Academic literature on the topic 'Latent code optimization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Latent code optimization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Latent code optimization"
Chen, Taicai, Yue Duan, Dong Li, Lei Qi, Yinghuan Shi, and Yang Gao. "PG-LBO: Enhancing High-Dimensional Bayesian Optimization with Pseudo-Label and Gaussian Process Guidance." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 10 (March 24, 2024): 11381–89. http://dx.doi.org/10.1609/aaai.v38i10.29018.
Full textYuan, Xue, Guanjun Lin, Yonghang Tai, and Jun Zhang. "Deep Neural Embedding for Software Vulnerability Discovery: Comparison and Optimization." Security and Communication Networks 2022 (January 18, 2022): 1–12. http://dx.doi.org/10.1155/2022/5203217.
Full textSankar, E., L. Karthik, and Kuppa Venkatasriram Sastry. "Quantization of Product using Collaborative Filtering Based on Cluster." International Journal for Research in Applied Science and Engineering Technology 10, no. 3 (March 31, 2022): 876–82. http://dx.doi.org/10.22214/ijraset.2022.40753.
Full textChennappan, R., and Vidyaa Thulasiraman. "Multicriteria Cuckoo search optimized latent Dirichlet allocation based Ruzchika indexive regression for software quality management." Indonesian Journal of Electrical Engineering and Computer Science 24, no. 3 (December 1, 2021): 1804. http://dx.doi.org/10.11591/ijeecs.v24.i3.pp1804-1813.
Full textKim, Ha Young, and Dongsup Kim. "Prediction of mutation effects using a deep temporal convolutional network." Bioinformatics 36, no. 7 (November 20, 2019): 2047–52. http://dx.doi.org/10.1093/bioinformatics/btz873.
Full textBalelli, Irene, Santiago Silva, and Marco Lorenzi. "A Differentially Private Probabilistic Framework for Modeling the Variability Across Federated Datasets of Heterogeneous Multi-View Observations." Machine Learning for Biomedical Imaging 1, IPMI 2021 (April 22, 2022): 1–36. http://dx.doi.org/10.59275/j.melba.2022-7175.
Full textZhang, Yujia, Lai-Man Po, Xuyuan Xu, Mengyang Liu, Yexin Wang, Weifeng Ou, Yuzhi Zhao, and Wing-Yin Yu. "Contrastive Spatio-Temporal Pretext Learning for Self-Supervised Video Representation." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 3 (June 28, 2022): 3380–89. http://dx.doi.org/10.1609/aaai.v36i3.20248.
Full textEsztergár-Kiss, Domokos. "Horizon 2020 Project Analysis by Using Topic Modelling Techniques in the Field of Transport." Transport and Telecommunication Journal 25, no. 3 (June 15, 2024): 266–77. http://dx.doi.org/10.2478/ttj-2024-0019.
Full textG, Ranganathan, and Bindhu V. "Learned Image Compression with Discretized Gaussian Mixture Likelihoods and Attention Modules." December 2020 2, no. 4 (February 23, 2021): 162–67. http://dx.doi.org/10.36548/jeea.2020.4.004.
Full textZhang, Dewei, Yin Liu, and Sam Davanloo Tajbakhsh. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure." INFORMS Journal on Computing 34, no. 2 (March 2022): 1126–40. http://dx.doi.org/10.1287/ijoc.2021.1069.
Full textDissertations / Theses on the topic "Latent code optimization"
Li, Huiyu. "Exfiltration et anonymisation d'images médicales à l'aide de modèles génératifs." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4041.
Full textThis thesis aims to address some specific safety and privacy issues when dealing with sensitive medical images within data lakes. This is done by first exploring potential data leakage when exporting machine learning models and then by developing an anonymization approach that protects data privacy.Chapter 2 presents a novel data exfiltration attack, termed Data Exfiltration by Compression (DEC), which leverages image compression techniques to exploit vulnerabilities in the model exporting process. This attack is performed when exporting a trained network from a remote data lake, and is applicable independently of the considered image processing task. By exploring both lossless and lossy compression methods, this chapter demonstrates how DEC can effectively be used to steal medical images and reconstruct them with high fidelity, using two public CT and MR datasets. This chapter also explores mitigation measures that a data owner can implement to prevent the attack. It first investigates the application of differential privacy measures, such as Gaussian noise addition, to mitigate this attack, and explores how attackers can create attacks resilient to differential privacy. Finally, an alternative model export strategy is proposed which involves model fine-tuning and code verification.Chapter 3 introduces the Generative Medical Image Anonymization framework, a novel approach to balance the trade-off between preserving patient privacy while maintaining the utility of the generated images to solve downstream tasks. The framework separates the anonymization process into two key stages: first, it extracts identity and utility-related features from medical images using specially trained encoders; then, it optimizes the latent code to achieve the desired trade-off between anonymity and utility. We employ identity and utility encoders to verify patient identities and detect pathologies, and use a generative adversarial network-based auto-encoder to create realistic synthetic images from the latent space. During optimization, we incorporate these encoders into novel loss functions to produce images that remove identity-related features while maintaining their utility to solve a classification problem. The effectiveness of this approach is demonstrated through extensive experiments on the MIMIC-CXR chest X-ray dataset, where the generated images successfully support lung pathology detection.Chapter 4 builds upon the work from Chapter 4 by utilizing generative adversarial networks (GANs) to create a more robust and scalable anonymization solution. The framework is structured into two distinct stages: first, we develop a streamlined encoder and a novel training scheme to map images into a latent space. In the second stage, we minimize the dual-loss functions proposed in Chapter 3 to optimize the latent representation of each image. This method ensures that the generated images effectively remove some identifiable features while retaining crucial diagnostic information. Extensive qualitative and quantitative experiments on the MIMIC-CXR dataset demonstrate that our approach produces high-quality anonymized images that maintain essential diagnostic details, making them well-suited for training machine learning models in lung pathology classification.The conclusion chapter summarizes the scientific contributions of this work, and addresses remaining issues and challenges for producing secured and privacy preserving sensitive medical data
Jha, Sudhanshu S. "Power-constrained aware and latency-aware microarchitectural optimizations in many-core processors." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/403960.
Full textA mesura que el consum dels transistors supera el nivell de potència desitjable es necessiten noves tècniques arquitectòniques i microarquitectòniques per millorar, o almenys mantenir, l'eficiència energètica dels processadors de les pròximes generacions. L'adaptació en temps d'execució, tant de nuclis com de les cachés, així com també adaptacions DVFS són idees que han sorgit recentment que fan preveure que sigui un àrea prometedora per mantenir un ritme d'eficiència energètica acceptable. Tanmateix, cap de les tècniques d'adaptació proposades fins ara és capaç d'oferir bons resultats si tenim en compte les restriccions estrictes de potència que seran comuns a les pròximes dècades. És convenient definir noves tècniques que ataquin el problema des de diversos fronts utilitzant diferents mecanismes especialitzats. La combinació de diferents mecanismes de gestió d'energia porta aparellada nivells addicionals de complexitat, ja que altres factors com ara el comportament de la càrrega de treball així com condicions específiques de temps d'execució també han de ser considerats per assignar adequadament la potència entre els nuclis del sistema computador. Per tractar el tema de la potència, aquesta tesi proposa en primer lloc Chrysso, una administració d'energia integrada i escalable que selecciona ràpidament la millor combinació entre diferents adaptacions microarquitectòniques. Chrysso pot buscar ràpidament l'adaptació adequada al fer projeccions òptimes de rendiment i potència basades en configuracions de Pareto, permetent així reduir de manera efectiva l'espai de cerca. Chrysso arriba a un rendiment de 1,9 sobre tècniques convencionals d'inhibició de portes amb una càrrega d'aplicacions seqüencials; i un rendiment de 1,5 quan les aplicacions corresponen a programes parla·lels. La majoria dels sistemes de gestió d'energia existents utilitzen un enfocament centralitzat per regular la dissipació d'energia. Malauradament, la complexitat i el temps d'administració s'incrementen significativament amb una gran quantitat de nuclis. En aquest treball es defineix un gestor jeràrquic de potència basat en dos nivells. Aquesta solució és altament escalable amb baix cost operatiu en una arquitectura de múltiples nuclis integrats en clústers, amb memòria caché de darrer nivell compartida a nivell de cluster, i DVFS establert en intervals de temps de gra fi a nivell de clúster. La potència global es distribueix en primer lloc a través dels clústers utilitzant GPM i després es distribueix dins un clúster (en paral·lel si es consideren tots els clústers). A més, aquest treball també proposa DVFS i migració de fils conscient de la memòria caché (DCTM) que garanteix una òptima distribució de tasques entre els nuclis. DCTM supera les solucions existents fins a un 12%. Amb els avenços en la tecnologia i les tècniques de micro-arquitectura de nuclis, la diferència de rendiment entre el component computacional i la memòria està augmentant significativament. Per omplir aquest buit, s'està avançant cap a arquitectures de múltiples nuclis amb memòries caché integrades basades en DRAM. Aquestes memòries caché DRAM a gran escala plantegen el problema de com gestionar de forma eficaç les etiquetes. Els dissenys de cachés amb dades i etiquetes juntes són un primer pas, però encara pateixen per tenir una alta latència, especialment en cachés amb un grau alt d'associativitat. En aquesta tesi es proposa l'estudi d'una tècnica anomenada Tag Cache, un mecanisme distribuït d'emmagatzematge d'etiquetes, que redueix la latència de les operacions de lectura d'etiquetes en les memòries caché DRAM. Cada Tag Cache, que resideix a L2, emmagatzema la informació de les vies que s'han accedit recentment de les memòries caché DRAM. D'aquesta manera es pot aprofitar la localitat temporal d'una caché DRAM, fet que contribueix en promig en un 46% dels encerts en les caché DRAM.
Books on the topic "Latent code optimization"
Aggarwal, Vaneet, and Tian Lan. Modeling and Optimization of Latency in Erasure-Coded Storage Systems. Now Publishers, 2021.
Find full textBook chapters on the topic "Latent code optimization"
Cohen, Joshua M., Qinshi Wang, and Andrew W. Appel. "Verified Erasure Correction in Coq with MathComp and VST." In Computer Aided Verification, 272–92. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13188-2_14.
Full textMureithi, Joseph, Saidi Mkomwa, Amir Kassam, and Ngari Macharia. "Research and technology development needs for scaling up conservation agriculture systems, practices and innovations in Africa." In Conservation agriculture in Africa: climate smart agricultural development, 176–88. Wallingford: CABI, 2022. http://dx.doi.org/10.1079/9781789245745.0009.
Full textYang, Dai, Tilman Küstner, Rami Al-Rihawi, and Martin Schulz. "Exploring High Bandwidth Memory for PET Image Reconstruction." In Parallel Computing: Technology Trends. IOS Press, 2020. http://dx.doi.org/10.3233/apc200044.
Full textRaheel, Muhammad Salman, and Raad Raad. "Streaming Coded Video in P2P Networks." In Advances in Wireless Technologies and Telecommunication, 188–222. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2113-6.ch009.
Full textRaheel, Muhammad Salman, and Raad Raad. "Streaming Coded Video in P2P Networks." In Research Anthology on Recent Trends, Tools, and Implications of Computer Programming, 1304–39. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3016-0.ch060.
Full textDas, Kedar Nath. "Hybrid Genetic Algorithm." In Global Trends in Intelligent Computing Research and Development, 268–305. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4936-1.ch010.
Full textWang, Yanyun, Dehui Du, Haibo Hu, Zi Liang, and Yuanhao Liu. "TSFool: Crafting Highly-Imperceptible Adversarial Time Series Through Multi-Objective Attack." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240644.
Full textKrishna Pasupuleti, Murali. "Next-Gen Connectivity: AI and IoT for Space-Terrestrial Integrated Networks." In Future Networks: AI, IoT, and Sustainable Communications from Earth to Orbit, 82–95. National Education Services, 2024. http://dx.doi.org/10.62311/nesx/7202.
Full textAl-Shameri, Yahya Najib Hamood. "Applications of Artificial Intelligence for Enhanced Bug Detection in Software Development." In Advances in Educational Technologies and Instructional Design, 155–88. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-6745-2.ch008.
Full textXu, Hao, BenHong Zhang, Qiwei Hu, and Zhaoyang Du. "A Dynamic Queue Adjustment Algorithm for Task Offloading in Vehicular Edge Computing Based on MADDPG." In Advances in Transdisciplinary Engineering. IOS Press, 2024. https://doi.org/10.3233/atde241303.
Full textConference papers on the topic "Latent code optimization"
Takahashi, Ryo, Kota Ando, and Hiroki Nakahara. "A Stacked FPGA utilizing 3D-SRAM with Latency Optimization." In 2024 IEEE 17th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 400–406. IEEE, 2024. https://doi.org/10.1109/mcsoc64144.2024.00072.
Full textBeykal, Burcu. "From Then to Now and Beyond: Exploring How Machine Learning Shapes Process Design Problems." In Foundations of Computer-Aided Process Design, 16–21. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.116002.
Full textPerry, Travis, and Andrew Gallaher. "Automated Layout with a Python Integrated NDARC Environment." In Vertical Flight Society 74th Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2018. http://dx.doi.org/10.4050/f-0074-2018-12723.
Full textBarattin, Simone, Christos Tzelepis, Ioannis Patras, and Nicu Sebe. "Attribute-Preserving Face Dataset Anonymization via Latent Code Optimization." In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.00773.
Full textVan Der Cruysse, Jonathan, and Christophe Dubach. "Latent Idiom Recognition for a Minimalist Functional Array Language Using Equality Saturation." In 2024 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). IEEE, 2024. http://dx.doi.org/10.1109/cgo57630.2024.10444879.
Full textOzturk, O., G. Chen, M. Kandemir, and M. Karakoy. "Compiler-Directed Variable Latency Aware SPM Management to CopeWith Timing Problems." In International Symposium on Code Generation and Optimization (CGO'07). IEEE, 2007. http://dx.doi.org/10.1109/cgo.2007.6.
Full textCompton, Logan M., James L. Armes, and Gary L. Solbrekken. "Custom 1-D CFD Numeric Model of Single-Cell Scale Sample Holder for Scanning Thermal Analysis." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89615.
Full textFeng, Zhenpeng, Milos Dakovic, Mingzhe Zhu, and Ljubisa Stankovic. "Time-frequency Representation Optimization using InfoGAN Latent Codes." In 2022 30th Telecommunications Forum (TELFOR). IEEE, 2022. http://dx.doi.org/10.1109/telfor56187.2022.9983718.
Full textK, Soumya, Navjot Singh, and Vivek Kumar. "Comparing the Performance of the Latest Generation Multi-Threaded and Multi-Core ASICs." In 2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC). IEEE, 2024. http://dx.doi.org/10.1109/icocwc60930.2024.10470857.
Full textMorishita, Masaki, Tai Asayama, and Masanori Tashimo. "Development of System Based Code: Methodologies for Life-Cycle Margin Evaluation." In 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89393.
Full textReports on the topic "Latent code optimization"
DiDomizio, Matthew, and Jonathan Butta. Measurement of Heat Transfer and Fire Damage Patterns on Walls for Fire Model Validation. UL Research Institutes, July 2024. http://dx.doi.org/10.54206/102376/hnkr9109.
Full text