Journal articles on the topic 'Lasers à fibre – Innovation'

To see the other types of publications on this topic, follow the link: Lasers à fibre – Innovation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lasers à fibre – Innovation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Peng, Saize. "Modeling and numerical simulation optimization of output spectrum of thulium-doped broadband fiber optic light source." Applied and Computational Engineering 11, no. 1 (September 25, 2023): 59–64. http://dx.doi.org/10.54254/2755-2721/11/20230208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this research, the performance of thulium-doped fiber lasers is analyzed and a mathematical model is established. Thulium-doped fiber amplifiers are the focus of this article. A large number of simulations have been carried out in the MATLAB simulation environment, and the main work and innovation points are as follows: firstly, the energy level structure characteristics of thulium were studied, and its spectral characteristics were analyzed. After consulting some information, 3H4 to 3H6 energy level has been selected in modeling. Secondly, use the rate equations and the power propagation equations to provide a theoretical analysis of the pumping mode of thulium-doped fiber lasers. And a mathematical model of a thulium-doped fiber laser was established. The parameters such as fiber length and doping concentration in the model are discussed. Finally, to find the appropriate parameters, the genetic optimization algorithm is used to optimize the fiber length and doping concentration, and then we can get the parameters corresponding to the maximum output power of the thulium-doped fiber amplifier.
2

Leconte, Baptiste, Laurent Bigot, Philippe Roy, Raphael Jamier, Romain Dauliat, Marie-Alicia Malleville, Yves Quiquempois, Hicham El Hamzaoui, and Olivier Vanvincq. "Lasers de forte puissance : vers l’avènement de fibres optiques à aire effective extrême." Photoniques, no. 99 (November 2019): 23–27. http://dx.doi.org/10.1051/photon/20199923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les systèmes lasers fibrés sont au coeur de nombreuses recherches académiques et constituent un marché annuel mondial dépassant le milliard d’euros. L’augmentation de la puissance en sortie de ces dispositifs a été rendue possible grâce à une innovation permanente portant sur la géométrie de fibres, les matériaux qui les constituent et les méthodes de synthèse associées. Après un bref rappel historique, nous rappelons quelques éléments de contexte et présentons quelques avancées récentes en matière de fibres à très grandes aires effectives.
3

Cayne, N., G. Jacobowitz, P. Lamparello, T. Maldonado, C. Rockman, M. Adelman, and L. S. Kabnick. "Endovenous procedures in varicose veins." Phlebologie 37, no. 05 (2008): 229–36. http://dx.doi.org/10.1055/s-0037-1622235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
SummaryOver the past ten years endoveous treatment options for varicose veins have evovled considerably, offering clinicians a multitude of options to meet the needs of their patients. The endothermal ablation procedures have moved to the forefront as the choice modality for treating truncal reflux. Both radiofrequency ablation and endovenous laser ablation are widely accepted and interchangeable, showing comparable efficacy and safety. Although numerous endovenous laser wavelengths exist, the data indicates that the differences do not affect the efficacy or postoperative recovery of the procedure. The endovenous laser innovation that has shown early evidence of improved patient outcome is the jacket-tip fiber. The versatility of sclerotherapy makes it a critical component in the endovenous treatment of varicosities. Although not approved by the Food and Drug Administration (USA), the use of a foamed sclerosing agent is the fastest growing segment of sclerotherapy and an important treatment modality in the future of varicose vein treatment. Cutaneous lasers and intense pulse light devices contribute a crucial element, enabling clinicians to treat minute veins that may be impossible to treat with other therapies.
4

Zafar Ali, Syed, and Muhammad Khawar Islam. "Statistical dependence analysis of Erbium doped fiber ring lasers (EDFRL) chaos." Results in Optics 5 (December 2021): 100167. http://dx.doi.org/10.1016/j.rio.2021.100167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhou, Ziyue. "Design of Spontaneous Emission Spectra Amplified by S-Band Fiber and Optimization of Output Spectral Peak Power." Highlights in Science, Engineering and Technology 72 (December 15, 2023): 1023–29. http://dx.doi.org/10.54097/tzfv4695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The thulium-doped fiber amplifier stands out as the most promising amplifier within the S-band spectrum. This paper delves into the exploration of a 1.47um Tm^(3+)-doped fluorinated fiber amplifier as the primary subject of research. This paper approach begins by establishing the rate equation and power propagation equation for the thulium ion level structure, followed by rigorous mathematical analysis and solutions. Subsequently, we employ MATLAB programming to perform comprehensive calculations, scrutinizing the amplified spontaneous emission spectra's variation concerning Thulium-Doped Fiber Amplifier (TDFA) length and pump power. In a quest for optimal performance, this paper turn to the simulated annealing algorithm to fine-tune the doping concentration and fiber length, ultimately achieving the most favorable output spectral gain. Through systematic experimentation and parameter manipulation, we've unveiled a substantial breakthrough, with our research yielding an impressive optimal gain of 31.71 dB. The ramifications of this work extend far beyond the confines of this study. It sets a solid foundation for advancements in fiber fabrication and paves the way for the realization of fiber lasers, promising significant contributions to the expansion of S-band fiber communication systems. Our findings hold great promise and are poised to drive innovation in this critical area of telecommunications.
6

Srinivasan, Thulasi, and Murat Yildirim. "Advances in Ultrafast Fiber Lasers for Multiphoton Microscopy in Neuroscience." Photonics 10, no. 12 (November 26, 2023): 1307. http://dx.doi.org/10.3390/photonics10121307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Multiphoton microscopy (MPM) has emerged as a vital tool in neuroscience, enabling deeper imaging with a broader field of view, as well as faster and sub-cellular resolution. Recent innovations in ultrafast fiber laser technology have revolutionized MPM applications in living brains, offering advantages like cost-effectiveness and user-friendliness. In this review, we explore the progress in ultrafast fiber laser technology, focusing on its integration into MPM for neuroscience research. We also examine the utility of femtosecond fiber lasers in fluorescence and label-free two- and three-photon microscopy applications within the field. Furthermore, we delve into future possibilities, including next-generation fiber laser designs, novel laser characteristics, and their potential for achieving high spatial and temporal resolution imaging. We also discuss the integration of fiber lasers with implanted microscopes, opening doors for clinical and fundamental neuroscience investigations.
7

Deepak, M. "A Study of Secured Enabled Passive Optical Network Enabling RoF." Indonesian Journal of Electrical Engineering and Computer Science 9, no. 1 (January 1, 2018): 43. http://dx.doi.org/10.11591/ijeecs.v9.i1.pp43-48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
<p>Innovation is an incorporation of radio sign in optical fiber transmission inside of system foundations that are thought to be financially savvy, pragmatic and moderately adaptable framework setup for whole deal transport remote signs. This venture proposes a Next era PON construction modeling backings RoF and OFDMA signal coordination without WDM lasers, and exhibit that 10-Gb/s OFDMA and three RF signals at 2.1GHz are transmitted more than 20km SMF in a 32-ONU in both upstream and downstream bearing. A security control unit and an optical switch are utilized associating four Optical Line Terminations (OLTs) with everyone serving just 32 Optical Network Units (ONUs). Insurance control unit gathers data of ONUs served by each OLT, and when an OLT falls flat, it will educate an active OLT to help its unique ONUs together with the burden served by the fizzled OLT.</p>
8

Dianov, E. M. "Fibre lasers." Quantum Electronics 46, no. 12 (December 28, 2016): 1067. http://dx.doi.org/10.1070/qel16270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fermann, Martin E., and Ingmar Hartl. "Ultrafast fibre lasers." Nature Photonics 7, no. 11 (October 20, 2013): 868–74. http://dx.doi.org/10.1038/nphoton.2013.280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heber, Joerg. "Solar fibre lasers." Nature Materials 11, no. 4 (March 22, 2012): 266. http://dx.doi.org/10.1038/nmat3295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Vasdekis, A. E., G. E. Town, G. A. Turnbull, and I. D. W. Samuel. "Fluidic fibre dye lasers." Optics Express 15, no. 7 (2007): 3962. http://dx.doi.org/10.1364/oe.15.003962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pureur, David, and Alexandre Biasi. "Les lasers à fibre." Photoniques, no. 51 (January 2011): 47–48. http://dx.doi.org/10.1051/photon/20115147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jauregui, Cesar, Jens Limpert, and Andreas Tünnermann. "High-power fibre lasers." Nature Photonics 7, no. 11 (October 20, 2013): 861–67. http://dx.doi.org/10.1038/nphoton.2013.273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Fermann, Martin E., and Ingmar Hartl. "Erratum: Ultrafast fibre lasers." Nature Photonics 7, no. 12 (October 28, 2013): 1006. http://dx.doi.org/10.1038/nphoton.2013.317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Fermann, Martin E., and Ingmar Hartl. "Erratum: Ultrafast fibre lasers." Nature Photonics 7, no. 12 (October 28, 2013): 1006. http://dx.doi.org/10.1038/nphoton.2013.319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Pile, David. "Fibre lasers: Triwavelength source." Nature Photonics 10, no. 10 (September 29, 2016): 621. http://dx.doi.org/10.1038/nphoton.2016.195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Chernysheva, Maria, Aleksey Rozhin, Yuri Fedotov, Chengbo Mou, Raz Arif, Sergey M. Kobtsev, Evgeny M. Dianov, and Sergei K. Turitsyn. "Carbon nanotubes for ultrafast fibre lasers." Nanophotonics 6, no. 1 (January 6, 2017): 1–30. http://dx.doi.org/10.1515/nanoph-2015-0156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractCarbon nanotubes (CNTs) possess both remarkable optical properties and high potential for integration in various photonic devices. We overview, here, recent progress in CNT applications in fibre optics putting particular emphasis on fibre lasers. We discuss fabrication and characterisation of different CNTs, development of CNT-based saturable absorbers (CNT-SA), their integration and operation in fibre laser cavities putting emphasis on state-of-the-art fibre lasers, mode locked using CNT-SA. We discuss new design concepts of high-performance ultrafast operation fibre lasers covering ytterbium (Yb), bismuth (Bi), erbium (Er), thulium (Tm) and holmium (Ho)-doped fibre lasers.
18

Corner, L. "Fibre lasers for gamma colliders." European Physical Journal Special Topics 223, no. 6 (May 2014): 1207–11. http://dx.doi.org/10.1140/epjst/e2014-02174-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kurkov, Andrei S., and Evgenii M. Dianov. "Moderate-power cw fibre lasers." Quantum Electronics 34, no. 10 (October 31, 2004): 881–900. http://dx.doi.org/10.1070/qe2004v034n10abeh002739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Davydov, B. L., and D. I. Yagodkin. "A LiNbO3switch for fibre lasers." Quantum Electronics 35, no. 11 (November 30, 2005): 1071–74. http://dx.doi.org/10.1070/qe2005v035n11abeh009851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Carter, Jeremy N., Richard G. Smart, Anne C. Tropper, and David C. Hanna. "Thulium-doped fluorozirconate fibre lasers." Journal of Non-Crystalline Solids 140 (January 1992): 10–15. http://dx.doi.org/10.1016/s0022-3093(05)80732-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Langridge, P. E., and W. J. Firth. "Doubly nonlinear fibre loop lasers." Optics Communications 86, no. 2 (November 1991): 170–76. http://dx.doi.org/10.1016/0030-4018(91)90555-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Desfarges-Berthelemot, Agnès, Vincent Kermène, David Sabourdy, Johan Boullet, Philippe Roy, Jerôme Lhermite, and Alain Barthélémy. "Coherent combining of fibre lasers." Comptes Rendus Physique 7, no. 2 (March 2006): 244–53. http://dx.doi.org/10.1016/j.crhy.2006.01.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Turitsyn, Sergei K., Sergey A. Babin, Dmitry V. Churkin, Ilya D. Vatnik, Maxim Nikulin, and Evgenii V. Podivilov. "Random distributed feedback fibre lasers." Physics Reports 542, no. 2 (September 2014): 133–93. http://dx.doi.org/10.1016/j.physrep.2014.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Canning, John. "Fibre lasers and related technologies." Optics and Lasers in Engineering 44, no. 7 (July 2006): 647–76. http://dx.doi.org/10.1016/j.optlaseng.2005.02.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gabzdyl, Jack. "Fibre lasers make their mark." Nature Photonics 2, no. 1 (January 2008): 21–23. http://dx.doi.org/10.1038/nphoton.2007.268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lauridsen, V. C., J. H. Povlsen, and P. Varming. "Design of DFB fibre lasers." Electronics Letters 34, no. 21 (1998): 2028. http://dx.doi.org/10.1049/el:19981446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Mears, R. J., and S. R. Baker. "Erbium fibre amplifiers and lasers." Optical and Quantum Electronics 24, no. 5 (May 1992): 517–38. http://dx.doi.org/10.1007/bf00619752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Alsous, M. B., J. Bittebierre, R. Richier, and H. Ahmad. "Construction of all-fibre fibre lasers with multidielectric mirrors." Pure and Applied Optics: Journal of the European Optical Society Part A 5, no. 6 (November 1996): 777–90. http://dx.doi.org/10.1088/0963-9659/5/6/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Surin, A. A., S. V. Larin, T. E. Borisenko, K. Yu Prusakov, and Yu S. Stirmanov. "High-power cw visible lasers pumped by Raman fibre lasers." Quantum Electronics 46, no. 12 (December 28, 2016): 1097–101. http://dx.doi.org/10.1070/qel16222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Woodward, Robert, and Edmund Kelleher. "2D Saturable Absorbers for Fibre Lasers." Applied Sciences 5, no. 4 (November 30, 2015): 1440–56. http://dx.doi.org/10.3390/app5041440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kochanowicz, M., D. Dorosz, J. Żmojda, and J. Dorosz. "Beam Quality of Multicore Fibre Lasers." Acta Physica Polonica A 118, no. 6 (December 2010): 1177–82. http://dx.doi.org/10.12693/aphyspola.118.1177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bouteiller, J. C. "Linewidth predictions for Raman fibre lasers." Electronics Letters 39, no. 21 (2003): 1511. http://dx.doi.org/10.1049/el:20030980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Supriya, Lakshmi. "Bacterial fibre shines lasers through water." New Scientist 235, no. 3140 (August 2017): 7. http://dx.doi.org/10.1016/s0262-4079(17)31643-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kurkov, Andrei S. "Fifth Russian Workshop on Fibre Lasers." Quantum Electronics 42, no. 9 (September 30, 2012): 753. http://dx.doi.org/10.1070/qe2012v042n09abeh014943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Babin, S. A., and S. L. Semjonov. "Eighth Russian Workshop on Fibre Lasers." Quantum Electronics 48, no. 12 (December 18, 2018): 1083. http://dx.doi.org/10.1070/qel16921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ibsen, M., E. Rønnekleiv, G. J. Cowle, M. N. Zervas, and R. I. Laming. "Multiple wavelength all-fibre DFB lasers." Electronics Letters 36, no. 2 (2000): 143. http://dx.doi.org/10.1049/el:20000195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Liao, Z. M., and G. P. Agrawal. "Mode-partition noise in fibre lasers." Electronics Letters 36, no. 14 (2000): 1188. http://dx.doi.org/10.1049/el:20000862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chen, W. C., W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen. "Vector solitons in femtosecond fibre lasers." European Physical Journal D 48, no. 2 (March 19, 2008): 255–60. http://dx.doi.org/10.1140/epjd/e2008-00048-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chen, W. C., W. C. Xu, F. Song, M. C. Shen, D. A. Han, and L. B. Chen. "Vector solitons in femtosecond fibre lasers." European Physical Journal D 50, no. 1 (November 2008): 123. http://dx.doi.org/10.1140/epjd/e2008-00194-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sabourdy, D., V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, C. Mahodaux, and D. Pureur. "Power scaling of fibre lasers with all-fibre interferometric cavity." Electronics Letters 38, no. 14 (2002): 692. http://dx.doi.org/10.1049/el:20020505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kobtsev, Sergey. "Methods of Radiation Wavelength Tuning in Short-Pulsed Fibre Lasers." Photonics 11, no. 1 (December 28, 2023): 28. http://dx.doi.org/10.3390/photonics11010028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Methods of output wavelength tuning in short-pulsed fibre lasers are analysed. Many of them rely on spectral selection principles long used in other types of lasers. For compatibility with the fibre-optical format, the corresponding elements are sealed in compact, airtight volumes with fibre-optical radiation input and output. A conclusion is presented about the relatively small number of inherently “fibre-optical” ways of tuning the wavelength of radiation. It is demonstrated that the range of output wavelength tuning in short-pulsed fibre lasers may span hundreds of nanometres (even without extension beyond the active medium gain contour through nonlinear effects). From the presented review results, it may be concluded that the search for the optimal tuning method complying with the user-preferred all-PM-fibre short-pulsed laser design is not yet complete.
43

He, Wentao, and Zhiwei Men. "Analysis on Transmission Characteristics of Stimulated Raman Scattering Based on the Multi-Sensor Signal Enhancement Technique." Scientific Programming 2022 (May 11, 2022): 1–9. http://dx.doi.org/10.1155/2022/5726718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In recent 20 years, fibre laser system has been developed rapidly and widely used for its high quality, high efficiency, high robustness, and compactness. However, there are still many factors (such as non-linear effect, thermal effect, and mode instability) that limit the further increase of power of fibre laser system. Stimulated Raman scattering (SRS) is one of the main limitations in the transmission process of fibre lasers. It not only reduces the output efficiency of fibre lasers, but also increases the damage risk of reverse Stokes light to the system. Recent studies have shown that SRS in low-mode fibres can lead to quasi-static mode degradation in addition to mode instability. With the introduction of multi-sensor enhancement technology in the fibre field, it becomes an effective means to popularise high-power and high-beam quality fibre lasers. Based on the multi-sensor signal enhancement technology, this paper explores the influence of this technology on the output efficiency of SRS in the mode-reducing fibre laser, which provides a new idea and method for the output efficiency and transmission analysis method of fibre laser.
44

ZHANG Xue-xia, 张雪霞, 葛廷武 GE Ting-wu, 谭祺瑞 TAN Qi-rui, 刘琛辰 LIU Chen-chen, and 王智勇 WANG Zhi-yong. "Research of Yb-doped All Fibre Lasers." ACTA PHOTONICA SINICA 44, no. 10 (2015): 1014002. http://dx.doi.org/10.3788/gzxb20154410.1014002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kobtsev, Sergey M. "Artificial saturable absorbers for ultrafast fibre lasers." Optical Fiber Technology 68 (January 2022): 102764. http://dx.doi.org/10.1016/j.yofte.2021.102764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Cheng Xue, 程雪, 王建立 Wang Jianli, and 刘昌华 Liu Changhua. "Beam combining of high energy fibre lasers." Infrared and Laser Engineering 47, no. 1 (2018): 103011. http://dx.doi.org/10.3788/irla201847.0103011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

France, P. W. "A Review of Fluoride Glass Fibre Lasers." Materials Science Forum 67-68 (January 1991): 503–8. http://dx.doi.org/10.4028/www.scientific.net/msf.67-68.503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Shi, Jindan, Shaif-ul Alam, and Morten Ibsen. "Highly efficient Raman distributed feedback fibre lasers." Optics Express 20, no. 5 (February 15, 2012): 5082. http://dx.doi.org/10.1364/oe.20.005082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Tsuji, Masakazu. "IPG fibre lasers and aluminium welding applications." Welding International 23, no. 10 (September 14, 2009): 717–22. http://dx.doi.org/10.1080/09507110902836846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Woodward, R. I. "Dispersion engineering of mode-locked fibre lasers." Journal of Optics 20, no. 3 (February 14, 2018): 033002. http://dx.doi.org/10.1088/2040-8986/aaa9f5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography