Academic literature on the topic 'Late Forming Dark Matter (LFDM)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Late Forming Dark Matter (LFDM).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Late Forming Dark Matter (LFDM)"

1

Chakraborty, Amlan, Prolay K. Chanda, Kanhaiya Lal Pandey, and Subinoy Das. "Formation and Abundance of Late-forming Primordial Black Holes as Dark Matter." Astrophysical Journal 932, no. 2 (June 1, 2022): 119. http://dx.doi.org/10.3847/1538-4357/ac6ddd.

Full text
Abstract:
Abstract We propose a novel mechanism where primordial black hole (PBH) dark matter is formed much later in the history of the universe, between the epochs of Big Bang nucleosynthesis and cosmic microwave background photon decoupling. In our setup, one does not need to modify the scale-invariant inflationary power spectra; instead, a late-phase transition in a strongly interacting fermion–scalar fluid (which occurs naturally around redshift 106 ≤ z T ≤ 108) creates an instability in the density perturbation as the sound speed turns imaginary. As a result, the dark matter perturbation grows exponentially in sub-Compton scales. This follows the immediate formation of an early dense dark matter halo, which finally evolves into PBHs due to cooling through scalar radiation. We calculate the variance of the density perturbations and the PBH fractional abundances f(M) by using a nonmonochromatic mass function. We find that the peak of our PBH mass function lies between 10−16 and 10−14 solar mass for z T ≃ 106, and thus that it can constitute the entire dark matter of the universe. In PBH formation, one would expect a temporary phase where an attractive scalar balances the Fermi pressure. We numerically confirm that such a state indeed exists, and we find the radius and density profile of the temporary static structure of the dark matter halo, which finally evolves into PBHs due to cooling through scalar radiation.
APA, Harvard, Vancouver, ISO, and other styles
2

Kong, Demao, Manoj Kaplinghat, Hai-Bo Yu, Filippo Fraternali, and Pavel E. Mancera Piña. "The Odd Dark Matter Halos of Isolated Gas-rich Ultradiffuse Galaxies." Astrophysical Journal 936, no. 2 (September 1, 2022): 166. http://dx.doi.org/10.3847/1538-4357/ac8875.

Full text
Abstract:
Abstract We analyze circular velocity profiles of seven ultradiffuse galaxies (UDGs) that are isolated and gas-rich. Assuming that the dark matter halos of these UDGs have a Navarro–Frenk–White (NFW) density profile or a Read density profile (which allows for constant-density cores), the inferred halo concentrations are systematically lower than the cosmological median, even as low as −0.6 dex (about 5σ away) in some cases. Alternatively, similar fits can be obtained with a density profile that scales roughly as 1/r 2 for radii larger than a few kiloparsecs. Both solutions require the radius where the halo circular velocity peaks ( R max ) to be much larger than the median expectation. Surprisingly, we find an overabundance of such large- R max halos in the IllustrisTNG dark-matter-only simulations compared to the Gaussian expectation. These halos form late and have higher spins compared to median halos of similar masses. The inner densities of the most extreme among these late-forming halos are higher than their NFW counterparts, leading to a ∼1/r 2 density profile. However, the two well-resolved UDGs in our sample strongly prefer lower dark matter densities in the center than the simulated ones. Comparing to IllustrisTNG hydrodynamical simulations, we also find a tension in getting both low enough circular velocities and high enough halo mass to accommodate the measurements. Our results indicate that the gas-rich UDGs present a significant challenge for galaxy formation models.
APA, Harvard, Vancouver, ISO, and other styles
3

Senapati, Sephalika, Bradley Kabes, and Helge Heinrich. "Ag2Al plates in Al–Ag alloys." International Journal of Materials Research 97, no. 3 (March 1, 2006): 325–28. http://dx.doi.org/10.1515/ijmr-2006-0052.

Full text
Abstract:
Abstract The late stages of precipitation in aluminum-rich Al –Ag alloys with silver contents from 3 at.% to 22 at.% were studied with transmission electron microscopy. Shapes, sizes, and arrangements of plates of the stable hexagonal Ag2Al phase forming on {111} planes of the f.c.c. matrix were analysed. The high-angle annular dark-field contrast in scanning transmission electron microscopy is calibrated. This calibration allows for the quantitative measurement of plate thicknesses from high-angle annular dark-field scanning transmission electron micrographs of Ag2Al plates inclined to the electron beam. Results from these measurements are in good agreement with direct bright-field micrographs of plates viewed edge-on. For samples with silver contents above 12 at.% a parallel lamellar arrangement of fine γ-plates and Al-rich matrix is found after extended heat treatments.
APA, Harvard, Vancouver, ISO, and other styles
4

Ledinauskas, E., and K. Zubovas. "Reignited star formation in dwarf galaxies that were quenched during reionization." Astronomy & Astrophysics 615 (July 2018): A64. http://dx.doi.org/10.1051/0004-6361/201832824.

Full text
Abstract:
Context. Irregular dwarf galaxies of the Local Group have very varied properties and star formation histories. Some of them formed the majority of their stars very late compared to others. Extreme examples of this are Leo A and Aquarius, which reached the peak of star formation at z < 1 (more than 6 Gyr after the Big Bang). This fact seemingly challenges the ΛCDM cosmological framework because the dark matter halos of these galaxies on average should assemble the majority of their masses before z ~ 2 (<3 Gyr after the Big Bang). Aims. We investigate whether the delayed star formation histories of some irregular dwarf galaxies might be explained purely by the stochasticity of their mass assembly histories coupled with the effect of cosmic reionization. Methods. We developed a semi-analytic model to follow the accretion of baryonic matter, star formation, and stellar feedback in dark matter halos with present-day virial masses 109 M⊙ < Mdm,0 < 1011 M⊙ and with different stochastic growth histories obtained using the PINOCCHIO code based on Lagrangian perturbation theory. Results. We obtain the distributions of observable parameters and the evolution histories for these galaxies. Accretion of baryonic matter is strongly suppressed after the epoch of reionization in some models, but the galaxies continue to accrete dark matter and eventually reach enough mass for accretion of baryonic matter to begin again. These “reborn” model galaxies show delayed star formation histories that are very similar to those of Leo A and Aquarius. Conclusions. We find that the stochasticity caused by mass assembly histories is enhanced in systems with virial masses ~1010 M⊙ because of their sensitivity to the photoionizing intergalactic radiation field after the epoch of reionization. This results in qualitatively different star formation histories in late- and early-forming galaxies, and it might explain the peculiar star formation histories of irregular dwarf galaxies such as Leo A and Aquarius.
APA, Harvard, Vancouver, ISO, and other styles
5

BOCHNER, BRETT. "COSMIC ACCELERATION AND CONCORDANCE FROM CAUSAL BACKREACTION WITH RECURSIVE NONLINEARITIES." International Journal of Modern Physics D 22, no. 13 (October 20, 2013): 1330026. http://dx.doi.org/10.1142/s0218271813300267.

Full text
Abstract:
We review the causal backreaction paradigm, in which the need for Dark Energy is eliminated via the generation of an apparent cosmic acceleration from the causal flow of inhomogeneity information coming in from distant structure-forming regions. The formalism detailed here incorporates the effects of "recursive nonlinearities": the process by which already-established metric perturbations will subsequently act to slow-down all future flows of inhomogeneity information. Despite such effects, we find viable cosmological models in which causal backreaction successfully serves as a replacement for Dark Energy, via the adoption of relatively large values for the dimensionless "strength" of the clustering evolution functions being modeled. These large values are justified by the hierarchical nature of clustering and virialization in the universe, which occurs on multiple cosmic length scales simultaneously; moreover, the clustering model amplitudes needed to match the apparent acceleration can be moderated via the incorporation of a model parameter representing the late-time slow-down of clustering due to astrophysical feedback processes. In summary, an alternative cosmic concordance can be achieved for a matter-only universe in which the apparent acceleration observed is generated entirely by causal backreaction effects. Lastly, considering the long-term fate of the universe, while the possibility of an "eternal" acceleration due to causal backreaction seems unlikely, this conclusion does not take into account the large-scale breakdown of cosmological isotropy in the far future, or the eventual ubiquity of gravitationally-nonlinear perturbations.
APA, Harvard, Vancouver, ISO, and other styles
6

Ouchi, Masami, Yoshiaki Ono, and Takatoshi Shibuya. "Observations of the Lyman-α Universe." Annual Review of Astronomy and Astrophysics 58, no. 1 (August 18, 2020): 617–59. http://dx.doi.org/10.1146/annurev-astro-032620-021859.

Full text
Abstract:
Hydrogen Lyman-α (Lyα) emission has been one of the major observational probes for the high-redshift Universe since the first discoveries of high- z Lyα-emitting galaxies in the late 1990s. Due to the strong Lyα emission originated by resonant scattering and recombination of the most abundant element, Lyα observations witness not only Hii regions of star formation and active galactic nuclei (AGNs) but also diffuse Hi gas in the circumgalactic medium (CGM) and the intergalactic medium (IGM). Here, we review Lyα sources and present theoretical interpretations reached to date. We conclude the following: ▪ A typical Lyα emitter (LAE) at z ≳ 2 with a L* Lyα luminosity is a high- z counterpart of a local dwarf galaxy, a compact metal-poor star-forming galaxy (SFG) with an approximate stellar (dark matter halo) mass and star-formation rate of 108−9M⊙ (1010−11M⊙) and 1–10 M⊙ year−1, respectively. ▪ High- z SFGs ubiquitously have a diffuse Lyα-emitting halo in the CGM extending to the halo virial radius and beyond. ▪ Remaining neutral hydrogen at the epoch of cosmic reionization makes a strong dimming of Lyα emission for galaxies at z > 6 that suggests the late reionization history. The next-generation large-telescope projects will combine Lyα emission data with Hi Lyα absorptions and 21-cm radio data that map out the majority of hydrogen (Hi+Hii) gas, uncovering the exchanges of ( a) matter by outflow and inflow and ( b) radiation, relevant to cosmic reionization, between galaxies and the CGM/IGM.
APA, Harvard, Vancouver, ISO, and other styles
7

Hadzhiyska, Boryana, Sownak Bose, Daniel Eisenstein, and Lars Hernquist. "Extensions to models of the galaxy–halo connection." Monthly Notices of the Royal Astronomical Society 501, no. 2 (December 8, 2020): 1603–20. http://dx.doi.org/10.1093/mnras/staa3776.

Full text
Abstract:
ABSTRACT We explore two widely used empirical models for the galaxy–halo connection, subhalo abundance matching (SHAM) and the halo occupation distribution (HOD), and compare them with the hydrodynamical simulation IllustrisTNG (TNG) for multiple statistics quantifying the galaxy distribution at $n_{\rm gal}\approx 1.3\times 10^{-3}\, ({\rm Mpc}\,h^{-1})^{-3}$. We observe that in their most straightforward implementations, both models fail to reproduce the two-point clustering measured in TNG. We find that SHAM models that use the relaxation velocity, Vrelax, and the peak velocity, Vpeak, perform best, and match the clustering reasonably well, although neither captures adequately the one-halo clustering. Splitting the total sample into sub-populations, we discover that SHAM overpredicts the clustering of high-mass, blue, star-forming, and late-forming galaxies and underpredicts that of low-mass, red, quiescent, and early-forming galaxies. We also study various baryonic effects, finding that subhaloes in the dark-matter-only simulation have consistently higher values of their SHAM-proxy properties than their full-physics counterparts. We then consider a 2D implementation of the HOD model augmented with a secondary parameter (environment, velocity anisotropy, σ2Rhalf-mass, and total potential) tuned so as to match the two-point clustering of the IllustrisTNG galaxies on large scales. We analyse these galaxy populations adopting alternative statistical tools such as galaxy–galaxy lensing, void–galaxy cross-correlations, and cumulants of the density field, finding that the hydrodynamical galaxy distribution disfavours σ2Rhalf-mass and the total potential as secondary parameters, while the environment and velocity anisotropy samples are consistent with full physics across all statistical probes examined. Our results demonstrate the power of examining multiple statistics for determining the secondary parameters that are vital for understanding the galaxy–halo connection.
APA, Harvard, Vancouver, ISO, and other styles
8

Falcón-Barroso, J., G. van de Ven, M. Lyubenova, J. Mendez-Abreu, J. A. L. Aguerri, B. García-Lorenzo, S. Bekeraité, et al. "The CALIFA view on stellar angular momentum across the Hubble sequence." Astronomy & Astrophysics 632 (November 28, 2019): A59. http://dx.doi.org/10.1051/0004-6361/201936413.

Full text
Abstract:
We present the apparent stellar angular momentum over the optical extent of 300 galaxies across the Hubble sequence using integral-field spectroscopic (IFS) data from the CALIFA survey. Adopting the same λR parameter previously used to distinguish between slow and fast rotating early-type (elliptical and lenticular) galaxies, we show that spiral galaxies are almost all fast rotators, as expected. Given the extent of our data, we provide relations for λR measured in different apertures (e.g. fractions of the effective radius: 0.5 Re, Re, 2 Re), including conversions to long-slit 1D apertures. Our sample displays a wide range of λRe values, consistent with previous IFS studies. The fastest rotators are dominated by relatively massive and highly star-forming Sb galaxies, which preferentially reside in the main star-forming sequence. These galaxies reach λRe values of ∼0.85, and they are the largest galaxies at a given mass, while also displaying some of the strongest stellar population gradients. Compared to the population of S0 galaxies, our findings suggest that fading may not be the dominant mechanism transforming spirals into lenticulars. Interestingly, we find that λRe decreases for late-type Sc and Sd spiral galaxies, with values that occasionally set them in the slow-rotator regime. While for some of them this can be explained by their irregular morphologies and/or face-on configurations, others are edge-on systems with no signs of significant dust obscuration. The latter are typically at the low-mass end, but this does not explain their location in the classical (V/σ, ε) and (λRe, ε) diagrams. Our initial investigations, based on dynamical models, suggest that these are dynamically hot disks, probably influenced by the observed important fraction of dark matter within Re.
APA, Harvard, Vancouver, ISO, and other styles
9

Shelest, A., and F. Lelli. "From spirals to lenticulars: Evidence from the rotation curves and mass models of three early-type galaxies." Astronomy & Astrophysics 641 (September 2020): A31. http://dx.doi.org/10.1051/0004-6361/202038184.

Full text
Abstract:
Rotation curves have traditionally been difficult to trace for early-type galaxies (ETGs) because they often lack a high-density disk of cold gas as in late-type galaxies (LTGs). In this work, we derive rotation curves for three lenticular galaxies from the ATLAS3D survey, combining CO data in the inner parts with deep HI data in the outer regions, extending out to 10−20 effective radii. We also use Spitzer photometry at 3.6 μm to decompose the rotation curves into the contributions of baryons and dark matter (DM). We find that (1) the rotation-curve shapes of these ETGs are similar to those of LTGs of a similar mass and surface brightness; (2) the dynamically-inferred stellar mass-to-light ratios are small for quiescent ETGs but similar to those of star-forming LTGs; (3) the DM halos follow the same scaling relations with galaxy luminosity as those of LTGs; and (4) one galaxy (NGC 3626) is poorly fit by cuspy DM profiles, suggesting that DM cores may exist in high-mass galaxies too. Our results indicate that these lenticular galaxies have recently transitioned from LTGs to ETGs without altering their DM halo structure (e.g., via a major merger), and they could be faded spirals. We also confirm that ETGs follow the same radial acceleration relation as LTGs, reinforcing the notion that this is a universal law for all galaxy types.
APA, Harvard, Vancouver, ISO, and other styles
10

Kelly, Ashley J., Adrian Jenkins, and Carlos S. Frenk. "The origin of X-ray coronae around simulated disc galaxies." Monthly Notices of the Royal Astronomical Society 502, no. 2 (February 4, 2021): 2934–51. http://dx.doi.org/10.1093/mnras/stab255.

Full text
Abstract:
ABSTRACT The existence of hot, accreted gaseous coronae around massive galaxies is a long-standing central prediction of galaxy formation models in the ΛCDM cosmology. While observations now confirm that extraplanar hot gas is present around late-type galaxies, the origin of the gas is uncertain with suggestions that galactic feedback could be the dominant source of energy powering the emission. We investigate the origin and X-ray properties of the hot gas that surrounds galaxies of halo mass, $(10^{11}\!-\!10^{14}) \, \mathrm{M}_\odot$, in the cosmological hydrodynamical eagle simulations. We find that the central X-ray emission, ≤0.10Rvir, of haloes of mass $\le 10^{13} \, \mathrm{M}_\odot$ originates from gas heated by supernovae (SNe). However, beyond this region, a quasi-hydrostatic, accreted atmosphere dominates the X-ray emission in haloes of mass $\ge 10^{12} \, \mathrm{M}_\odot$. We predict that a dependence on halo mass of the hot gas to dark matter mass fraction can significantly change the slope of the LX–Mvir relation (which is typically assumed to be 4/3 for clusters) and we derive the scaling law appropriate to this case. As the gas fraction in haloes increases with halo mass, we find a steeper slope for the LX–Mvir in lower mass haloes, $\le 10^{14} \, \mathrm{M}_\odot$. This varying gas fraction is driven by active galactic nuclei feedback. We also identify the physical origin of the so-called ‘missing feedback’ problem, the apparently low X-ray luminosities observed from high star-forming, low-mass galaxies. This is explained by the ejection of SNe-heated gas from the central regions of the halo.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography