Journal articles on the topic 'LASSO algoritmus'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'LASSO algoritmus.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gaines, Brian R., Juhyun Kim, and Hua Zhou. "Algorithms for Fitting the Constrained Lasso." Journal of Computational and Graphical Statistics 27, no. 4 (August 7, 2018): 861–71. http://dx.doi.org/10.1080/10618600.2018.1473777.
Full textBonnefoy, Antoine, Valentin Emiya, Liva Ralaivola, and Remi Gribonval. "Dynamic Screening: Accelerating First-Order Algorithms for the Lasso and Group-Lasso." IEEE Transactions on Signal Processing 63, no. 19 (October 2015): 5121–32. http://dx.doi.org/10.1109/tsp.2015.2447503.
Full textZhou, Helper, and Victor Gumbo. "Supervised Machine Learning for Predicting SMME Sales: An Evaluation of Three Algorithms." African Journal of Information and Communication, no. 27 (May 31, 2021): 1–21. http://dx.doi.org/10.23962/10539/31371.
Full textWu, Tong Tong, and Kenneth Lange. "Coordinate descent algorithms for lasso penalized regression." Annals of Applied Statistics 2, no. 1 (March 2008): 224–44. http://dx.doi.org/10.1214/07-aoas147.
Full textTsiligkaridis, Theodoros, Alfred O. Hero III, and Shuheng Zhou. "On Convergence of Kronecker Graphical Lasso Algorithms." IEEE Transactions on Signal Processing 61, no. 7 (April 2013): 1743–55. http://dx.doi.org/10.1109/tsp.2013.2240157.
Full textMuchisha, Nadya Dwi, Novian Tamara, Andriansyah Andriansyah, and Agus M. Soleh. "Nowcasting Indonesia’s GDP Growth Using Machine Learning Algorithms." Indonesian Journal of Statistics and Its Applications 5, no. 2 (June 30, 2021): 355–68. http://dx.doi.org/10.29244/ijsa.v5i2p355-368.
Full textJain, Rahi, and Wei Xu. "HDSI: High dimensional selection with interactions algorithm on feature selection and testing." PLOS ONE 16, no. 2 (February 16, 2021): e0246159. http://dx.doi.org/10.1371/journal.pone.0246159.
Full textQin, Zhiwei, Katya Scheinberg, and Donald Goldfarb. "Efficient block-coordinate descent algorithms for the Group Lasso." Mathematical Programming Computation 5, no. 2 (March 31, 2013): 143–69. http://dx.doi.org/10.1007/s12532-013-0051-x.
Full textJohnson, Karl M., and Thomas P. Monath. "Imported Lassa Fever — Reexamining the Algorithms." New England Journal of Medicine 323, no. 16 (October 18, 1990): 1139–41. http://dx.doi.org/10.1056/nejm199010183231611.
Full textZhao, Yingdong, and Richard Simon. "Development and Validation of Predictive Indices for a Continuous Outcome Using Gene Expression Profiles." Cancer Informatics 9 (January 2010): CIN.S3805. http://dx.doi.org/10.4137/cin.s3805.
Full textBunea, Florentina, Johannes Lederer, and Yiyuan She. "The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms." IEEE Transactions on Information Theory 60, no. 2 (February 2014): 1313–25. http://dx.doi.org/10.1109/tit.2013.2290040.
Full textRakotomamonjy, A. "Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms." Signal Processing 91, no. 7 (July 2011): 1505–26. http://dx.doi.org/10.1016/j.sigpro.2011.01.012.
Full textGhosh, Pronab, Asif Karim, Syeda Tanjila Atik, Saima Afrin, and Mohd Saifuzzaman. "Expert cancer model using supervised algorithms with a LASSO selection approach." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 3 (June 1, 2021): 2631. http://dx.doi.org/10.11591/ijece.v11i3.pp2631-2639.
Full textDermoune, Azzouz, Daoud Ounaissi, and Nadji Rahmania. "Oscillation of Metropolis–Hastings and simulated annealing algorithms around LASSO estimator." Mathematics and Computers in Simulation 135 (May 2017): 39–50. http://dx.doi.org/10.1016/j.matcom.2015.09.003.
Full textOnose, Alexandru, and Bogdan Dumitrescu. "Adaptive Randomized Coordinate Descent for Sparse Systems: Lasso and Greedy Algorithms." IEEE Transactions on Signal Processing 63, no. 15 (August 2015): 4091–101. http://dx.doi.org/10.1109/tsp.2015.2436369.
Full textGillies, Christopher E., Xiaoli Gao, Nilesh V. Patel, Mohammad-Reza Siadat, and George D. Wilson. "Improved Feature Selection by Incorporating Gene Similarity into the LASSO." International Journal of Knowledge Discovery in Bioinformatics 3, no. 1 (January 2012): 1–22. http://dx.doi.org/10.4018/jkdb.2012010101.
Full textCosta, Marcelo A., Enrico A. Colosimo, and Carolina G. Miranda. "SELECTING PROFILES OF IN DEBT CLIENTS OF A BRAZILIAN TELEPHONE COMPANY: NEW LASSO AND ADAPTIVE LASSO ALGORITHMS IN THE COX MODEL." Pesquisa Operacional 35, no. 2 (August 2015): 401–21. http://dx.doi.org/10.1590/0101-7438.2015.035.02.0401.
Full textLi, Ao, and Hayaru Shouno. "Dictionary-Based Image Denoising by Fused-Lasso Atom Selection." Mathematical Problems in Engineering 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/368602.
Full textZou, Jian, and Yuli Fu. "Split Bregman algorithms for sparse group Lasso with application to MRI reconstruction." Multidimensional Systems and Signal Processing 26, no. 3 (February 12, 2014): 787–802. http://dx.doi.org/10.1007/s11045-014-0282-7.
Full textLi, Yingying, and Yaxuan Zhang. "Bounded Perturbation Resilience of Two Modified Relaxed CQ Algorithms for the Multiple-Sets Split Feasibility Problem." Axioms 10, no. 3 (August 23, 2021): 197. http://dx.doi.org/10.3390/axioms10030197.
Full textXiong, ZHANG, LV Xinyan, JI Tao, and ZHONG Chen. "Water permeability prediction of sponge city pavement materials based on different machine learning algorithms." E3S Web of Conferences 194 (2020): 05023. http://dx.doi.org/10.1051/e3sconf/202019405023.
Full textGuo, Hongping, Zuguo Yu, Jiyuan An, Guosheng Han, Yuanlin Ma, and Runbin Tang. "A Two-Stage Mutual Information Based Bayesian Lasso Algorithm for Multi-Locus Genome-Wide Association Studies." Entropy 22, no. 3 (March 13, 2020): 329. http://dx.doi.org/10.3390/e22030329.
Full textLiu, Zhenqiu, and Gang Li. "Efficient Regularized Regression withL0Penalty for Variable Selection and Network Construction." Computational and Mathematical Methods in Medicine 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/3456153.
Full textMukhtar, Majid Khan Bin Majahar Ali, Anam Javaid, Mohd Tahir Ismail, and Ahmad Fudholi. "Accurate and Hybrid Regularization - Robust Regression Model in Handling Multicollinearity and Outlier Using 8SC for Big Data." Mathematical Modelling of Engineering Problems 8, no. 4 (August 31, 2021): 547–56. http://dx.doi.org/10.18280/mmep.080407.
Full textKim, Baekjin, Donghyeon Yu, and Joong-Ho Won. "Comparative study of computational algorithms for the Lasso with high-dimensional, highly correlated data." Applied Intelligence 48, no. 8 (October 20, 2016): 1933–52. http://dx.doi.org/10.1007/s10489-016-0850-7.
Full textNesterov, Yurii, and Arkadi Nemirovski. "On first-order algorithms for l1/nuclear norm minimization." Acta Numerica 22 (April 2, 2013): 509–75. http://dx.doi.org/10.1017/s096249291300007x.
Full textRadovanović, Sandro, Boris Delibašić, Miloš Jovanović, Milan Vukićević, and Milija Suknović. "A Framework for Integrating Domain Knowledge in Logistic Regression with Application to Hospital Readmission Prediction." International Journal on Artificial Intelligence Tools 28, no. 06 (September 2019): 1960006. http://dx.doi.org/10.1142/s0218213019600066.
Full textMarica, Vasile George, and Alexandra Horobet. "Conditional Granger Causality and Genetic Algorithms in VAR Model Selection." Symmetry 11, no. 8 (August 3, 2019): 1004. http://dx.doi.org/10.3390/sym11081004.
Full textGoutman, Stephen A., Jonathan Boss, Kai Guo, Fadhl M. Alakwaa, Adam Patterson, Sehee Kim, Masha Georges Savelieff, Junguk Hur, and Eva L. Feldman. "Untargeted metabolomics yields insight into ALS disease mechanisms." Journal of Neurology, Neurosurgery & Psychiatry 91, no. 12 (September 14, 2020): 1329–38. http://dx.doi.org/10.1136/jnnp-2020-323611.
Full textChen, Chengbin, Chudong Pan, Zepeng Chen, and Ling Yu. "Structural damage detection via combining weighted strategy with trace Lasso." Advances in Structural Engineering 22, no. 3 (September 11, 2018): 597–612. http://dx.doi.org/10.1177/1369433218795310.
Full textZhou, Xiabing, Xingxing Xing, Lei Han, Haikun Hong, Kaigui Bian, and Kunqing Xie. "Structure Feature Learning Method for Incomplete Data." International Journal of Pattern Recognition and Artificial Intelligence 30, no. 09 (November 2016): 1660007. http://dx.doi.org/10.1142/s0218001416600077.
Full textLiang, Zhaohui, Jun Liu, Jimmy X. Huang, and Xing Zeng. "Fast Screening Technology for Drug Emergency Management: Predicting Suspicious SNPs for ADR with Information Theory-based Models." Combinatorial Chemistry & High Throughput Screening 21, no. 2 (April 17, 2018): 93–99. http://dx.doi.org/10.2174/1386207321666180115094814.
Full textSchmid, Matthias, Olaf Gefeller, Elisabeth Waldmann, Andreas Mayr, and Tobias Hepp. "Approaches to Regularized Regression – A Comparison between Gradient Boosting and the Lasso." Methods of Information in Medicine 55, no. 05 (May 2016): 422–30. http://dx.doi.org/10.3414/me16-01-0033.
Full textJING, LIPING, MICHAEL K. NG, and TIEYONG ZENG. "ON GENE SELECTION AND CLASSIFICATION FOR CANCER MICROARRAY DATA USING MULTI-STEP CLUSTERING AND SPARSE REPRESENTATION." Advances in Adaptive Data Analysis 03, no. 01n02 (April 2011): 127–48. http://dx.doi.org/10.1142/s1793536911000763.
Full textYoungstrom, Eric A., Tate F. Halverson, Jennifer K. Youngstrom, Oliver Lindhiem, and Robert L. Findling. "Evidence-Based Assessment From Simple Clinical Judgments to Statistical Learning: Evaluating a Range of Options Using Pediatric Bipolar Disorder as a Diagnostic Challenge." Clinical Psychological Science 6, no. 2 (December 8, 2017): 243–65. http://dx.doi.org/10.1177/2167702617741845.
Full textLiu, Pengfei, and Weidong Tian. "Identification of DNA methylation patterns and biomarkers for clear-cell renal cell carcinoma by multi-omics data analysis." PeerJ 8 (August 3, 2020): e9654. http://dx.doi.org/10.7717/peerj.9654.
Full textShi, Yuanyuan, Junyu Zhao, Xianchong Song, Zuoyu Qin, Lichao Wu, Huili Wang, and Jian Tang. "Hyperspectral band selection and modeling of soil organic matter content in a forest using the Ranger algorithm." PLOS ONE 16, no. 6 (June 28, 2021): e0253385. http://dx.doi.org/10.1371/journal.pone.0253385.
Full textGhosh, Pronab, Sami Azam, Mirjam Jonkman, Asif Karim, F. M. Javed Mehedi Shamrat, Eva Ignatious, Shahana Shultana, Abhijith Reddy Beeravolu, and Friso De Boer. "Efficient Prediction of Cardiovascular Disease Using Machine Learning Algorithms With Relief and LASSO Feature Selection Techniques." IEEE Access 9 (2021): 19304–26. http://dx.doi.org/10.1109/access.2021.3053759.
Full textCastelli, Mauro, Maria Dobreva, Roberto Henriques, and Leonardo Vanneschi. "Predicting Days on Market to Optimize Real Estate Sales Strategy." Complexity 2020 (February 25, 2020): 1–22. http://dx.doi.org/10.1155/2020/4603190.
Full textZhao, Sipei, and Qiaoxi Zhu. "Comparative study of loudspeaker position optimization techniques for multizone sound field reproduction." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no. 4 (August 1, 2021): 2486–93. http://dx.doi.org/10.3397/in-2021-2150.
Full textTian, Mi, Tao Wang, and Peng Wang. "Development and Clinical Validation of a Seven-Gene Prognostic Signature Based on Multiple Machine Learning Algorithms in Kidney Cancer." Cell Transplantation 30 (January 1, 2021): 096368972096917. http://dx.doi.org/10.1177/0963689720969176.
Full textShing, Jaimie Zhi, Marie Griffin, James C. Slaughter, Manideepthi Pemmaraju, Edward F. Mitchel, Rachel S. Chang, and Pamela C. Hull. "4486 Assessing the Validity of an ICD-9 and ICD-10 Coding Algorithm for Identifying Cervical Premalignant Lesions Using Administrative Claims Data." Journal of Clinical and Translational Science 4, s1 (June 2020): 45. http://dx.doi.org/10.1017/cts.2020.167.
Full textToraya, Hideo. "Finding the best-fit background function for whole-powder-pattern fitting using LASSO combined with tree search." Journal of Applied Crystallography 54, no. 2 (February 14, 2021): 427–38. http://dx.doi.org/10.1107/s1600576720016751.
Full textGim, Jeong-An, Yonghan Kwon, Hyun A. Lee, Kyeong-Ryoon Lee, Soohyun Kim, Yoonjung Choi, Yu Kyong Kim, and Howard Lee. "A Machine Learning-Based Identification of Genes Affecting the Pharmacokinetics of Tacrolimus Using the DMETTM Plus Platform." International Journal of Molecular Sciences 21, no. 7 (April 4, 2020): 2517. http://dx.doi.org/10.3390/ijms21072517.
Full textGosselt, Helen R., Maxime M. A. Verhoeven, Maja Bulatović-Ćalasan, Paco M. Welsing, Maurits C. F. J. de Rotte, Johanna M. W. Hazes, Floris P. J. G. Lafeber, Mark Hoogendoorn, and Robert de Jonge. "Complex Machine-Learning Algorithms and Multivariable Logistic Regression on Par in the Prediction of Insufficient Clinical Response to Methotrexate in Rheumatoid Arthritis." Journal of Personalized Medicine 11, no. 1 (January 14, 2021): 44. http://dx.doi.org/10.3390/jpm11010044.
Full textLuo, Mi, Yifu Wang, Yunhong Xie, Lai Zhou, Jingjing Qiao, Siyu Qiu, and Yujun Sun. "Combination of Feature Selection and CatBoost for Prediction: The First Application to the Estimation of Aboveground Biomass." Forests 12, no. 2 (February 13, 2021): 216. http://dx.doi.org/10.3390/f12020216.
Full textMashayekhi, Morteza, and Robin Gras. "Rule Extraction from Decision Trees Ensembles: New Algorithms Based on Heuristic Search and Sparse Group Lasso Methods." International Journal of Information Technology & Decision Making 16, no. 06 (November 2017): 1707–27. http://dx.doi.org/10.1142/s0219622017500055.
Full textLiu, Xiaoli, Jianzhong Wang, Fulong Ren, and Jun Kong. "Group Guided Fused Laplacian Sparse Group Lasso for Modeling Alzheimer’s Disease Progression." Computational and Mathematical Methods in Medicine 2020 (February 7, 2020): 1–23. http://dx.doi.org/10.1155/2020/4036560.
Full textVasudha Bahl and Nidhi Sengar, Manu Shahi, Abhay Singh, Amita Goel. "Machine Learning House Price Prediction." International Journal for Modern Trends in Science and Technology 6, no. 12 (December 13, 2020): 186–89. http://dx.doi.org/10.46501/ijmtst061236.
Full textBretó, Carles, Priscila Espinosa, Penélope Hernández, and Jose M. Pavía. "An Entropy-Based Machine Learning Algorithm for Combining Macroeconomic Forecasts." Entropy 21, no. 10 (October 19, 2019): 1015. http://dx.doi.org/10.3390/e21101015.
Full text