Academic literature on the topic 'Lateral occipital cortex'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lateral occipital cortex.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lateral occipital cortex"
Kaido, Takanobu, Tohru Hoshida, Toshiaki Taoka, and Toshisuke Sakaki. "Retinotopy with coordinates of lateral occipital cortex in humans." Journal of Neurosurgery 101, no. 1 (July 2004): 114–18. http://dx.doi.org/10.3171/jns.2004.101.1.0114.
Full textAppelbaum, L. G., J. M. Ales, B. Cottereau, and A. M. Norcia. "Configural specificity of the lateral occipital cortex." Neuropsychologia 48, no. 11 (September 2010): 3323–28. http://dx.doi.org/10.1016/j.neuropsychologia.2010.07.016.
Full textTyler, C. W., L. T. Likova, and A. R. Wade. "Properties of Object Processing in Lateral Occipital Cortex." Journal of Vision 4, no. 8 (August 1, 2004): 91. http://dx.doi.org/10.1167/4.8.91.
Full textBeer, Anton L., Tina Plank, Evangelia-Regkina Symeonidou, Georg Meyer, and Mark W. Greenlee. "Combining fiber tracking and functional brain imaging for revealing brain networks involved in auditory–visual integration in humans." Seeing and Perceiving 25 (2012): 5. http://dx.doi.org/10.1163/187847612x646280.
Full textTaylor, John C., and Paul E. Downing. "Division of Labor between Lateral and Ventral Extrastriate Representations of Faces, Bodies, and Objects." Journal of Cognitive Neuroscience 23, no. 12 (December 2011): 4122–37. http://dx.doi.org/10.1162/jocn_a_00091.
Full textCarlson, Thomas A., Robert Rauschenberger, and Frans A. J. Verstraten. "No Representation Without Awareness in the Lateral Occipital Cortex." Psychological Science 18, no. 4 (April 2007): 298–302. http://dx.doi.org/10.1111/j.1467-9280.2007.01892.x.
Full textLarsson, J., and D. J. Heeger. "Two Retinotopic Visual Areas in Human Lateral Occipital Cortex." Journal of Neuroscience 26, no. 51 (December 20, 2006): 13128–42. http://dx.doi.org/10.1523/jneurosci.1657-06.2006.
Full textZeng, Hang, Gereon R. Fink, and Ralph Weidner. "Visual Size Processing in Early Visual Cortex Follows Lateral Occipital Cortex Involvement." Journal of Neuroscience 40, no. 22 (April 29, 2020): 4410–17. http://dx.doi.org/10.1523/jneurosci.2437-19.2020.
Full textWurm, Moritz F., D. Yves Cramon, and Ricarda I. Schubotz. "The Context–Object–Manipulation Triad: Cross Talk during Action Perception Revealed by fMRI." Journal of Cognitive Neuroscience 24, no. 7 (July 2012): 1548–59. http://dx.doi.org/10.1162/jocn_a_00232.
Full textRead, Jenny C. A., Graeme P. Phillipson, Ignacio Serrano-Pedraza, A. David Milner, and Andrew J. Parker. "Stereoscopic Vision in the Absence of the Lateral Occipital Cortex." PLoS ONE 5, no. 9 (September 7, 2010): e12608. http://dx.doi.org/10.1371/journal.pone.0012608.
Full textDissertations / Theses on the topic "Lateral occipital cortex"
Vernon, Richard J. W. "Shape processing across lateral occipital cortex." Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/16777/.
Full textSilson, Edward H. "Functional specialization & parallel processing within retinotopic subdivisions of lateral occipital cortex." Thesis, University of York, 2013. http://etheses.whiterose.ac.uk/4966/.
Full textESTOCINOVA, Jana. "Perceptual and Attentional Mechanisms within the Human Lateral Occipital (LO) Region: An rTMS Approach." Doctoral thesis, 2013. http://hdl.handle.net/11562/557149.
Full textAny natural visual environment contains a huge collection of objects, which impact on our perception and compete for drawing our interest and therefore for being preferentially noticed. By effectively selecting a relevant fraction of the incoming information for further in-depth processing, visual selective attention (VSA) optimizes vision in order to overcome the intrinsically limited computational capacity of the visual system. Single-unit recording studies have demonstrated that multiple stimuli simultaneously impinging onto the receptive field (RF) of a given neuron compete for controlling its firing by interacting with each other through mutual inhibition (Reynold & Chelazzi, 2004; Chelazzi et al., 2011; see also Biased competition model by Moran & Desimone, 1985). Thus, neural responses to stimulus pairs in the RF approximate a weighted average of the responses elicited by individual stimuli (for further details, see Reynold & Chelazzi, 2004; Chelazzi et al., 2011; see also Normalization model by Reynolds et al., 1999). The crucial question to ask is how the competition is resolved. Neurophysiological studies have shown that when two stimuli are simultaneously presented within the same receptive field (RF), neuronal responses in the absence of attentional control are largely determined by the strongest or most salient stimulus, e.g. the one presented at higher luminance contrast, which stands conspicuously against the background (Reynolds & Desimone, 2003). This reflects a bottom-up biasing of the competition on the basis of stimulus saliency. Crucially, top-down attentional control can resolve the competition between stimuli in favor of the most behaviorally relevant stimulus (target) by specifying its properties. In other words, attention can switch control of the neuronal response to the stimulus of interest, independently of its saliency, so that the target will determine the response of that neuron; in other words, the response of a given neuron to a pair of stimuli impinging on its RF will equate the neuronal response to the target stimulus, when presented alone. As a consequence, the neuronal representation of the target is enhanced within visual areas at the expense of the visual representation of the distractor (Corbetta et al., 1990; Treue & Trujillo, 1999; Luck et al., 2000, for reviews, see Chelazzi et al., 2011; Carrasco, 2011; Roe et al., 2012). Importantly, there is a wide range of observations which describe the impact of attention on sensory representations along the visual pathway. Crucially, attentional biasing of the neuronal activity within visual cortices is not uniform, but rather results in different forms of neuronal modulation (see e.g. Treue & Martinez Trujillo, 1999; Fries et al., 2001, 2008; Martinez-Trujillo & Treue, 2002; Carrasco et al., 2000; Carrasco, 2006). The traditional view of VSA maintains that attentional control is organized in a master-slave hierarchical manner: Modulatory top-down signals from a distributed frontoparietal attentional network (e.g. Moore, Armstrong, 2003; Wardak et al., 2004; Silvanto et al., 2006) - the master - impact on sensory (visual) cortical areas - the slave. In other words, lower-order sensory areas execute visual representations commanded via feedback projections from higher-order centers. Recent research has greatly challenged this conventional view, leading to the new and striking hypothesis that master centers do not have an exclusive role in attentional control, but rather the slave ventral (and dorsal) visual pathway areas might capitalize on their internal microcircuitry to directly instantiate attentional mechanisms even in the absence of control from master centers (e.g. Reynolds & Heeger, 2009; Baluch & Itti, 2011). Interestingly, a behavioral assessment following circumscribed lesions of macaque areas V4 and TEO showed a strong impairment in the animal ability to select a stimulus based on its behavioral relevance while discarding other, perceptually more conspicuous stimuli; in other word, after lesions to those areas, the behavior of the animal was at the mercy of stimulus salience (De Weerd et al., 1999; see also Gallant et al., 2000 for analogous findings in humans). These areas along the ventral pathway have therefore been claimed as essential for the instantiation of attentional mechanisms, and in particular mechanisms for the efficient filtering of non-relevant distractors (De Weerd et al., 1999; Chelazzi et al., 2011). The aim of the present study is to extend the current understanding of the brain mechanisms underlying VSA, by directly testing their possible residence within the human object-recognition pathway itself. An excellent human slave candidate to test this possibility is represented by the lateral occipital cortex (LO), a mid-tier area of the ventral stream, which is a key node for shape-object perception (Malach et al., 1995). Specifically, by applying TMS stimulation over human LO (or a control site), we examined the role of LO during a VSA task, in order to directly test its role in the attentional filtering of distracting information. Crucially, we manipulated the timing of TMS application in two related experiments, in order to disentangle the contribution of LO to perceptual and attentional operations. As a result, we observed TMS modulation of activity within LO area during the attentional processing of our VSA task. By using early TMS (before stimulus display onset) and late TMS (during stimulus display onset) application over LO cortex, we obtained more general perceptual enhancement and more specific improvement of attentional filtering, respectively. We can therefore conclude that human slave LO area contains internal attentional microcircuits necessary for attentional target selection and distractor filtering.
Books on the topic "Lateral occipital cortex"
Menon, Vinod. Arithmetic in the Child and Adult Brain. Edited by Roi Cohen Kadosh and Ann Dowker. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199642342.013.041.
Full textBook chapters on the topic "Lateral occipital cortex"
Benarroch, Eduardo E., Jeremy K. Cutsforth-Gregory, and Kelly D. Flemming. "Supratentorial Level." In Mayo Clinic Medical Neurosciences, edited by Eduardo E. Benarroch, Jeremy K. Cutsforth-Gregory, and Kelly D. Flemming, 657–716. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190209407.003.0019.
Full textChatterjee, Anjan. "Beautiful People in the Brain of the Beholder." In Brain, Beauty, and Art, 48–51. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197513620.003.0010.
Full textShibasaki, Hiroshi, and Mark Hallett. "Posture and gait." In The Neurologic Examination, 211–15. Oxford University Press, 2022. http://dx.doi.org/10.1093/med/9780197556306.003.0022.
Full textBakker, Marleen, Hinke N. Halbertsma, Nicolás Gravel, Remco Renken, Frans W. Cornelissen, and Barbara Nordhjem. "Early Visual Areas are Activated during Object Recognition in Emerging Images." In Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105756.
Full textPenrose, Roger, and Martin Gardner. "Real Brains and Model Brains." In The Emperor's New Mind. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780198519737.003.0017.
Full textConference papers on the topic "Lateral occipital cortex"
Disserol, Caio, João Henrique Fregadolli Ferreira, Carolina Magalhães Britto, Maria Clara Spesotto, Carla Guariglia, and Marcos Christiano Lange. "Progressive lacunar stroke presenting as cheiro-oral syndrome, dysarthria and hemiataxia." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.636.
Full text