Academic literature on the topic 'Lasers à Cascade Interbande'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lasers à Cascade Interbande.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lasers à Cascade Interbande":

1

Meyer, Jerry, William Bewley, Chadwick Canedy, Chul Kim, Mijin Kim, Charles Merritt, and Igor Vurgaftman. "The Interband Cascade Laser." Photonics 7, no. 3 (September 15, 2020): 75. http://dx.doi.org/10.3390/photonics7030075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We review the history, development, design principles, experimental operating characteristics, and specialized architectures of interband cascade lasers for the mid-wave infrared spectral region. We discuss the present understanding of the mechanisms limiting the ICL performance and provide a perspective on the potential for future improvements. Such device properties as the threshold current and power densities, continuous-wave output power, and wall-plug efficiency are compared with those of the quantum cascade laser. Newer device classes such as ICL frequency combs, interband cascade vertical-cavity surface-emitting lasers, interband cascade LEDs, interband cascade detectors, and integrated ICLs are reviewed for the first time.
2

Ning, Chao, Tian Yu, Shuman Liu, Jinchuan Zhang, Lijun Wang, Junqi Liu, Ning Zhuo, Shenqiang Zhai, Yuan Li, and Fengqi Liu. "Interband cascade lasers with short electron injector." Chinese Optics Letters 20, no. 2 (2022): 022501. http://dx.doi.org/10.3788/col202220.022501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Horiuchi, Noriaki. "Interband cascade lasers." Nature Photonics 9, no. 8 (July 30, 2015): 481. http://dx.doi.org/10.1038/nphoton.2015.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vurgaftman, I., R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, et al. "Interband cascade lasers." Journal of Physics D: Applied Physics 48, no. 12 (March 11, 2015): 123001. http://dx.doi.org/10.1088/0022-3727/48/12/123001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ryczko, Krzysztof, and Grzegorz Sęk. "Towards unstrained interband cascade lasers." Applied Physics Express 11, no. 1 (December 4, 2017): 012703. http://dx.doi.org/10.7567/apex.11.012703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Massengale, J. A., Yixuan Shen, Rui Q. Yang, S. D. Hawkins, and J. F. Klem. "Long wavelength interband cascade lasers." Applied Physics Letters 120, no. 9 (February 28, 2022): 091105. http://dx.doi.org/10.1063/5.0084565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
InAs-based interband cascade lasers (ICLs) can be more easily adapted toward long wavelength operation than their GaSb counterparts. Devices made from two recent ICL wafers with an advanced waveguide structure are reported, which demonstrate improved device performance in terms of reduced threshold current densities for ICLs near 11 μm or extended operating wavelength beyond 13 μm. The ICLs near 11 μm yielded a significantly reduced continuous wave (cw) lasing threshold of 23 A/cm2 at 80 K with substantially increased cw output power, compared with previously reported ICLs at similar wavelengths. ICLs made from the second wafer incorporated an innovative quantum well active region, comprised of InAsP layers, and lased in the pulsed-mode up to 120 K at 13.2 μm, which is the longest wavelength achieved for III–V interband lasers.
7

Yang, Rui Q., Lu Li, Wenxiang Huang, S. M. Shazzad Rassel, James A. Gupta, Andrew Bezinger, Xiaohua Wu, S. Ghasem Razavipour, and Geof C. Aers. "InAs-Based Interband Cascade Lasers." IEEE Journal of Selected Topics in Quantum Electronics 25, no. 6 (November 2019): 1–8. http://dx.doi.org/10.1109/jstqe.2019.2916923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, M., C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer. "Room temperature interband cascade lasers." Physics Procedia 3, no. 2 (January 2010): 1195–200. http://dx.doi.org/10.1016/j.phpro.2010.01.162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yu, Tian, Chao Ning, Ruixuan Sun, Shu-Man Liu, Jinchuan Zhang, Junqi Liu, Lijun Wang, et al. "Strain mapping in interband cascade lasers." AIP Advances 12, no. 1 (January 1, 2022): 015027. http://dx.doi.org/10.1063/5.0079193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Holzbauer, Martin, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Johannes Koeth, and Gottfried Strasser. "Substrate-emitting ring interband cascade lasers." Applied Physics Letters 111, no. 17 (October 23, 2017): 171101. http://dx.doi.org/10.1063/1.4989514.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Lasers à Cascade Interbande":

1

Zhao, Shiyuan. "Noise, Dynamics and Squeezed Light in Quantum Dot and Interband Cascade Lasers." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les lasers à semiconducteurs sont devenus omniprésents aussi bien dans la recherche scientifique que dans les applications en ingénierie, et leur miniaturisation a fait d'importants progrès depuis leur première démonstration en 1960. Deux avancées majeures dans ce domaine incluent les lasers à boîtes quantiques (QD), qui opèrent dans la plage de longueurs d'onde proche de l'infrarouge, et les lasers à cascade interbande (ICL), conçus pour une utilisation dans le moyen infrarouge. Dans le paysage actuel de l'optoélectronique, les circuits intégrés photoniques (CIP) jouent un rôle essentiel et étendu. Ils offrent une évolutivité inégalée, un poids réduit, une rentabilité et une efficacité énergétique en permettant la fabrication de systèmes optiques complets à l'aide de blocs de construction polyvalents intégrés sur une seule puce. Dans ce contexte, la croissance épitaxiale directe de matériaux III-V sur du silicium offre des perspectives prometteuses en tant qu'approche convaincante pour le développement de sources laser cohérentes. Les lasers à boîtes quantiques, avec leur confinement ultime des porteurs en trois dimensions, leur grande stabilité thermique et leur tolérance robuste aux défauts épitaxiaux, sont des candidats prometteurs pour servir de sources laser sur puce. De plus, les ICL sont également bien adaptés à l'intégration dans le silicium, ce qui en fait des candidats idéaux pour les systèmes compacts de détection chimique. Les considérations liées au bruit sont en effet primordiales lorsqu'il s'agit d'évaluer la qualité et la fiabilité des cette technologie. Atteindre la limite du bruit de grenaille et la largeur de raie de Schawlow-Townes a longtemps été reconnu comme des étapes significatives. Pour résoudre les problèmes de bruit, toute une gamme de techniques de réduction du bruit a été explorée, allant de la rétroaction optique passive dans une cavité externe aux mécanismes actifs de rétroaction électronique visant à compenser les fluctuations du courant d'injection. Cependant, bien que les systèmes de rétroaction puissent atténuer le bruit du laser, ils peuvent également introduire des dynamiques non linéaires plus complexes, donnant lieu à des phénomènes tels que l'oscillation périodique, l'oscillation en créneaux et le chaos. La première partie de cette thèse porte sur une investigation approfondie du bruit et de la dynamique dans deux types de lasers distincts. On constate que les lasers à boîtes quantiques présentent un degré élevé de robustesse lorsqu'ils sont exposés à des réflexions optiques parasites, mais manifestent une sensibilité accrue à la rétroaction optoélectronique. En revanche, les ICL affichent une gamme de comportements dynamiques lorsqu'ils sont soumis à une rétroaction optique. De plus, les récents progrès dans les circuits de pompage à faible bruit pour les lasers ont conduit à la génération de lumière comprimée en amplitude. Il s'agit d'une transition du bruit classique au bruit quantique, ouvrant de nouvelles possibilités dans le domaine de la technologie laser et de l'optique quantique. La deuxième partie de cette thèse se penche sur le phénomène de la compression en amplitude à la fois dans les lasers à boîtes quantiques et dans les ICL. Les résultats indiquent que les deux types de lasers peuvent présenter une large bande passante de compression et un niveau significatif de compression. Toutes ces conclusions dans cette étude contribuent à une compréhension plus profonde des caractéristiques des lasers à boîtes quantiques et des ICL, jetant les bases du développement de sources émettrices classiques et quantiques de haute performance sur des CIP à l'avenir
Semiconductor lasers have become ubiquitous in both scientific research and engineering applications, and their miniaturization has made significant strides since their initial demonstration in 1960. Two prominent advancements in this domain include quantum dot (QD) lasers, which operate in the near-infrared wavelength range, and interband cascade lasers (ICLs), designed for mid-infrared operation. Two prominent advancements in this domain include quantum dot (QD) lasers, which operate in the near-infrared wavelength range, and interband cascade lasers (ICLs), designed for mid-infrared operation. In the current landscape of optoelectronics, photonic integrated circuits (PICs) play a pivotal and far-reaching role. They offer unmatched scalability, reduced weight, cost-effectiveness, and energy efficiency by enabling the fabrication of complete optical systems using versatile building blocks seamlessly integrated onto a single chip. In this context, the direct epitaxial growth of III-V materials on silicon holds promise as a compelling approach for the development of coherent laser sources. QD lasers with their ultimate three-dimensional carrier confinement, high thermal stability, and robust tolerance for epitaxial defects are promising candidates for serving as on-chip laser sources. Additionally, ICLs are also well-suited for integration into silicon, making them ideal for compact chemical sensing systems. Noise considerations are indeed paramount when it comes to assessing the quality and reliability of technologies. Achieving the shot noise limit and the Schawlow-Townes linewidth has long been recognized as significant milestones. To tackle noise issues, a range of noise reduction techniques has been explored, encompassing passive optical feedback within an external cavity and active electronic feedback mechanisms to compensate for injection current fluctuations. However, while feedback systems can mitigate laser noise, they can also introduce more intricate nonlinear dynamics, giving rise to phenomena like periodic oscillation, square-wave oscillation, and chaos. The first part of this thesis involves an in-depth investigation into noise and dynamics in two distinct laser types. QD lasers are found to exhibit a high degree of robustness when exposed to parasitic optical reflections but manifest increased sensitivity to optoelectronic feedback. Conversely, ICLs display a spectrum of dynamic behaviours when subjected to optical feedback. Furthermore, recent advancements in low-noise pumping circuits for lasers have led to the generation of amplitude-squeezed light. This represents a transition from classical noise to quantum noise, opening up new possibilities in the field of laser technology and quantum optics. The second part of this thesis delves into the phenomenon of amplitude squeezing in both QD lasers and ICLs. The findings indicate that both types of lasers can exhibit broadband squeezing bandwidth and a significant level of squeezing. All these outcomes in this study contribute to a deeper comprehension of the characteristics of QD lasers and ICLs, laying the groundwork for the development of high-performance classical and quantum emitters on PICs in the future
2

Fordyce, Jordan. "Single-mode interband cascade lasers for petrochemical process monitoring." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les lasers à cascade interbandes (ICL) fournissent des sources pour la gamme spectrale du moyen infrarouge compris entre 3 et 6 µm particulièrement efficaces en termes de consommation d’énergie. Cette gamme spectrale est particulièrement intéressante pour la détection des gaz impliqués dans l’industrie pétrochimique, car des gaz tels que le méthane, l'éthane et le dioxyde de carbone présentent une forte absorption dans cette gamme de longueur d’onde. L'identification correcte d'un gaz présent dans un échantillon nécessite des lasers avec une émission monomode et une certaine accordabilité en longueur d’onde. L'amélioration de cette plage de réglage possible avec une source laser offre de nouvelles opportunités dans des applications liées à la spectroscopie. Une alternative à ce qui est actuellement disponible dans le commerce peut être réalisée grâce à l'utilisation de guides d'ondes à fente, qui peuvent être fabriqués en utilisant de la photolithographie conventionnelle, réduisant ainsi le coût de fabrication.Deux nouveaux types d'ICL ont été conçus, fabriqués, et étudiés dans le cadre de cette thèse : un ICL à fentes à section unique et un ICL à fentes multiples accordé par Vernier (SVT). Une étude approfondie des étapes de fabrication et en particulier de la gravure sèche a été réalisée pour obtenir une gravure verticale des matériaux constituants les ICLs. Les premiers ICLs à fentes ont été fabriqués démontrant un e une émission monomode en régime continu à température ambiante avec une émission proche de 3.4 µm. Sur cette base, l'ICL SVT a été fabriqué pour étendre la plage d'accord et démontrer que l'accord par effet Vernier pouvait être mis en œuvre sur ce système de matériaux
Interband cascade lasers (ICLs) provide sources for the mid-infrared spectral range between 3 – 6 µm with low power consumption and efficient performance. This spectral range is of particular interest to the detection of gases involved with petrochemical processing, such as methane, ethane, and carbon dioxide due to their strong absorption in this range. Correct identification of a gas present in a sample requires single-mode emission and some tuning to match the absorption line, depending on the environmental conditions. Increasing the tuning range possible with one laser source opens up new possibilities in spectroscopic applications. An economical design alternative to what is currently commercially available can be realized through the use of slotted waveguides, which can be fabricated using photolithography, reducing the cost of fabrication.Two new types of ICLs have been designed, fabricated, and studied in this thesis: a single-section slotted ICL and a multi-section slotted Vernier tuned (SVT) ICL. An extensive study of the fabrication step and in particular dry etching was carried out to achieve vertical etching of the materials constituting the ICLs. First, the slotted ICLs were fabricated demonstrating single-mode emission in continuous wave operation at room temperature with emission close to 3.4 µm. Building from this foundation, the SVT ICL was fabricated to extend the tuning range and demonstrate that Vernier tuning could be implemented on this material system
3

O'Hagan, Seamus. "Multi-mode absorption spectroscopy for multi-species and multi-parameter sensing." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:6f422683-7c50-47dd-8824-56b4b4ea941d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The extension of Multi-mode Absorption Spectroscopy (MUMAS) to the infra-red spectral region for multi-species gas sensing is reported. A computationally efficient, theoretical model for analysis of MUMAS spectra is presented that avoids approximations used in previous work and treats arbitrary and time-dependent spectral intensity envelopes, thus facilitating the use of commercially available Interband Cascade Lasers (ICLs) and Quantum Cascade Lasers (QCLs). The first use of an ICL for MUMAS is reported using a multi-mode device operating at 3.7 μm to detect CH4 transitions over a range of 30 nm. Mode-linewidths are measured using the pressure-dependent widths of an isolated absorption feature in HCl. Multi- species sensing is demonstrated by measurement of partial pressures of CH4, C2H2 and H2CO in a low-pressure mixture with uncertainties of around 10%. Detection of CH4 in N2 at 1 bar is demonstrated using a shorter-cavity ICL to resolve spectral features in pressure-broadened and congested spectra. The first use of a QCL for MUMAS is reported using a commercially available device operating at 5.3 μm to detect multiple absorption transitions of NO at a partial pressure of 2.79 μbar in N2 buffer gas. The revised model is shown to enable good fits to MUMAS data by accounting for the time-variation of the spectral intensity profile during frequency scanning. Individual mode-linewidths are derived from fits to pressure- dependent MUMAS spectra and features from background interferences due to H2O in laboratory air are distinguished from those of the target species, NO. Data obtained at scan rates up to 10 kHz demonstrate the potential for achieving short measurement times. The development of a balanced ratiometric detection scheme for MUMAS with commercially available multi-mode lasers operating at 1.5 μm is reported for simultaneous detection of CO and CO2 showing improved SNR performance over previous direct transmission methods and suitability for a compact field-employable instrument. In addition, MUMAS spectra of CO2 are used to derive gas temperatures with an uncertainty of 3.2% in the range 300 - 700 K.
4

Ikyo, Achakpa Barnabas. "Physical properties of interband and interband cascade edge- and surface-emitting mid-infrared lasers." Thesis, University of Surrey, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abajyan, Pavel. "Génération et contrôle de peignes de fréquences optiques dans les lasers à cascade d'interbande (ICL)." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les peignes de fréquence optique (OFC) sont des sources de lumière cohérente qui émettent un large spectre de modes discrets parfaitement espacés, chacun avec une fréquence absolue mesurable avec la précision d'une horloge atomique.Les OFC dans l'infrarouge moyen (MIR 3-12 μm) sont récemment devenus d'un grand intérêt pour la spectroscopie moléculaire par la présence de forte absorption des modes de vibration et de rotation moléculaires dans la région des "empreintes digitales" spectroscopiques. Néanmoins, le fonctionnement de l'OFC dans la région cruciale de l'infrarouge moyen (MWIR 3-6 μm) reste nettement sous-développé par rapport aux autres parties du MIR.Dans ce travail, nous présentons une étude expérimentale approfondie d'une nouvelle génération de laser à cascade interbande (ICL) et de leur potentiel pour les OFC dans MWIR. La thèse apporte la preuve du régime OFC à la fois par spectroscopie des battements (BN) à haute fréquence, et par la nouvelle technique de reconstruction temporelle de la dynamique ultrarapide de ces lasers, celle-ci permettant de "visualiser" le contrôle du type de fonctionnement de l'OFC dans les ICL. En particulier, a été effectuer la caractérisation opto-électrique d'un ensemble d'ICL avec une gamme de géométries, dans le but d'étudier les ICL à faible dispersion de retard de groupe (GDD) à des longueurs d'onde plus longues que celles étudiées auparavant: un ICL fonctionnant à 3.8 μm avec une architecture en 2-sections, des ICL fonctionnant à 4.1 μm, et une autre génération d'ICL fonctionnant à une longueur d'onde de 4.2 μm conçue avec un gain spectral large. La formation du régime OFC et le GDD sont liées et importantes pour comprendre les mécanismes fondamentaux de la formation de l'OFC. Les ICL ont été étudiés à l'aide de la spectroscopie BN optique et électrique. Les verrouillages de mode passif (PML) (ou fonctionnement libre) et actif (AML) ont été démontrés. Pour les ICL à 2-sections, où l'ICL est divisé en une partie longue et une partie courte pour une seule cavité, l'effet exact de la petite section sur le BN a été explicité: permets de (a) contrôler très finement le GDD intracavité, (b) introduire des pertes et montrant que l'on converge vers un comportement PML. Ce travail étend l'étude au cas des ICL fonctionnant à des longueurs d'onde plus longues dans une cavité à section unique et où le GDD est censé être inférieur.Pour un ICL à 4.1 μm, il est montré qu'un BN optique puissant peut être verrouillé par injection radiofréquence (RF) à la fréquence d'un aller-retour de l'ICL, premières étapes de AML. Ce verrouillage par injection a été réalisé à l'aide d'une architecture laser à 1-section avec une très faible GDD montrant ainsi que l'adaptation du guide d'onde ICL au fonctionnement RF n'est pas une exigence fondamentale.Dans sa dernière partie, la thèse montre la mise en œuvre de la technique "Shifted Wave Interference Fourier Transform Spectroscopy" (SWIFTS), utilisée selon deux configurations différentes, pour reconstruire le profil d'intensité temporel du laser à des échelles de temps ultrarapides. Cela démontre la nature des OFC générés dans ces ICL. L'ICL fonctionne en régime de modulation de fréquence (FM) lorsqu'il est en fonctionnement libre et transite vers un régime de modulation d'amplitude (AM) lorsqu'il est en régime AML en par injection RF. L'étude montre également que les ICL peuvent générer des impulsions courtes de ∼6.7 ps en fonctionnement libre, malgré leur caractère FM, et met en évidence le contrôle de la largeur d'impulsion et de l'intensité maximale via l'injection RF. Cela permet de compresser d'un facteur de 2.3 les impulsions libres pour obtenir des impulsions inférieures à 3 ps.Ces travaux constituent une étape importante dans la réalisation et le contrôle des OFC dans la région MWIR. Les perspectives sont d'élargir la bande passante spectrale des ICL et de générer des impulsions ultracourtes de haute puissance dans le MWIR et au-delà
Optical frequency combs (OFCs) are coherent light sources that emit a broad spectrum of discrete, perfectly spaced modes, each with an absolute frequency measurable with the precision of an atomic clock.OFCs in the mid-infrared (MIR 3-12 μm) have recently become of great interest to molecular spectroscopy by the presence of strong absorption of molecular vibration and rotation modes in the spectroscopic "fingerprint" region. Nevertheless, the operation of the OFC in the crucial mid-infrared region (MWIR 3-6 μm) remains significantly underdeveloped compared to other parts of the MIR.In this work, we present an in-depth experimental study of a new generation of interband cascade laser (ICL) and their potential for OFCs in MWIR. The thesis provides proof of the OFC regime both by high-frequency beatnote spectroscopy (BN), and by the new technique of temporal reconstruction of the ultrafast dynamics of these lasers, this making it possible to "visualize" the control of the type of operation of the OFC in ICL. In particular, was carried out the optoelectrical characterization of a set of ICLs with a range of geometries, with the aim of studying low group delay dispersion (GDD) ICLs at longer wavelengths than those previously studied: an ICL operating at 3.8 μm with a 2-section architecture, ICLs operating at 4.1 μm, and another generation of ICL operating at a wavelength of 4.2 μm designed with a wide spectral gain. OFC regime formation and GDD are linked and important for understanding the fundamental mechanisms of OFC formation. ICLs were studied using optical and electrical BN spectroscopy. Passive mode locking (PML) (or free running) and active mode locking (AML) were demonstrated. For 2-section ICLs, where the ICL is divided into a long part and a short part for a single cavity, the exact effect of the small section on the BN has been explained: allows to (a) control very finely the intracavity GDD, (b) introducing losses and showing that we converge towards PML behavior.This work then feeds into the case of ICLs operating at longer wavelengths in a single section cavity and where the GDD is expected to be less. In the particular case of the ICLs operating at 4.1 μm, we demonstrate a strong optical BN, which can be injection locked by radio frequency (RF) injection at the round trip frequency of the ICL, showing the first-steps of active modelocking. This injection locking was achieved using a simple single-section laser architecture with very low waveguide dispersion, and showing that adapting the ICL waveguide for RF operation is not a fundamental requirement. In the final part of the thesis, we show the implementation of the "Shifted Wave Interference Fourier Transform Spectroscopy" (SWIFTS) technique, used in two different configurations, to reconstruct the laser's temporal intensity profile at ultrafast timescales. This permits to demonstrate the nature of OFC generated in these ICLs. Indeed, we show that the ICL operates in the frequency modulation (FM) regime when free-running and transits towards an amplitude modulation (AM) regime when actively modelocked. Interestingly, we also show that ICLs can generate short pulses of ~6.7 ps in free-running operation, despite FM operation, and highlight the control of the pulse width and peak intensity via RF injection. This permits to compress the free-running pulses by a factor of 2.3 to obtain sub-3 ps pulses.This work constitutes an important step in the creation and control of OFCs in the MWIR region. The prospects are to broaden the spectral bandwidth of ICLs and generate high-power ultrashort pulses in the MWIR and beyond
6

Herdt, Andreas Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer, and Thomas [Akademischer Betreuer] [Walther. "The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther." Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Herdt, Andreas [Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer, and Thomas [Akademischer Betreuer] Walther. "The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers: A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther." Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Patterson, Steven Gregory. "Bipolar cascade lasers." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.
Includes bibliographical references.
This thesis addresses issues of the design and modeling of the Bipolar Cascade Laser (BCL), a new type of quantum well laser. BCLs consist of multiple single stage lasers electrically coupled via tunnel junctions. The BCL ideally operates by having each injected electron participate in a recombination event in the topmost active region, then tunnel from the valence band of the first active region into the conduction band of the next active region, participate in another recombination event, and so on through each stage of the cascade. As each electron may produce more than one photon the quantum efficiency of the device can, in theory, exceed 100%. This work resulted in the first room temperature, continuous-wave operation of a BCL, with a record 99.3% differential slope efficiency. The device was fully characterized and modeled to include light output and voltage versus current bias, modulation response and thermal properties. A new singlemode bipolar cascade laser, the bipolar cascade antiresonant reflecting optical waveguide laser, was proposed and modeled.
by Steven G. Patterson.
Ph.D.
9

Williams, Benjamin S. (Benjamin Stanford) 1974. "Terahertz quantum cascade lasers." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.
Includes bibliographical references (p. 297-310).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
The development of the terahertz frequency range has long been impeded by the relative dearth of compact, coherent radiation sources of reasonable power. This thesis details the development of quantum cascade lasers (QCLs) that operate in the terahertz with photon energies below the semiconductor Reststrahlen band. Photons are emitted via electronic intersubband transitions that take place entirely within the conduction band, where the wavelength is chosen by engineering the well and barrier widths in multiple-quantum-well heterostructures. Fabrication of such long wavelength lasers has traditionally been challenging, since it is difficult to obtain a population inversion between such closely spaced energy levels, and because traditional dielectric waveguides become extremely lossy due to free carrier absorption. This thesis reports the development of terahertz QCLs in which the lower radiative state is depopulated via resonant longitudinal-optical phonon scattering. This mechanism is efficient and temperature insensitive, and provides protection from thermal backfilling due to the large energy separation between the lower radiative state and the injector. Both properties are important in allowing higher temperature operation at longer wavelengths. Lasers using a surface plasmon based waveguide grown on a semi-insulating (SI) GaAs substrate were demonstrated at 3.4 THz in pulsed mode up to 87 K, with peak collected powers of 14 mW at 5 K, and 4 mW at 77 K.
Additionally, the first terahertz QCLs have been demonstrated that use metalmetal waveguides, where the mode is confined between metal layers placed immediately above and below the active region. These devices have confinement factors close to unity, and are expected to be advantageous over SI-surface-plasmon waveguides, especially at long wavelengths. Such a waveguide was used to obtain lasing at 3.8 THz in pulsed mode up to a record high temperature of 137 K, whereas similar devices fabricated in SI-surface-plasmon waveguides had lower maximum lasing temperatures due to the higher losses and lower confinement factors. This thesis describes the theory, design, fabrication, and testing of terahertz quantum cascade laser devices. A summary of theory relevant to design is presented, including intersubband radiative transitions and gain, intersubband scattering, and coherent resonant tunneling transport using a tight-binding density matrix model. Analysis of the effects of the complex heterostructure phonon spectra on terahertz QCL design are considered. Calculations of the properties of various terahertz waveguides are presented and compared with experimental results. Various fabrication methods have been developed, including a robust metallic wafer bonding technique used to fabricate metal-metal waveguides. A wide variety of quantum cascade structures, both lasing and non-lasing, have been experimentally characterized, which yield valuable information about the transport and optical properties of terahertz devices. Finally, prospects for higher temperature operation of terahertz QCLs are considered.
by Benjamin S. Williams.
Ph.D.
10

Rochat, Michel. "Far-infrared quantum cascade lasers." Online version, 2002. http://bibpurl.oclc.org/web/24095.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Lasers à Cascade Interbande":

1

Faist, Jérôme. Quantum cascade lasers. Oxford, United Kingdom: Oxford University Press, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jumpertz, Louise. Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65879-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Spitz, Olivier. Mid-infrared Quantum Cascade Lasers for Chaos Secure Communications. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74307-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Decker, Arthur J. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. Cleveland, Ohio: Lewis Research Center, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., ed. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stavrou, Vasilios N., ed. Quantum Cascade Lasers. InTech, 2017. http://dx.doi.org/10.5772/62674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Faist, J. Quantum Cascade Lasers. Oxford University Press, Incorporated, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Faist, Jérôme. Quantum Cascade Lasers. Oxford University Press, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lasers à Cascade Interbande":

1

Jumpertz, Louise. "Optical Feedback in Interband Lasers." In Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers, 35–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65879-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nähle, L., P. Fuchs, M. Fischer, J. Koeth, A. Bauer, M. Dallner, F. Langer, S. Höfling, and A. Forchel. "Mid infrared interband cascade lasers for sensing applications." In TDLS 2009, 43–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-02292-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Höfling, C., C. Schneider, and A. Forchel. "6.6.4 Growth of quantum wells in GaSb-based interband cascade lasers." In Growth and Structuring, 160–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Paul, Douglas J. "Quantum Cascade Lasers." In Springer Series in Optical Sciences, 103–21. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-3837-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Razeghi, Manijeh. "Quantum Cascade Lasers." In Technology of Quantum Devices, 271–319. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-1056-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pearsall, Thomas P. "Quantum Cascade Lasers." In Quantum Photonics, 237–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55144-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rossi, Fausto. "Quantum-Cascade Lasers." In Theory of Semiconductor Quantum Devices, 249–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10556-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Q., and O. Ambacher. "9.4 Quantum cascade lasers." In Laser Systems, 74–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14177-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Köhler, Rüdeger, Alessandro Tredicucci, Fabio Beltram, Harvey E. Beere, Edmund H. Linfield, Giles A. Davies, and David A. Ritchie. "Terahertz Quantum Cascade Lasers." In Advances in Solid State Physics, 327–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44838-9_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chang, Po-Hsiung, Jiun-Ming Li, Chiang Juay Teo, Boo Cheong Khoo, Christopher M. Brophy, and Robert G. Wright. "Measurements of Jet A Vapor Concentration Using Interband Cascade Laser." In 31st International Symposium on Shock Waves 1, 385–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-91020-8_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lasers à Cascade Interbande":

1

Vurgaftman, I., C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, S. Tomasulo, and J. R. Meyer. "Interband Cascade Lasers." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth1e.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, C. H. T., WenYen Hwang, Han Q. Le, Yao-Ming Mu, A. Liu, Jun Zheng, A. M. Delaney, Chau-Hong Kuo, and Shin Shem Pei. "Interband cascade lasers." In Symposium on Integrated Optoelectronics, edited by Luke J. Mawst and Ramon U. Martinelli. SPIE, 2000. http://dx.doi.org/10.1117/12.382089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schwarz, Benedikt, Maximilian Beiser, Florian Pilat, Sandro Dal Cin, Johannes Hillbrand, Robert Weih, Johannes Koeth, and Sven Höfling. "Interband cascade laser frequency combs." In Semiconductor Lasers and Laser Dynamics X, edited by Krassimir Panajotov, Marc Sciamanna, and Sven Höfling. SPIE, 2022. http://dx.doi.org/10.1117/12.2624340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Holzbauer, Martin, Borislav Hinkov, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Erich Gornik, Johannes Koeth, and Gottfried Strasser. "Ring Interband Cascade Lasers." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sf2g.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Knotig, Hedwig, Aaron Maxwell Andrews, Borislav Hinkov, Robert Weih, Johannes Koeth, Benedikt Schwarz, and Gottfried Strasser. "Interband Cascade and Quantum Cascade Ring Lasers." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth1e.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tian, Zhaobing, Rui Q. Yang, Tetsuya D. Mishima, Michael B. Santos, Robert T. Hinkey, Mark E. Curtis, and Matthew B. Johnson. "Plasmon Waveguide Interband Cascade Lasers." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cthaa7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, R. Q., B. H. Yang, D. Zhang, S. J. Murry, C. H. Lin, and S. S. Pei. "Mid-IR interband cascade lasers." In Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting. IEEE, 1997. http://dx.doi.org/10.1109/leos.1997.630592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meyer, J. R., C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle, and I. Vurgaftman. "Interband cascade distributed-feedback lasers." In Integrated Optoelectronic Devices 2007, edited by Manijeh Razeghi and Gail J. Brown. SPIE, 2007. http://dx.doi.org/10.1117/12.693445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Höfling, S., R. Weih, A. Bauer, A. Forchel, and M. Kamp. "Low threshold interband cascade lasers." In SPIE OPTO, edited by Manijeh Razeghi. SPIE, 2013. http://dx.doi.org/10.1117/12.2004680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meyer, J. R., C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, and I. Vurgaftman. "High-Brightness Interband Cascade Lasers." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.stu2g.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Lasers à Cascade Interbande":

1

Folkes, Patrick. Interband Cascade Laser Photon Noise. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada507657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tober, Richard L., Carlos Monroy, Kimberly Olver, and John D. Bruno. Processing Interband Cascade Laser for High Temperature CW Operation. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada428728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gmachl, Claire. Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada429769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Capasso, Federico, and Franz X. Kaertner. Mode Locking of Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada490860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Deppe, Dennis G. Mid-Infrared Quantum Dot Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada447301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mohseni, Hooman. Phonon Avoided and Scalable Cascade Lasers (PASCAL). Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada498465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harper, Warren W., Jana D. Strasburg, Pam M. Aker, and John F. Schultz. Remote Chemical Sensing Using Quantum Cascade Lasers. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/15010485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Harper, Warren W., and John F. Schultz. Remote Chemical Sensing Using Quantum Cascade Lasers. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/969751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chow, Weng Wah, Michael Clement Wanke, Maytee Lerttamrab, and Ines Waldmueller. THz quantum cascade lasers for standoff molecule detection. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/921751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zaytsev, Sergey, and Dabiran. Development of III-V Terahertz Quantum Cascade Lasers. Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada434866.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography