Journal articles on the topic 'Lasers à Cascade Interbande'

To see the other types of publications on this topic, follow the link: Lasers à Cascade Interbande.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lasers à Cascade Interbande.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Meyer, Jerry, William Bewley, Chadwick Canedy, Chul Kim, Mijin Kim, Charles Merritt, and Igor Vurgaftman. "The Interband Cascade Laser." Photonics 7, no. 3 (September 15, 2020): 75. http://dx.doi.org/10.3390/photonics7030075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We review the history, development, design principles, experimental operating characteristics, and specialized architectures of interband cascade lasers for the mid-wave infrared spectral region. We discuss the present understanding of the mechanisms limiting the ICL performance and provide a perspective on the potential for future improvements. Such device properties as the threshold current and power densities, continuous-wave output power, and wall-plug efficiency are compared with those of the quantum cascade laser. Newer device classes such as ICL frequency combs, interband cascade vertical-cavity surface-emitting lasers, interband cascade LEDs, interband cascade detectors, and integrated ICLs are reviewed for the first time.
2

Ning, Chao, Tian Yu, Shuman Liu, Jinchuan Zhang, Lijun Wang, Junqi Liu, Ning Zhuo, Shenqiang Zhai, Yuan Li, and Fengqi Liu. "Interband cascade lasers with short electron injector." Chinese Optics Letters 20, no. 2 (2022): 022501. http://dx.doi.org/10.3788/col202220.022501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Horiuchi, Noriaki. "Interband cascade lasers." Nature Photonics 9, no. 8 (July 30, 2015): 481. http://dx.doi.org/10.1038/nphoton.2015.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vurgaftman, I., R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, et al. "Interband cascade lasers." Journal of Physics D: Applied Physics 48, no. 12 (March 11, 2015): 123001. http://dx.doi.org/10.1088/0022-3727/48/12/123001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ryczko, Krzysztof, and Grzegorz Sęk. "Towards unstrained interband cascade lasers." Applied Physics Express 11, no. 1 (December 4, 2017): 012703. http://dx.doi.org/10.7567/apex.11.012703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Massengale, J. A., Yixuan Shen, Rui Q. Yang, S. D. Hawkins, and J. F. Klem. "Long wavelength interband cascade lasers." Applied Physics Letters 120, no. 9 (February 28, 2022): 091105. http://dx.doi.org/10.1063/5.0084565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
InAs-based interband cascade lasers (ICLs) can be more easily adapted toward long wavelength operation than their GaSb counterparts. Devices made from two recent ICL wafers with an advanced waveguide structure are reported, which demonstrate improved device performance in terms of reduced threshold current densities for ICLs near 11 μm or extended operating wavelength beyond 13 μm. The ICLs near 11 μm yielded a significantly reduced continuous wave (cw) lasing threshold of 23 A/cm2 at 80 K with substantially increased cw output power, compared with previously reported ICLs at similar wavelengths. ICLs made from the second wafer incorporated an innovative quantum well active region, comprised of InAsP layers, and lased in the pulsed-mode up to 120 K at 13.2 μm, which is the longest wavelength achieved for III–V interband lasers.
7

Yang, Rui Q., Lu Li, Wenxiang Huang, S. M. Shazzad Rassel, James A. Gupta, Andrew Bezinger, Xiaohua Wu, S. Ghasem Razavipour, and Geof C. Aers. "InAs-Based Interband Cascade Lasers." IEEE Journal of Selected Topics in Quantum Electronics 25, no. 6 (November 2019): 1–8. http://dx.doi.org/10.1109/jstqe.2019.2916923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, M., C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer. "Room temperature interband cascade lasers." Physics Procedia 3, no. 2 (January 2010): 1195–200. http://dx.doi.org/10.1016/j.phpro.2010.01.162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yu, Tian, Chao Ning, Ruixuan Sun, Shu-Man Liu, Jinchuan Zhang, Junqi Liu, Lijun Wang, et al. "Strain mapping in interband cascade lasers." AIP Advances 12, no. 1 (January 1, 2022): 015027. http://dx.doi.org/10.1063/5.0079193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Holzbauer, Martin, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Johannes Koeth, and Gottfried Strasser. "Substrate-emitting ring interband cascade lasers." Applied Physics Letters 111, no. 17 (October 23, 2017): 171101. http://dx.doi.org/10.1063/1.4989514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Trofimov, I. E., C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. L. Merritt, I. Vurgaftman, J. R. Meyer, and L. T. Le. "Interband cascade lasers with long lifetimes." Applied Optics 54, no. 32 (November 4, 2015): 9441. http://dx.doi.org/10.1364/ao.54.009441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bradshaw, J. L., J. D. Bruno, J. T. Pham, D. E. Wortman, and Rui Q. Yang. "Midinfrared type-II interband cascade lasers." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18, no. 3 (2000): 1628. http://dx.doi.org/10.1116/1.591441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yang, Rui Q., J. D. Bruno, J. L. Bradshaw, J. T. Pham, and D. E. Wortman. "Interband cascade lasers: progress and challenges." Physica E: Low-dimensional Systems and Nanostructures 7, no. 1-2 (April 2000): 69–75. http://dx.doi.org/10.1016/s1386-9477(99)00280-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jiang, Yuchao, Lu Li, Zhaobing Tian, Hao Ye, Lihua Zhao, Rui Q. Yang, Tetsuya D. Mishima, Michael B. Santos, Matthew B. Johnson, and Kamjou Mansour. "Electrically widely tunable interband cascade lasers." Journal of Applied Physics 115, no. 11 (March 21, 2014): 113101. http://dx.doi.org/10.1063/1.4865941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ryczko, Krzysztof, Janusz Andrzejewski, and Grzegorz Sęk. "Towards Interband Cascade lasers on InP Substrate." Materials 15, no. 1 (December 22, 2021): 60. http://dx.doi.org/10.3390/ma15010060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this study, we propose designs of an interband cascade laser (ICL) active region able to emit in the application-relevant mid infrared (MIR) spectral range and to be grown on an InP substrate. This is a long-sought solution as it promises a combination of ICL advantages with mature and cost-effective epitaxial technology of fabricating materials and devices with high structural and optical quality, when compared to standard approaches of growing ICLs on GaSb or InAs substrates. Therefore, we theoretically investigate a family of type II, “W”-shaped quantum wells made of InGaAs/InAs/GaAsSb with different barriers, for a range of compositions assuring the strain levels acceptable from the growth point of view. The calculated band structure within the 8-band k·p approximation showed that the inclusion of a thin InAs layer into such a type II system brings a useful additional tuning knob to tailor the electronic confined states, optical transitions’ energy and their intensity. Eventually, it allows achieving the emission wavelengths from below 3 to at least 4.6 μm, while still keeping reasonably high gain when compared to the state-of-the-art ICLs. We demonstrate a good tunability of both the emission wavelength and the optical transitions’ oscillator strength, which are competitive with other approaches in the MIR. This is an original solution which has not been demonstrated so far experimentally. Such InP-based interband cascade lasers are of crucial application importance, particularly for the optical gas sensing.
16

Meyer, Jerry R., Chul Soo Kim, Mijin Kim, Chadwick L. Canedy, Charles D. Merritt, William W. Bewley, and Igor Vurgaftman. "Interband Cascade Photonic Integrated Circuits on Native III-V Chip." Sensors 21, no. 2 (January 16, 2021): 599. http://dx.doi.org/10.3390/s21020599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We describe how a midwave infrared photonic integrated circuit (PIC) that combines lasers, detectors, passive waveguides, and other optical elements may be constructed on the native GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact architectures are described, some of which incorporate both the sensing waveguide and detector into a laser cavity defined by two high-reflectivity cleaved facets. We also describe an edge-emitting laser configuration that optimizes stability by minimizing parasitic feedback from external optical elements, and which can potentially operate with lower drive power than any mid-IR laser now available. While ICL-based PICs processed on GaSb serve to illustrate the various configurations, many of the proposed concepts apply equally to quantum-cascade-laser (QCL)-based PICs processed on InP, and PICs that integrate III-V lasers and detectors on silicon. With mature processing, it should become possible to mass-produce hundreds of individual PICs on the same chip which, when singulated, will realize chemical sensing by an extremely compact and inexpensive package.
17

Zhang Yi, 张一, 杨成奥 Yang Cheng''ao, 尚金铭 Shang Jinming, 陈益航 Chen Yihang, 王天放 Wang Tianfang, 张宇 Zhang Yu, 徐应强 Xu Yingqiang, 刘冰 Liu Bing, and 牛智川 Niu Zhichuan. "Research Progress of Semiconductor Interband Cascade Lasers." Acta Optica Sinica 41, no. 1 (2021): 0114004. http://dx.doi.org/10.3788/aos202141.0114004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chen Junjing, 陈君景, 王一丁 Wang Yiding, and 曹峰 Cao Feng. "Mid-Infrared Type-II Interband Cascade Lasers." Laser & Optoelectronics Progress 45, no. 3 (2008): 19–24. http://dx.doi.org/10.3788/lop20084503.0019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Soibel, A., M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu. "High-speed operation of interband cascade lasers." Electronics Letters 45, no. 5 (2009): 264. http://dx.doi.org/10.1049/el:20090079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Vurgaftman, Igor, William W. Bewley, Chadwick L. Canedy, Chul Soo Kim, Mijin Kim, J. Ryan Lindle, Charles D. Merritt, Joshua Abell, and Jerry R. Meyer. "Mid-IR Type-II Interband Cascade Lasers." IEEE Journal of Selected Topics in Quantum Electronics 17, no. 5 (September 2011): 1435–44. http://dx.doi.org/10.1109/jstqe.2011.2114331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yang, R. Q., J. L. Bradshaw, J. D. Bruno, J. T. Pham, and D. E. Wortman. "Mid-infrared type-II interband cascade lasers." IEEE Journal of Quantum Electronics 38, no. 6 (June 2002): 559–68. http://dx.doi.org/10.1109/jqe.2002.1005406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yang, R. Q., C.-H. Lin, B. H. Yang, D. Zhang, S. J. Murry, S. S. Pei, C. L. Felix, et al. "High Power Mid-IR Interband Cascade Lasers." Optics and Photonics News 8, no. 12 (December 1, 1997): 26. http://dx.doi.org/10.1364/opn.8.12.000026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Li, Lu, Lihua Zhao, Yuchao Jiang, Rui Q. Yang, Joel C. Keay, Tetsuya D. Mishima, Michael B. Santos, and Matthew B. Johnson. "Single-waveguide dual-wavelength interband cascade lasers." Applied Physics Letters 101, no. 17 (October 22, 2012): 171118. http://dx.doi.org/10.1063/1.4764910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dallner, Matthias, Julian Scheuermann, Lars Nähle, Marc Fischer, Johannes Koeth, Sven Höfling, and Martin Kamp. "InAs-based distributed feedback interband cascade lasers." Applied Physics Letters 107, no. 18 (November 2, 2015): 181105. http://dx.doi.org/10.1063/1.4935076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Deng, Yu, Bin-Bin Zhao, Xing-Guang Wang, and Cheng Wang. "Narrow linewidth characteristics of interband cascade lasers." Applied Physics Letters 116, no. 20 (May 18, 2020): 201101. http://dx.doi.org/10.1063/5.0006823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ryczko, Krzysztof, Agata Zielińska, and Grzegorz Sęk. "Interband Cascade Active Region with Ultra-Broad Gain in the Mid-Infrared Range." Materials 14, no. 5 (February 27, 2021): 1112. http://dx.doi.org/10.3390/ma14051112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The optical gain spectrum has been investigated theoretically for various designs of active region based on InAs/GaInSb quantum wells—i.e., a type II material system employable in interband cascade lasers (ICLs) or optical amplifiers operating in the mid-infrared spectral range. The electronic properties and optical responses have been calculated using the eight-band k·p theory, including strain and external electric fields, to simulate the realistic conditions occurring in operational devices. The results show that intentionally introducing a slight nonuniformity between two subsequent stages of a cascaded device via the properly engineered modification of the type II quantum wells of the active area offers the possibility to significantly broaden the gain function. A −3 dB gain width of 1 µm can be reached in the 3–5 µm range, which is almost an order of magnitude larger than that of any previously reported ICLs. This is a property strongly demanded in many gas-sensing or free-space communication applications, and it opens a way for a new generation of devices in the mid-infrared range, such as broadly tunable single-mode lasers, mode-locked lasers for laser-based spectrometers, and optical amplifiers or superluminescent diodes which do not exist beyond 3 µm yet.
27

NING Chao, 宁超, 孙瑞轩 SUN Ruixuan, 于天 YU Tian, 刘舒曼 LIU Shuman, 张锦川 ZHANG Jinchuan, 卓宁 ZHUO Ning, 王利军 WANG Lijun, et al. "带间级联激光器电子注入区优化研究(特邀)." ACTA PHOTONICA SINICA 51, no. 2 (2022): 0251208. http://dx.doi.org/10.3788/gzxb20225102.0251208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Fordyce, J. A. M., D. A. Diaz-Thomas, L. O'Faolain, A. N. Baranov, T. Piwonski, and L. Cerutti. "Single-mode interband cascade laser with a slotted waveguide." Applied Physics Letters 121, no. 21 (November 21, 2022): 211102. http://dx.doi.org/10.1063/5.0120460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The design of a single-mode interband cascade laser (ICL) using a slotted waveguide is presented. This technique was explored as an inexpensive alternative to distributed feedback lasers since standard photolithography can be used in fabrication and complex techniques, such as e-beam lithography, re-growth steps, and/or metal gratings, can be avoided. The design of slotted waveguides must be carefully simulated before fabrication to ensure the efficacy of the photolithography masks with each ICL growth. Limitations and the behavior of key design parameters are discussed. Single-mode emission was achieved for certain temperature and injected current conditions, validating the operation of an Sb based slotted laser. The slotted ICLs were emitting from a single longitudinal mode at 3.5 μm and 2 mW of power per facet output at 20 °C with threshold currents around 80 mA.
29

Biryukov, A. A., B. N. Zvonkov, S. M. Nekorkin, V. Ya Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Marem’yanin, et al. "Study of interband cascade lasers with tunneling transition." Bulletin of the Russian Academy of Sciences: Physics 71, no. 1 (January 2007): 96–99. http://dx.doi.org/10.3103/s1062873807010248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Weih, Robert, Adam Bauer, Martin Kamp, and Sven Höfling. "Interband cascade lasers with AlGaAsSb bulk cladding layers." Optical Materials Express 3, no. 10 (September 6, 2013): 1624. http://dx.doi.org/10.1364/ome.3.001624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Meyer, J. R., I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan. "Type-II and type-I interband cascade lasers." Electronics Letters 32, no. 1 (1996): 45. http://dx.doi.org/10.1049/el:19960064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lin, Yuzhe, Lu Li, Wenxiang Huang, Rui Q. Yang, James A. Gupta, and Wanhua Zheng. "Quasi-Fermi Level Pinning in Interband Cascade Lasers." IEEE Journal of Quantum Electronics 56, no. 4 (August 2020): 1–10. http://dx.doi.org/10.1109/jqe.2020.3003081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Myers, Tanya L., Bret D. Cannon, Carolyn S. Brauer, Chadwick L. Canedy, Chul Soo Kim, Mijin Kim, Charles D. Merritt, William W. Bewley, Igor Vurgaftman, and Jerry R. Meyer. "Gamma irradiation of Fabry–Perot interband cascade lasers." Optical Engineering 57, no. 01 (September 20, 2017): 1. http://dx.doi.org/10.1117/1.oe.57.1.011016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Jiang, Yuchao, Lu Li, Rui Q. Yang, James A. Gupta, Geof C. Aers, Emmanuel Dupont, Jean-Marc Baribeau, Xiaohua Wu, and Matthew B. Johnson. "Type-I interband cascade lasers near 3.2 μm." Applied Physics Letters 106, no. 4 (January 26, 2015): 041117. http://dx.doi.org/10.1063/1.4907326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Borri, Simone, Mario Siciliani de Cumis, Silvia Viciani, Francesco D’Amato, and Paolo De Natale. "Unveiling quantum-limited operation of interband cascade lasers." APL Photonics 5, no. 3 (March 1, 2020): 036101. http://dx.doi.org/10.1063/1.5139483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Canedy, C. L., W. W. Bewley, C. S. Kim, M. Kim, J. R. Lindle, I. Vurgaftman, and J. R. Meyer. "cw midinfrared “W” diode and interband cascade lasers." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, no. 3 (2006): 1613. http://dx.doi.org/10.1116/1.2192533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Nähle, L., P. Fuchs, M. Fischer, J. Koeth, A. Bauer, M. Dallner, F. Langer, S. Höfling, and A. Forchel. "Mid infrared interband cascade lasers for sensing applications." Applied Physics B 100, no. 2 (February 6, 2010): 275–78. http://dx.doi.org/10.1007/s00340-010-3899-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Zhao, Xuyi, Chunfang Cao, Antian Du, Wenfu Yu, Shixian Han, Ruotao Liu, Yuanyu Chen, et al. "High Performance Interband Cascade Lasers With AlGaAsSb Cladding Layers." IEEE Photonics Technology Letters 34, no. 5 (March 1, 2022): 291–94. http://dx.doi.org/10.1109/lpt.2022.3153334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhaobing Tian, R. Q. Yang, T. D. Mishima, M. B. Santos, and M. B. Johnson. "Plasmon-Waveguide Interband Cascade Lasers Near 7.5 $\mu$m." IEEE Photonics Technology Letters 21, no. 21 (November 2009): 1588–90. http://dx.doi.org/10.1109/lpt.2009.2030686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bradshaw, J. L., J. D. Bruno, D. E. Wortman, R. Q. Yang, and J. T. Pham. "Continuous wave operation of type-II interband cascade lasers." IEE Proceedings - Optoelectronics 147, no. 3 (June 1, 2000): 177–80. http://dx.doi.org/10.1049/ip-opt:20000299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sterczewski, Lukasz A., Jonas Westberg, Mahmood Bagheri, Clifford Frez, Igor Vurgaftman, Chadwick L. Canedy, William W. Bewley, et al. "Mid-infrared dual-comb spectroscopy with interband cascade lasers." Optics Letters 44, no. 8 (April 15, 2019): 2113. http://dx.doi.org/10.1364/ol.44.002113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mansour, K., Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang. "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures." Electronics Letters 42, no. 18 (2006): 1034. http://dx.doi.org/10.1049/el:20062442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Du Zhenhui, 杜振辉, 韩瑞炎 Han Ruiyan, 王晓雨 Wang Xiaoyu, 王拴棵 Wang Shuangke, 孟硕 Mengshuo, and 李金义 Li Jinyi. "Interband Cascade Lasers Based Trace Gas Sensing: A Review." Chinese Journal of Lasers 45, no. 9 (2018): 0911006. http://dx.doi.org/10.3788/cjl201845.0911006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Scheuermann, Julian, Robert Weih, Michael von Edlinger, Lars Nähle, Marc Fischer, Johannes Koeth, Martin Kamp, and Sven Höfling. "Single-mode interband cascade lasers emitting below 2.8 μm." Applied Physics Letters 106, no. 16 (April 20, 2015): 161103. http://dx.doi.org/10.1063/1.4918985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Jiang, Yuchao, Lu Li, Hao Ye, Rui Q. Yang, Tetsuya D. Mishima, Michael B. Santos, Matthew B. Johnson, David Jui-Yang Feng, and Fow-Sen Choa. "InAs-Based Single-Mode Distributed Feedback Interband Cascade Lasers." IEEE Journal of Quantum Electronics 51, no. 9 (September 2015): 1–7. http://dx.doi.org/10.1109/jqe.2015.2470534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zuowei Yin, Yuchao Jiang, Zhaobing Tian, Rui Q. Yang, T. D. Mishima, M. B. Santos, and M. B. Johnson. "Far-Field Patterns of Plasmon Waveguide Interband Cascade Lasers." IEEE Journal of Quantum Electronics 47, no. 11 (November 2011): 1414–19. http://dx.doi.org/10.1109/jqe.2011.2168812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ryczko, K., and G. Sęk. "Polarization-independent gain in mid-infrared interband cascade lasers." AIP Advances 6, no. 11 (November 2016): 115020. http://dx.doi.org/10.1063/1.4968190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Meyer, Jerry. "Special Section Guest Editorial: Quantum and Interband Cascade Lasers." Optical Engineering 49, no. 11 (November 1, 2010): 111101. http://dx.doi.org/10.1117/1.3512992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hill, Cory J., Baohua Yang, and Rui Q. Yang. "Low-threshold interband cascade lasers operating above room temperature." Physica E: Low-dimensional Systems and Nanostructures 20, no. 3-4 (January 2004): 486–90. http://dx.doi.org/10.1016/j.physe.2003.08.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Canedy, C. L., C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman, and J. R. Meyer. "High-power, narrow-ridge, mid-infrared interband cascade lasers." Journal of Crystal Growth 301-302 (April 2007): 931–34. http://dx.doi.org/10.1016/j.jcrysgro.2006.11.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography