0.5 r. For annular drills, it is shown that the disadvantages of the known designs are the radial RUP installation, which increases the width of the annular slot and limits the minimum diameter of drilling by 70 mm (for annular drills by Sandvik Coromant with a hard alloy RUPs the minimum diameter is 120 mm). System methods for finding new technical solutions are analyzed and the most promising ones are shown to be: algorithm and theory of solution of inventive problems (ASIP); general heuristic method; morphological analysis and synthesis; cost-effectiveness analysis (CEA); function-oriented technology (FOT). System methods in the design of cutting tools are not widely used, which induces the tasks for their further research, solved in the performed work. In the second section, based on the main known system methods of finding new technical solutions, the substantiation of the proposed method of designing cutting tools with mechanical RUP fastening and methods of their research is performed. It is based on the principles of FOT. It is shown that RUPs and cutting tools require refinement, since FOT does not take into account the entire life cycle of products, but only two its components - production and operation. It is proved that a complete cycle should have 2 more pairs of interrelated additional stages, namely: design and construction, as well as repair and disposal. One of the achievements of the proposed methodology is to take into account the real needs of society, the technical and economic state of its development on the basis of the levels of development of the macro systems constituting it, namely: 1) consumption, 2) economics, 3) science, 4) technology, 5) production. As part of the implementation of the obtained results, the scheme of artificial intelligence, as a process of thinking, in the form of a combination of waves and frequency pulses and their binary codes, was proposed for mounting elements of the cutting tool plates, which made it possible to find new solutions. Based on the developed systems and the original version of FOT, the process of creating new technology is proposed to be developed to a general system - integrated algorithmic development and production (IADP). The purpose of IADP is problem design based on system methods that reduce the inertia of the designer's thinking. To do this, a step-by-step process for selecting and posing a problem is organized, covering all stages of the life cycle of technological items. In the third section, taking into account the previously obtained results, the implementation of system design of cut-off tools equipped with RUPs is proposed. According to the preliminary stages of structural analysis, three variants of RUP installation were identified: a) radial, b) tangential, c) lateral; the latter is divided into 2 types of schemes: 1) lateral RUP mounting, 2) lateral RUP installation. On their basis an integrated variant of plate installation is developed, which closes all three planes of the general structure in the form of a cube faces. This characterizes these three options as a single system and makes it complete. However, RUPs of radial installation cannot be used in tangential or lateral installation, since the considerable radius r of their tops significantly impairs the conditions for cutting the chip root. Thus, these RUPs are not interchangeable, so it is proposed to divide them into: radial (RRUP) with cutting edges on the ribs of wide faces; tangential (TRUP) with cutting edges on the ribs of wide and narrow faces; and lateral (LRUP) with cutting edges on the ends of narrow faces. In this case LRUPs are mounted on their narrow face in the normal plane to the main surface and to cutting surface and cut by means of cutting edges formed on the ribs of their narrow faces. To eliminate the radius r on the ribs of the basic RUPs, it is suggested that after pressing process, an additional sharpening of flattened surfaces m or the arc grooves of the radius rв, which reduces the transient radius area from r ≥ 0.2 mm to the value of r ≤ 0.01 mm. When sharpening the flattened surfaces that form the front surface of LRUPs, it is possible to optimize their parameters. In addition to reducing the width of the slotted grooves, the advantages of the proposed LRUPs are: simplicity of their shape, increase in the number of cutting edges, thickness of the cross-section and the strength of LRUPs in the direction of the action of the cutting forces, which is a reserve for improving the cutting performance by increasing the volume of cutting metal. Based on the proposed methodology and system of IADP, a new method of system development of assembled cut-off tool and groove cutters and LRUPs for their equipping was created. The method of morphological analysis was used for the development of new LRUPs, in which 17 morphological features of the plates were identified and possible variants of their production by creation and expanding of the morphological matrices were identified. For the first time, as a result of the analysis, pyramidal, cubic and conical versions of LRUPs were identified, which is most appropriate for superhard materials. It is shown that for LRUPs made of hard alloys more appropriate variants of the plates are those made with: radial grooves, unilateral flattened surfaces, or bilateral flattened surfaces on both faces forming the edges of LRUPs. The number of such variants reaches 19. All LRUPs can have a central opening for their lateral mounting, which doubles the number of variants from 19 to 38. In total, due to the implementation of the developed methods of design of plates, more than 90 final designs at the level of inventions have been created and protected by patents, which proved the efficiency of this method. The fourth section elaborates and studies the proposed LRUPs and their unmachined pieces. They are based on the principle of reducing the cost of production by decreasing the amount of allowance of tool material, which is removed by additional sharpening. Formation schemes were developed and mathematical expressions were obtained to calculate this allowance at face and top LRUPs sharpening. It is shown that the areas of the So sharpening increase equivalently to the number n of LRUP ribs and the radius ρ at their top. In particular, with increasing of ρ from 0.2 to 2.4 mm, the sharpening area increases by quadratic dependence (max 122 = 144 times). The output area of LRUPs increases with increasing the angle ε at the top. If the grooves of a three-edged LRUPs with the smallest standard diameter of the inscribed circle do = 9.525 mm are taken as 100%, then at do = 12.70 mm, 15.875 mm, 19.05 mm, 22.20 mm their proportion decreases by the quadratic dependence according to the ratio of the actual do to the original do = 9.525 mm. It is shown that the sharpening of the flattened surfaces is only possible for three-edged and rhombic LRUPs. It is proved that the advantages of double-sided sharpening at the same sizes of bands f "= f and h" = h are: 1) increasing the radius ρ "at the tops of the workpiece by 37 ... 63% depending on the angle ε at the top of the plate; 2) reducing the cutting angle β < 90о. It is proved that sharpening of arc grooves on the tops of LRUPs doubles the number of cutting edges, which is their significant advantage. The simplest variant of its implementation is by the arc of a circle with radius rв. The choice of rв requires the solution of 2 tasks: 1) ensuring the necessary conditions for the formation and elimination of chips; 2) ensuring the maximum possible strength in the intersection of LRUP and its cutting edges, which creates a technical contradiction that is eliminated at a further stage of research. Solution of the first problem is ensured by the increase in the size of LRUPs, the second problem - by the contingence of an inscribed circle with the lateral faces and LRUP arc grooves according to the mathematical dependences obtained. It is shown that performing the grooves along a single-radius arc rв can lead to the wear of its paired top with chips, which gives a positive effect of self-sharpening, but this phenomenon is unacceptable when applying wearresistant coatings to its surface. To eliminate this drawback, we propose a two-axis arc-shaped groove, which forms in the middle a chips withdrawing cavity an angle ξ = 1… 2o and does not allow the chips to contact the opposite top. To reduce the amount of allowance for additional sharpening, LRUP workpieces are proposed, which have, on flattened surfaces or on lateral faces, arc ear-type protrusions of minimum radius r, equal to the initial radius ρ of joining the lateral edges of the plate. The radius value ρ ≥ 0.2 mm is selected within their standard values under conditions of increasing the longevity and durability of molds for LRUP manufacture. It is shown that of the three proposed variants of performances, the most expedient is their external location on a LRUP straight section, which allowed applying a flat circle, simplified its truing and increased their number within the diamond layer. Longitudinal filing of the circle distributed wear over its entire surface and increased the productivity of the sharpening process. It is shown that for the lateral surfaces of LRUPs, the most technologically advanced is the undercutting of a concave spherical or conical shape, with the execution of residual protrusions Δf, since they increase the volume of the wear material with the same amount of linear wear Δh and improve the conditions of heat distribution. In mass production they are performed by pressing, in individual and small-scale - by grinding. In the fifth section, the proposed system design of disk slitting and groove milling cutters with LRUPs was performed and their research was conducted. It is proved that the most promising for reducing the cut width of workpieces is the lateral fastening of LRUPs in the socket on the disc milling cutter body. Patented designs of interlocking side milling cutters with LRUPs are presented. Their bits are LRUPs of rhombic shape with thickness s without relief angles, which are mounted on the ends of the housing in the left and right grooves, and the plates are made with flattened surfaces, or arc grooves on the points. Due to the overlapping of interfacing LRUPs, the width of the milling cutter H <2s is formed. Fastening of LRUPs is carried out on their central openings with chamfer by means of screws, with plate base abutting against the bases of the grooves and their lateral sides, due to the displacement (eccentricity) of the axes made in the housing of the threaded screw holes, and the holes of the plates. The action of the cutting forces thus provides pressing of LRUPs to the lateral side of the groove. For placement and removal of chips from the front surface of bits, chip grooves are made in the outer diameter of the housing, which are directed to the lateral side of the plates. The methodology of designing milling cutters according to the developed system principles is connected with sorting out the possible variants of implementation of the proposed LRUPs and the variants of their mounting in the sockets of the housing. It is also based on the method of morphological analysis, in which morphological features are developed options for the design of LRUPs. On the basis of the developed projects, the interlocking side milling cutters with the clamping of LRUPs with wedges and eccentric screws were manufactured and tested in production conditions. LRUPs designs recommended for use are as follows: in single-piece and small-scale production - those of rhombic shape with angle 80o and flattened surfaces, in mass-production - square ones with the removed ears and with arc grooves. Comparison of the slot width of assembled standard milling cutters with RRUPs and those with proposed LRUPs showed that it decreases from 10 to 6 mm, and the cross-section of LRUPs in the direction of the cutting forces increases to their width, so it increases from 3.18 and 6.35 mm in known RRUPs, up to 8.1 and 19.3 mm in the proposed LRUPs. This leads to an increase in the strength and rigidity of the bits of these milling cutters, which is a reserve for the growth of their productivity. The system of investigation of the load of the housing of the proposed designs of disc milling cutters based on the finite element method has been developed. The development of structural design of disc milling cutters is associated with the transition to three-edged groove ones, for different widths of grooves. To do this, three or more LRUPs are staggered. This covers the entire width range of interlocking side, groove and slot milling cutters. The sixth section is devoted to the system design of end milling cutters and annular drills and their research is performed. It is shown that the replacement of square RUPs in roughing basic milling cutters with patented rhombic LRUPs with an angle of profile 80o and sharpening of the flattened surfaces on tops with a radius of cutting edges ≤ 0.01 mm turns the roughing milling cutter into a finishing one. In addition to the rhombic ones, it is possible to install all other LRUPs designs developed in Section 3. The milling cutter has a body and three-edged LRUPs that are installed in the grooves on the outer lateral surface of the body. The support surface of the groove provides installation of LRUPs with a lateral relief angle біч = 1.5 ... 2.5o, and the longitudinal support surface 4 for the lateral side of the plate is located at an angle ос to the axis of the milling cutter. Fastening of LRUPs is possible with a screw with a conical head that contacts the chamfer of the LRUP hole when the axis of the threaded screw hole is moved to the support, or to pins. To reduce the wear of the pins, the surface on their heads is increased by means of flattened surfaces. It is also possible to install LRUPs with a hole in the pin and clamp it with a screw with an eccentric surface, the vector of the tightening force of which intersects the surfaces of other supports. It is shown that the further development of the proposed milling cutters designs and new ways of their use is connected with the possibility of deforming finishing of products. To do this, it is sufficient to rotate the basic milling cutter counterclockwise, and make the feed in the direction of the output relief angle. The most effective in this case is the use of round RUPs, which provide deformation in any direction of the milling cutter rotation. The following options for the development of mills are a simultaneous combination of cutting LRUPs and deforming RUPs in 2 variants of their installation: 1) alternating one by one in series, which reduces the number of cutting plates on the diameter of the milling cutter; 2) overlapping, which preserves their original number. It is shown that it is possible to replace 2 overlapping plates with one cutting-deforming one, which, on half of the thickness of the lateral ribs at the tops, has flattened surfaces with a slope of 15 ... 30o, or arc grooves, and the radius of rounding of the tops of standard RUPs is preserved on the other half. For assembled annular drills with LRUPs, the features of their system design are associated with lateral installation of the plates and reduction of the drilling diameter. The proposed LRUPs with flats or grooves on the tops, the number of which is doubled for plates with holes, are considered basic. However, when constructing drills, this data is not sufficient for morphological analysis, so the developed IADP system was used. The basis of the development is the design of end milling cutter with lateral fastening of LRUPs, which can be used for circular drilling of sheet material up to 2 mm thick. According to the IADP system, this task is divided into 2 subproblems, which showed that limiting the depth of drilling with a basic milling cutter is related to the lateral fastening of LRUPs to the housing. This disadvantage can be eliminated by means of the following: 1) placement of LRUPs on the front annular surface of the drill, 2) paired fastening of LRUPs, cutting grooves on the outer and inner diameters of the drill while adjusting their sizes, installation parameters and diameter of the drill. For the annular drill equipped with two pairs of external and internal rhombic LRUPs based on the GOST 19056-80 RUPs with an angle of profile 80o, the minimum outer diameter of the drill is provided under the condition that the cutting tracks are paired with even plates. To calculate the geometric parameters of the proposed drills and plates for their equipping, appropriate analytical support was developed. It is shown that the minimum drilling diameter of the proposed drills is 11.8 mm, and the maximum diameter is unrestricted and is determined only by the size and amount of LRUPs. All developed drill and LRUP designs are patented. They are shown to have high design strength, rigidity, accuracy and efficiency. The drill head with drill diameter D'a = 28 mm was manufactured and tested with positive results. The proposed designs form a new direction of development of annular drills and LRUPs for their equipping. In the seventh section the issues of production and operation of the developed tools and LRUPs for their equipping are considered and their researches are conducted, the basic principles and methods of their realization are outlined, the used equipment, apparatus, devices and processing materials, measuring and cutting tools are described. Methods of estimation of static rigidity of cutters and other tools, determination of rational rake γ and relief α angles are given. At all stages of the study, the experimental data were processed using mathematical statistics. Studies of size and mass indicators of known and proposed LRUPs showed that according to the cost of tool materials, they are inferior to the plates Q-Cut and CoroCut 2, but have 3-6 times greater number of cutting edges. Compared to CoroCut 3, MultiCut-4, PentaCut plates, they have the advantages of tool material consumption and cutting diameter, as they increase it from 6 mm to 24 mm for LRUPs with flattened surfaces and up to 19.5 mm for LRUPs with arc grooves on the tops. Measurements of the deformation of the cutter head revealed that the scheme where the clamp acts on the central axis of the socket has advantages. During the tests, the developed tools performed the types of work under the same conditions and modes under which the basic tools are operated, and conclusions were made about their performance. Deformations of the developed cutters were measured experimentally and by calculations using the finite element method. It is shown that for disc and face mills and annular drills in individual production, the most appropriate are rhombic LRUPs with an angle of profile 80o. In mass production, when pressing the outer ear-protrusions of radius r on the workpieces, the most appropriate are square plates. The study of deformations of disc milling cutters from the action of cutting forces was carried out by analogy with cutters, experimental and calculation study was performed by the method of finite elements.
Настасенко, Валентин Олексійович. "Проектування збірних різальних інструментів з непереточуваними пластинами бічної установки методом морфологічного аналізу." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/42480.
Full textDissertation for the scientific the degree of doctoral of technical sciences with major in 05.03.01 “Machining Processes, Machines and Tools”. – Kherson State Maritime Academy, Kherson, 2019. The dissertation is devoted to solving an important scientific and practical task - the creation and design of prefabricated cut-off cutters, disk mills, face mills and ring drills, equipped with lateral replaceable unrecoverable plates (LRUP). The basis of the work is laid by the method of morphological analysis, which covers all possible variants of performances and allows conducting a full analysis of them with the selection of the most appropriate solutions. The complex systems algorithmic development and production of products and its methodology are proposed, which takes into account the needs of society, the level of its socio-economic and scientific and technological development in the conditions of the entire life cycle of the technical objects. The main feature of LRUP is the presence of sharp cutting edges on the narrow side faces of the plates. These LRUP, in combination with radial and tangential unrecoverable plates, complete the cubic scheme of their installations in the cutting tools. The calculating dependences for constructive and geometrical parameters of the LRUP have been substantiated and found, the conditions for reducing the allowances to their processing, and ensuring the greatest strength and the best convergence of the shavings. For cut-off cutters triangular LRUP with flat chamfer on the vertexes surfaces or arched grooves on the vertexes are recommended. They create a reliable fixation in the wedge-shaped pocket of a cut-off tool, and their manufacture is the simplest in conditions of any type of productions. They LRUP excel and prevail from Corocut-3, Multicut, Pentacut, because they increase the cut radius from 10 to 24 mm and reduce the cost of the tool material by one cutting edge. Square LRUP with arched grooves are even more efficient, but in cut-off cutters they require manufacturing of a pocket of complex shape for their placement. New types of disk milling cutters with lateral installation of LRUP, that reduced the minimum cutting width from 10 to 6 mm, and face milling cutters with LRUP for finishing are created, which can complement the cutting process of the deformed processing. Annular drills with mechanical fastening of LRUP have been developed, which reduce the minimum diameter of drilling from 70 to 12 mm without limits of the maximum diameter. Industrial tests and laboratory research of the offered instruments confirmed their efficiency, which allows recommending their wide implementation with the development of the State Standard of Ukraine (DSTU).
Conference papers on the topic "Lateral replaceable unrecoverable plates"
Wang, Zhen, Jingquan Wang, and Junzheng Zhu. "Cyclic Behavior of Precast Segmental UHPFRC Bridge Columns with Replaceable Damage-Concentrated Elements." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0736.
Full text