To see the other types of publications on this topic, follow the link: Lasers à pompage diode.

Journal articles on the topic 'Lasers à pompage diode'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lasers à pompage diode.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Alfianda, Alfianda, Muhammad Amin, and Risnawati Risnawati. "Perancangan Pengisian Pada Dispenser Dengan Memanfaatkan Sensor Dan Embedded System." J-Com (Journal of Computer) 1, no. 2 (July 31, 2021): 147–52. http://dx.doi.org/10.33330/j-com.v2i1.1246.

Full text
Abstract:
Abstract: Nowadays, almost all of them use a dispenser, because of its practicality. But behind that there are several things that make the dispenser less efficient when taking drinking water from the glass, because the user has to press or turn the water tap in the dispenser. The working system of this tool is where the machine will run according to the commands obtained from the laser diode and the LDR sensor, the laser diode will reflect light that leads to the LDR. when the light reflected by the laser diode to the LDR is cut, it can be interpreted that the LDR and the laser diode detect or read the presence of an object in the form of a glass, automatically the two sensors instruct the controller to activate the water pump and the water pump will work to remove the water which will be filled in the glass that is placed in the dispenser with the volume of the glass used, the filling process and the end of filling will be displayed by the LCD and when filling the water the glass is full there will be a warning from the buzzer in the form of a sound. Users no longer need to press or turn the water tap when taking water from the dispenser using a glass. Keywords: Dispensers;LDR Sensor;Diode Laser and Tools Abstrak: Pada saat ini masyarakat sekarang sudah hampir semuanya menggunakan dispenser, karena kepraktisan. Namun dibalik itu semua ada beberapa hal yang membuat dispenser kurang efisien saat mengambil air minum pada gelas, karena pengguna harus menekan atau memutar keran air yang ada pada dispenser. Sistem kerja dari alat ini ialah dimana mesin akan berjalan sesuai dengan perintah yang didapat dari Dioda laser dan sensor LDR, Dioda laser akan memantulkan cahaya yang mengarah pada LDR, pada saat cahaya yang dipantulkan Dioda laser ke LDR terpotong maka dapat diartikan LDR dan Dioda laser mendeteksi atau membaca adanya benda berupa gelas, secara otomatis kedua sensor tersebut memerintahkan controller mengaktifkan pompa air dan pompa air akan bekerja mengeluarkan air yang akan diisikan pada gelas yang diletakkan pada dispenser dengan volume gelas yang digunakan, proses pengisian dan akhir pengisian akan ditampilkan oleh LCD dan saat pengisian air pada gelas penuh akan ada peringatan dari buzzer berupa bunyi. Pengguna tidak perlu lagi menekan atau memutar keran air saat mengambil air pada dispenser menggunakan gelas. Kata Kunci : Dispenser;Sensor LDR;Dioda Laser dan Alat
APA, Harvard, Vancouver, ISO, and other styles
2

Baumann, Melissa G. D., John C. Wright, Arthur B. Ellis, Thomas Kuech, and George C. Lisensky. "Diode lasers." Journal of Chemical Education 69, no. 2 (February 1992): 89. http://dx.doi.org/10.1021/ed069p89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guillemot, Lauren, Pavel Loiko, Alain Braud, Thomas Godin, Ammar Hideur, and Patrice Camy. "Les lasers thulium à 2300 NM : Avancées et perspectives." Photoniques, no. 109 (July 2021): 35–39. http://dx.doi.org/10.1051/photon/202110935.

Full text
Abstract:
Cet article dresse un état des lieux des dernières avancées dans le domaine des lasers dopés aux ions thulium émettant dans le proche infrarouge autour de 2.3 μm. Il présente les verrous liés à l’oscillation laser de l’ion thulium sur la transition 3H4 → 3H5 et les solutions prometteuses envisagees pour les contourner en s’appuyant notamment sur un mécanisme de pompage par upconversion particulièrement efficace dans certains matériaux.
APA, Harvard, Vancouver, ISO, and other styles
4

MANNI, JEFF. "Surgical Diode Lasers." Journal of Clinical Laser Medicine & Surgery 10, no. 5 (October 1992): 377–80. http://dx.doi.org/10.1089/clm.1992.10.377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vasil’ev, Peter. "Ultrafast Diode Lasers." Optical Engineering 35, no. 8 (August 1, 1996): 2439. http://dx.doi.org/10.1117/1.600817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johnson, Noble M., Arto V. Nurmikko, and Steven P. DenBaars. "Blue Diode Lasers." Physics Today 53, no. 10 (October 2000): 31–36. http://dx.doi.org/10.1063/1.1325190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aubert, J. J., Ch Wyon, A. Cassimi, V. Hardy, and J. Hamel. "UN laser solide accordable pompe par diode." Optics Communications 69, no. 3-4 (January 1989): 299–302. http://dx.doi.org/10.1016/0030-4018(89)90120-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Voropai, E. S., K. F. Ermalitskaia, F. A. Ermalitski, A. E. Rad’ko, N. V. Rzheutsky, and M. P. Samtsov. "COMPACT PICOSECOND DIODE LASERS." Instruments and Experimental Techniques 65, no. 1 (February 2022): 83–88. http://dx.doi.org/10.1134/s0020441222010213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lozes-Dupuy, F., S. Bonnefont, and H. Martinot. "Surface emitting diode lasers." Journal de Physique III 4, no. 12 (December 1994): 2379–89. http://dx.doi.org/10.1051/jp3:1994284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hohimer, J. P., G. A. Vawter, D. C. Craft, and G. R. Hadley. "Interferometric ring diode lasers." Applied Physics Letters 61, no. 12 (September 21, 1992): 1375–77. http://dx.doi.org/10.1063/1.107542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Coldren, L. A. "Monolithic tunable diode lasers." IEEE Journal of Selected Topics in Quantum Electronics 6, no. 6 (November 2000): 988–99. http://dx.doi.org/10.1109/2944.902147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wenzel, Hans, Bernd Sumpf, and Götz Erbert. "High-brightness diode lasers." Comptes Rendus Physique 4, no. 6 (July 2003): 649–61. http://dx.doi.org/10.1016/s1631-0705(03)00074-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Moriarty, A. P. "Diode lasers in ophthalmology." International Ophthalmology 17, no. 6 (1994): 297–304. http://dx.doi.org/10.1007/bf00915734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Neumark, Gertrude F., Robert M. Park, and James M. Depuydt. "Blue‐Green Diode Lasers." Physics Today 47, no. 6 (June 1994): 26–32. http://dx.doi.org/10.1063/1.881438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Abou-Zeid, A. "Diode lasers for interferometry." Precision Engineering 11, no. 3 (July 1989): 139–44. http://dx.doi.org/10.1016/0141-6359(89)90068-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Fibrich, M., H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda. "Diode-pumped Pr:YAP lasers." Laser Physics Letters 8, no. 8 (June 1, 2011): 559–68. http://dx.doi.org/10.1002/lapl.201110025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yokoyama, Hiroyuki, Takanori Shimizu, Takashi Ono, and Yutaka Yano. "Synchronous Injection Locking Operation of Monolithic Diode Lasers Mode-Locked Diode Lasers." Optical Review 2, no. 2 (May 1995): 85–88. http://dx.doi.org/10.1007/s10043-995-0085-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Linyu, Xuan Li, Wei Luo, Junce Shi, Kangxun Sun, Meiye Qiu, Zhaoxuan Zheng, et al. "Review of 1.55 μm Waveband Integrated External Cavity Tunable Diode Lasers." Photonics 10, no. 11 (November 20, 2023): 1287. http://dx.doi.org/10.3390/photonics10111287.

Full text
Abstract:
The 1.55 μm waveband integrated external cavity tunable diode lasers have excellent merits such as their small volume, low cost, low power consumption, wide tuning range, narrow linewidth, large side mode suppression ratio, and high output power. These merits have attracted many applications for the lasers, such as in wavelength division multiplexing, passive optical networks, mobile backhaul, and spectral sensing technology. In this paper, firstly, the basic structure and principle of integrated external cavity tunable diode lasers are introduced, and then two main integrated structures of 1.55 μm waveband external cavity tunable diode lasers are reviewed and compared in detail, namely the hybrid integrated structure and monolithic integrated structure of 1.55 μm waveband integrated external cavity tunable diode lasers. Finally, the research progress in 1.55 μm waveband integrated external cavity tunable diode lasers in the last decade are summarised, and the advantages and disadvantages of 1.55 μm waveband integrated external cavity tunable diode lasers are analysed. The results show that, with the transformation of optical communication into more complex modulation formats, it is necessary to integrate miniature 1.55 μm waveband external cavity tunable diode lasers. Low-cost integrated 1.55 μm waveband external cavity tunable diode lasers are expected to be used in the next generation of optical transceivers in small-factor modules.
APA, Harvard, Vancouver, ISO, and other styles
19

Kher, Udatta. "Diode Lasers: The Cutting Edge." International Journal of Laser Dentistry 1, no. 1 (2011): 49–53. http://dx.doi.org/10.5005/jp-journals-10022-1008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tino, G. M. "Atomic spectroscopy with diode lasers." Physica Scripta T51 (January 1, 1994): 58–66. http://dx.doi.org/10.1088/0031-8949/1994/t51/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hadley, G. "Injection locking of diode lasers." IEEE Journal of Quantum Electronics 22, no. 3 (March 1986): 419–26. http://dx.doi.org/10.1109/jqe.1986.1072979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Whitehead, D. G., A. V. Polijanczuk, and P. M. Beckett. "Semiconductor Diode Lasers for Soldering." Microelectronics International 9, no. 2 (February 1992): 4–5. http://dx.doi.org/10.1108/eb044566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bijlani, Bhavin J., and Amr S. Helmy. "Bragg reflection waveguide diode lasers." Optics Letters 34, no. 23 (November 30, 2009): 3734. http://dx.doi.org/10.1364/ol.34.003734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Yanovsky, V. P., A. Korytin, F. W. Wise, A. Cassanho, and H. P. Jenssen. "Femtosecond diode-pumped Cr:LiSGAF lasers." IEEE Journal of Selected Topics in Quantum Electronics 2, no. 3 (1996): 465–72. http://dx.doi.org/10.1109/2944.571745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Imasaka, T. "Diode lasers in analytical chemistry." Talanta 48, no. 2 (February 1999): 305–20. http://dx.doi.org/10.1016/s0039-9140(98)00244-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bowman, S. R., S. O’Connor, and N. J. Condon. "Diode pumped yellow dysprosium lasers." Optics Express 20, no. 12 (May 23, 2012): 12906. http://dx.doi.org/10.1364/oe.20.012906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Malcolm, G. P. A., and A. I. Ferguson. "Diode-pumped solid-state lasers." Contemporary Physics 32, no. 5 (September 1991): 305–19. http://dx.doi.org/10.1080/00107519108223704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

TÖNSHOFF, H. K., A. BERNDT, M. STÜRMER, D. GOLLA, and J. SCHUMACHER. "Diode lasers for material processing." Le Journal de Physique IV 04, no. C4 (April 1994): C4–59—C4–63. http://dx.doi.org/10.1051/jp4:1994411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

YU, J. "Diode-lasers : développements et applications." Le Journal de Physique IV 04, no. C4 (April 1994): C4–610—C4–610. http://dx.doi.org/10.1051/jp4:19944160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yang, Yonfeng, B. K. Garside, and P. E. Jessop. "Heterolayer lead-salt diode lasers." Canadian Journal of Physics 65, no. 8 (August 1, 1987): 999–1002. http://dx.doi.org/10.1139/p87-160.

Full text
Abstract:
Hot-wall epitaxy (HWE) has been used to grow heterostructure lead-salt materials from which low-threshold tunable diode lasers have been made. A new HWE structure consisting of a Pb(Se, Te) layer sandwiched between two lattice-matched (Pb, Sn)Te layers has resulted in lasers of good electrical and material quality, and threshold current densities as low as 200 A∙cm−2 (at 40 K). This occurred even though this structure is expected to be nonconfining to both light and electrical carriers. This result is due to the very rapid interdiffusion of dopant atoms between the epilayers during the growth process. Dopant interdiffusion has been investigated using an etch-back technique combined with hot-point probe measurements to observe changes in the doping profiles of the structures. Very large values for the diffusion constants of dopants have been deduced from these measurements: 2.3 × 10−15 and 1.1 × 10−15 cm2∙s−1 for Bi and Tl, respectively.
APA, Harvard, Vancouver, ISO, and other styles
31

Ripley, P. M. "The physics of diode lasers." Lasers In Medical Science 11, no. 2 (June 1996): 71–78. http://dx.doi.org/10.1007/bf02133204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Luft, Axel, and Tobias Stittgen. "Diode Lasers and Remote Welding." Laser Technik Journal 11, no. 5 (November 2014): 32–35. http://dx.doi.org/10.1002/latj.201400052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Molitor, Thomas. "Thermal Spraying with Diode Lasers." Laser Technik Journal 14, no. 3 (June 2017): 53–55. http://dx.doi.org/10.1002/latj.201700016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

KOHL, MARTIN. "Tiny Lasers: Diode Lasers for Portable Miniaturized Diagnostic Tools." Journal of Clinical Laser Medicine & Surgery 13, no. 2 (April 1995): 111–12. http://dx.doi.org/10.1089/clm.1995.13.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Henini, Mohamed. "A new breed of diode lasers: Surface emitting lasers." III-Vs Review 9, no. 4 (August 1996): 37–41. http://dx.doi.org/10.1016/s0961-1290(96)80235-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Puska, Päivi, and Ahti Tarkkanen. "Therapy-resistant Inflammatory Glaucoma – 647nm Krypton and 670nm Diode Lasers for Transscleral Contact Cyclophotocoagulation." European Ophthalmic Review 03, no. 01 (2009): 29. http://dx.doi.org/10.17925/eor.2009.03.01.29.

Full text
Abstract:
Only a few reports exist on the treatment of therapy-resistant inflammatory glaucoma with contact transscleral cyclophotocoagulation (CPC), and only one in which the red 647nm krypton or 670nm diode lasers are used. The lasers most frequently employed in clinical practice are the 810nm diode and the 1,064nm neodynium:yttrium–aluminium–garnet (Nd:YAG) lasers. Although transmission through the sclera is lower with the red 647nm krypton and 670nm diode lasers than with the infrared 810nm diode and Nd:YAG lasers, this is compensated for by using contact application and compressing the sclera with the probe. Also, the red lasers have a higher affinity for the pigment epithelium of the pars plicata. Transscleral red laser CPC has proved to be an effective, simple and well tolerated procedure for the treatment of therapy-resistant inflammatory glaucoma, particularly in adults.
APA, Harvard, Vancouver, ISO, and other styles
37

DONETSKY, D. V., R. U. MARTINELLI, and G. L. BELENKY. "MID-INFRARED GaSb-BASED LASERS WITH TYPE-I HETEROINTERFACES." International Journal of High Speed Electronics and Systems 12, no. 04 (December 2002): 1025–38. http://dx.doi.org/10.1142/s0129156402001903.

Full text
Abstract:
The design of room-temperature, InGaAsSb/AlGaAsSb diode lasers has evolved from the first double-heterojunction lasers described in 1980 that operated in the pulsed-current mode to present-day continuous–wave (CW), high-power, quantum–well diode lasers. We discuss in detail recent results from type-I-heterostructure, GaSb-based CW room-temperature diode lasers. The devices operate within the wavelength range of 1.8 to 2.7 μm, providing output powers up to several Watts. We analyze the factors limiting device performance.
APA, Harvard, Vancouver, ISO, and other styles
38

Nadezhdinskii, A. I., and Ya Ya Ponurovskii. "Quantum noise of diode laser radiation." Laser Physics 33, no. 5 (March 16, 2023): 055001. http://dx.doi.org/10.1088/1555-6611/acc23d.

Full text
Abstract:
Abstract Semiconductors lasers from several manufacturers have been investigated. Rate equations were proposed to describe the dynamics and explain the mechanisms of the appearance of quantum noise in diode lasers. Stationary solutions of the rate equations were obtained. For the lasers under study, the threshold currents and the number of photons at the threshold are obtained. Four mechanisms of the quantum noises appearance were described: Poisson noises of the photons, Poisson noises of the electrons, shot noises of the pump current, and quantum noise of the radiation field. The photon lifetimes for the investigated diode lasers have been determined. The shot noise of the pumping current does not play a significant role. The Poisson noise of photons is responsible for the maximum noise at the generation threshold of a diode laser. The analysis of quantum noises of quantum-cascade diode lasers is carried out.
APA, Harvard, Vancouver, ISO, and other styles
39

Brown, Calum M., Daisy K. E. Dickinson, and Philip J. W. Hands. "Diode pumping of liquid crystal lasers." Optics & Laser Technology 140 (August 2021): 107080. http://dx.doi.org/10.1016/j.optlastec.2021.107080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Beyer, T., and M. Tacke. "Antireflection coatings for PbSe diode lasers." Applied Physics Letters 73, no. 9 (August 31, 1998): 1191–93. http://dx.doi.org/10.1063/1.122368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Scheps, Richard. "Efficient laser diode pumped Nd lasers." Applied Optics 28, no. 1 (January 1, 1989): 89. http://dx.doi.org/10.1364/ao.28.000089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hardy, Amos, and William Streifer. "Analysis of phased-array diode lasers." Optics Letters 10, no. 7 (July 1, 1985): 335. http://dx.doi.org/10.1364/ol.10.000335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Watts, R. N., and C. E. Wieman. "Manipulating atomic velocities using diode lasers." Optics Letters 11, no. 5 (May 1, 1986): 291. http://dx.doi.org/10.1364/ol.11.000291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

SHAN, Xiaonan, Chao CHEN, Xingkai LANG, Yongyi CHEN, Yubing WANG, Peng JIA, Lijun WANG, Yongqiang NING, Li QIN, and Lei LIANG. "Advances in narrow linewidth diode lasers." SCIENTIA SINICA Informationis 49, no. 6 (June 1, 2019): 649–62. http://dx.doi.org/10.1360/n112018-00345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

SUN Sheng-ming, 孙胜明, 范. 杰. FAN Jie, 徐. 莉. XU Li, 邹永刚 ZOU Yong-gang, 杨晶晶 YANG Jing-jing, and 龚春阳 GONG Chun-yang. "Progress of tapered semiconductor diode lasers." Chinese Optics 12, no. 1 (2019): 48–58. http://dx.doi.org/10.3788/co.20191201.0048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Coldren, Larry A. "Diode Lasers and Photonic Integrated Circuits." Optical Engineering 36, no. 2 (February 1, 1997): 616. http://dx.doi.org/10.1117/1.601191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Alcock, A. J., and J. E. Bernard. "Diode-pumped grazing incidence slab lasers." IEEE Journal of Selected Topics in Quantum Electronics 3, no. 1 (1997): 3–8. http://dx.doi.org/10.1109/2944.585806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Jackson, S. D., M. Pollnau, and Jianfeng Li. "Diode Pumped Erbium Cascade Fiber Lasers." IEEE Journal of Quantum Electronics 47, no. 4 (April 2011): 471–78. http://dx.doi.org/10.1109/jqe.2010.2091256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Won, Rachel. "The bio-mission of diode lasers." Nature Photonics 9, no. 12 (November 27, 2015): 786–87. http://dx.doi.org/10.1038/nphoton.2015.237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hughes, D. W., and J. R. M. Barr. "Laser diode pumped solid state lasers." Journal of Physics D: Applied Physics 25, no. 4 (April 14, 1992): 563–86. http://dx.doi.org/10.1088/0022-3727/25/4/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography