Dissertations / Theses on the topic 'Latent Models, Small Area Estimation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 dissertations / theses for your research on the topic 'Latent Models, Small Area Estimation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
BERTARELLI, GAIA. "LATENT MARKOV MODELS FOR AGGREGATE DATA: APPLICATION TO DISEASE MAPPING AND SMALL AREA ESTIMATION." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/96252.
Full textMoura, Fernando Antonio da Silva. "Small area estimation using multilevel models." Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241157.
Full textOleson, Jacob J. "Bayesian spatial models for small area estimation /." free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3052203.
Full textZhang, Qiong. "Small area quantile estimation under unit-level models." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62871.
Full textScience, Faculty of
Statistics, Department of
Graduate
Ganesh, Nadarajasundaram. "Small area estimation and prediction problems spatial models, Bayesian multiple comparisons and robust MSE estimation /." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/7241.
Full textThesis research directed by: Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Stukel, Diana M. (Diane Maria) Carleton University Dissertation Mathematics. "Small area estimation under one and two-fold nested error regression models." Ottawa, 1991.
Find full textWanjoya, Antony Kibira. "A Flexible Characterization of models for small area estimation: Theoretical developments and Applications." Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3421673.
Full textL'esigenza di stime affidabili per piccole aree tratte da sondaggi è cresciuta notevolmente negli ultimi anni, grazie all'aumento del loro utilizzo nella formulazione delle politiche, nella ripartizione dei fondi statali, nella pianificazione regionale, nelle applicazioni business e in altre applicazioni. Le tradizionali stime specifiche per l'area (stime dirette) potrebbero non fornire una precisione accettabile, perché la numerosità campionaria in molte delle piccole aree d'interesse potrebbe essere ridotta o nulla. Questo rende neccessario sfruttare le informazioni dalle zone simili, tramitte una stima indiretta basata sui modelli per informazioni ausiliarie come i dati dei censimenti o i dati amministrativi. I metodi basati sui modelli sono ora piuttosto diffusi. L'attenzione principale di questa tesi è sviluppare una strategia di modellazione flessibile nella stima di piccole aree, e la sua valutazione utilizzando il Censimento negli Stati Uniti sul reddito mediano, del 1989. Questa dissertazione è composta di due parti : la prima tratta lo sviluppo del modello e il confronto del modello proposto con il modello standard di Fay-Herriot tramite l'approcio di Bayes empirico. I risultati per questi due modelli sono stati confrontati in termini del bias relativo medio, del bias quadratico medio, del bias medio assoluto, della deviazione quadratica media ed inotre in termini del errore quadratico medio empirico. Il modello proposto dimostra un rendimento assai migliore rispetto al modello standard di Fay-Herriot. La seconda parte presenta il nostro tentativo di costruire un approccio di Bayes Gerarchico per la stima dei parametri del modello proposto, con l'attuazione delle tecniche di Markov Chain Monte Carlo (MCMC). MCMC è stato utilizzato tramitte l'algoritmo di campionamento Gibbs, utilizzando il software R. I risultati dai due modelli sono stati confrontati in termini di bias relativo medio, bias relativo quadratico medio e il bias assoluto medio. I nostri risultati empirici sottolineano la superiorità del modello proposto rispetto al modello Fay-Herriot. Tuttavia, il vantaggio del modello proposto è limitato visto che la sua attuazione è leggermente più complicata rispetto al modello di Fay-Herriot.
Warnholz, Sebastian [Verfasser]. "Small Area Estimation Using Robust Extensions to Area Level Models : Theory, Implementation and Simulation Studies / Sebastian Warnholz." Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1112553045/34.
Full textYu, Mingyu Carleton University Dissertation Mathematics. "Nested-error regression models and small area estimation combining cross-sectional and time series data." Ottawa, 1993.
Find full textLiu, Shiao. "Bayesian Analysis of Crime Survey Data with Nonresponse." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1175.
Full textBaldermann, Claudia [Verfasser]. "Robust Small Area Estimation under Spatial Non-Stationarity for Unit-Level Models : Theory and Empirical Results / Claudia Baldermann." Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1147758182/34.
Full textRamesh, Sathya. "High Resolution Satellite Images and LiDAR Data for Small-Area Building Extraction and Population Estimation." Thesis, University of North Texas, 2009. https://digital.library.unt.edu/ark:/67531/metadc12188/.
Full textArticus, Charlotte [Verfasser], Ralf [Akademischer Betreuer] Münnich, and Ralf [Gutachter] Münnich. "Finite Mixture Models for Small Area Estimation in Cases of Unobserved Heterogeneity / Charlotte Articus ; Gutachter: Ralf Münnich ; Betreuer: Ralf Münnich." Trier : Universität Trier, 2018. http://d-nb.info/1197808175/34.
Full textArticus, Charlotte [Verfasser], Ralf T. [Akademischer Betreuer] Münnich, and Ralf [Gutachter] Münnich. "Finite Mixture Models for Small Area Estimation in Cases of Unobserved Heterogeneity / Charlotte Articus ; Gutachter: Ralf Münnich ; Betreuer: Ralf Münnich." Trier : Universität Trier, 2018. http://nbn-resolving.de/urn:nbn:de:hbz:385-1-9884.
Full textManandhar, Binod. "Bayesian Models for the Analyzes of Noisy Responses From Small Areas: An Application to Poverty Estimation." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/188.
Full textYin, Jiani. "Bayesian Nonparametric Models for Multi-Stage Sample Surveys." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-dissertations/197.
Full textJahan, Farzana. "New insights into Bayesian models for spatial data." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/212622/1/Farzana%20Jahan%20Thesis.pdf.
Full textErhardt, Erik Barry. "Bayesian Simultaneous Intervals for Small Areas: An Application to Mapping Mortality Rates in U.S. Health Service Areas." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0105104-195633/.
Full textKeywords: Poisson-Gamma Regression; MCMC; Bayesian; Small Area Estimation; Simultaneous Inference; Statistics Includes bibliographical references (p. 61-67).
De, Moliner Anne. "Estimation robuste de courbes de consommmation électrique moyennes par sondage pour de petits domaines en présence de valeurs manquantes." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCK021/document.
Full textIn this thesis, we address the problem of robust estimation of mean or total electricity consumption curves by sampling in a finite population for the entire population and for small areas. We are also interested in estimating mean curves by sampling in presence of partially missing trajectories.Indeed, many studies carried out in the French electricity company EDF, for marketing or power grid management purposes, are based on the analysis of mean or total electricity consumption curves at a fine time scale, for different groups of clients sharing some common characteristics.Because of privacy issues and financial costs, it is not possible to measure the electricity consumption curve of each customer so these mean curves are estimated using samples. In this thesis, we extend the work of Lardin (2012) on mean curve estimation by sampling by focusing on specific aspects of this problem such as robustness to influential units, small area estimation and estimation in presence of partially or totally unobserved curves.In order to build robust estimators of mean curves we adapt the unified approach to robust estimation in finite population proposed by Beaumont et al (2013) to the context of functional data. To that purpose we propose three approaches : application of the usual method for real variables on discretised curves, projection on Functional Spherical Principal Components or on a Wavelets basis and thirdly functional truncation of conditional biases based on the notion of depth.These methods are tested and compared to each other on real datasets and Mean Squared Error estimators are also proposed.Secondly we address the problem of small area estimation for functional means or totals. We introduce three methods: unit level linear mixed model applied on the scores of functional principal components analysis or on wavelets coefficients, functional regression and aggregation of individual curves predictions by functional regression trees or functional random forests. Robust versions of these estimators are then proposed by following the approach to robust estimation based on conditional biais presented before.Finally, we suggest four estimators of mean curves by sampling in presence of partially or totally unobserved trajectories. The first estimator is a reweighting estimator where the weights are determined using a temporal non parametric kernel smoothing adapted to the context of finite population and missing data and the other ones rely on imputation of missing data. Missing parts of the curves are determined either by using the smoothing estimator presented before, or by nearest neighbours imputation adapted to functional data or by a variant of linear interpolation which takes into account the mean trajectory of the entire sample. Variance approximations are proposed for each method and all the estimators are compared to each other on real datasets for various missing data scenarios
Woo, Mi-Ja. "Robust estimation in mixture models and small area estimation using cross-sectional time series models." 2005. http://purl.galileo.usg.edu/uga%5Fetd/woo%5Fmi-ja%5F200508%5Fphd.
Full textKramlinger, Peter. "Essays on Inference in Linear Mixed Models." Doctoral thesis, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-1396-C.
Full textSavaþcý, Duygu. "Three studies on semi-mixed effects models." Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-000D-F1E3-3.
Full text