Journal articles on the topic 'LASER WAKEFIELD ACCELERATION (LWFA)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'LASER WAKEFIELD ACCELERATION (LWFA).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kimura, W. D., N. E. Andreev, M. Babzien, I. Ben-Zvi, D. B. Cline, C. E. Dilley, S. C. Gottschalk, et al. "Inverse free electron lasers and laser wakefield acceleration driven by CO 2 lasers." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (January 24, 2006): 611–22. http://dx.doi.org/10.1098/rsta.2005.1726.
Full textKim, Hyung Taek, Vishwa Bandhu Pathak, Calin Ioan Hojbota, Mohammad Mirzaie, Ki Hong Pae, Chul Min Kim, Jin Woo Yoon, Jae Hee Sung, and Seong Ku Lee. "Multi-GeV Laser Wakefield Electron Acceleration with PW Lasers." Applied Sciences 11, no. 13 (June 23, 2021): 5831. http://dx.doi.org/10.3390/app11135831.
Full textHidding, Bernhard, Ralph Assmann, Michael Bussmann, David Campbell, Yen-Yu Chang, Sébastien Corde, Jurjen Couperus Cabadağ, et al. "Progress in Hybrid Plasma Wakefield Acceleration." Photonics 10, no. 2 (January 17, 2023): 99. http://dx.doi.org/10.3390/photonics10020099.
Full textBingham, Robert. "Basic concepts in plasma accelerators." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (February 2006): 559–75. http://dx.doi.org/10.1098/rsta.2005.1722.
Full textBarraza-Valdez, Ernesto, Toshiki Tajima, Donna Strickland, and Dante E. Roa. "Laser Beat-Wave Acceleration near Critical Density." Photonics 9, no. 7 (July 8, 2022): 476. http://dx.doi.org/10.3390/photonics9070476.
Full textWu, Ying, Changhai Yu, Zhiyong Qin, Wentao Wang, Zhijun Zhang, Rong Qi, Ke Feng, et al. "Energy Enhancement and Energy Spread Compression of Electron Beams in a Hybrid Laser-Plasma Wakefield Accelerator." Applied Sciences 9, no. 12 (June 23, 2019): 2561. http://dx.doi.org/10.3390/app9122561.
Full textKumar, Sonu, Dhananjay K. Singh, and Hitendra K. Malik. "Comparative study of ultrashort single-pulse and multi-pulse driven laser wakefield acceleration." Laser Physics Letters 20, no. 2 (December 30, 2022): 026001. http://dx.doi.org/10.1088/1612-202x/aca978.
Full textNicks, B. S., T. Tajima, D. Roa, A. Nečas, and G. Mourou. "Laser-wakefield application to oncology." International Journal of Modern Physics A 34, no. 34 (December 10, 2019): 1943016. http://dx.doi.org/10.1142/s0217751x19430164.
Full textOSTERMAYR, TOBIAS, STEFAN PETROVICS, KHALID IQBAL, CONSTANTIN KLIER, HARTMUT RUHL, KAZUHISA NAKAJIMA, AIHUA DENG, et al. "Laser plasma accelerator driven by a super-Gaussian pulse." Journal of Plasma Physics 78, no. 4 (April 12, 2012): 447–53. http://dx.doi.org/10.1017/s0022377812000311.
Full textMartinez de la Ossa, A., R. W. Assmann, M. Bussmann, S. Corde, J. P. Couperus Cabadağ, A. Debus, A. Döpp, et al. "Hybrid LWFA–PWFA staging as a beam energy and brightness transformer: conceptual design and simulations." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2151 (June 24, 2019): 20180175. http://dx.doi.org/10.1098/rsta.2018.0175.
Full textJoshi, Chan, Wei Lu, and Zhengming Sheng. "Progress in laser acceleration of particles." Journal of Plasma Physics 78, no. 4 (August 2012): 321–22. http://dx.doi.org/10.1017/s0022377812000669.
Full textLiang, Xiao, Youjian Yi, Song Li, Ping Zhu, Xinglong Xie, Huiya Liu, GuangJin Mu, et al. "A laser wakefield acceleration facility using SG-II petawatt laser system." Review of Scientific Instruments 93, no. 3 (March 1, 2022): 033504. http://dx.doi.org/10.1063/5.0071761.
Full textPetrov, G., J. Davis, W. Schumaker, M. Vargas, V. Chvykov, B. Hou, A. Maksimchuk, et al. "Development of mini-undulators for a table-top free-electron laser." Laser and Particle Beams 36, no. 3 (September 2018): 396–404. http://dx.doi.org/10.1017/s0263034618000423.
Full textSiders, Galvin, Erlandson, Bayramian, Reagan, Sistrunk, Spinka, and Haefner. "Wavelength Scaling of Laser Wakefield Acceleration for the EuPRAXIA Design Point." Instruments 3, no. 3 (August 21, 2019): 44. http://dx.doi.org/10.3390/instruments3030044.
Full textHidding, Bernhard, Andrew Beaton, Lewis Boulton, Sebastién Corde, Andreas Doepp, Fahim Ahmad Habib, Thomas Heinemann, et al. "Fundamentals and Applications of Hybrid LWFA-PWFA." Applied Sciences 9, no. 13 (June 28, 2019): 2626. http://dx.doi.org/10.3390/app9132626.
Full textGhotra, Harjit Singh. "Multi-pico-Coulomb and multi-GeV electron beam generation from LWFA with a cm scale gas cell." Laser Physics 33, no. 7 (May 22, 2023): 076005. http://dx.doi.org/10.1088/1555-6611/acd371.
Full textNicks, Bradley Scott, Ernesto Barraza-Valdez, Sahel Hakimi, Kyle Chesnut, Genevieve DeGrandchamp, Kenneth Gage, David Housley, et al. "High-Density Dynamics of Laser Wakefield Acceleration from Gas Plasmas to Nanotubes." Photonics 8, no. 6 (June 11, 2021): 216. http://dx.doi.org/10.3390/photonics8060216.
Full textWheeler, Jonathan, Gérard Mourou, and Toshiki Tajima. "Laser Technology for Advanced Acceleration: Accelerating Beyond TeV." Reviews of Accelerator Science and Technology 09 (January 2016): 151–63. http://dx.doi.org/10.1142/s1793626816300073.
Full textPapp, Daniel, Ales Necas, Nasr Hafz, Toshiki Tajima, Sydney Gales, Gerard Mourou, Gabor Szabo, and Christos Kamperidis. "Laser Wakefield Photoneutron Generation with Few-Cycle High-Repetition-Rate Laser Systems." Photonics 9, no. 11 (November 3, 2022): 826. http://dx.doi.org/10.3390/photonics9110826.
Full textMolodozhentsev, Alexander Yu, and Konstantin O. Kruchinin. "Compact LWFA-Based Extreme Ultraviolet Free Electron Laser: Design Constraints." Instruments 6, no. 1 (January 14, 2022): 4. http://dx.doi.org/10.3390/instruments6010004.
Full textRoa, Dante, Jeffrey Kuo, Harry Moyses, Peter Taborek, Toshiki Tajima, Gerard Mourou, and Fuyuhiko Tamanoi. "Fiber-Optic Based Laser Wakefield Accelerated Electron Beams and Potential Applications in Radiotherapy Cancer Treatments." Photonics 9, no. 6 (June 8, 2022): 403. http://dx.doi.org/10.3390/photonics9060403.
Full textLEMOS, N., J. L. MARTINS, J. M. DIAS, K. A. MARSH, A. PAK, and C. JOSHI. "Forward directed ion acceleration in a LWFA with ionization-induced injection." Journal of Plasma Physics 78, no. 4 (January 10, 2012): 327–31. http://dx.doi.org/10.1017/s0022377811000602.
Full textArjmand, S., M. P. Anania, A. Biagioni, M. Ferrario, M. Del Franco, M. Galletti, V. Lollo, D. Pellegrini, R. Pompili, and A. Zigler. "Investigating of plasma diagnostics by utilizing spectroscopic measurements of Balmer emission." Journal of Instrumentation 18, no. 05 (May 1, 2023): C05007. http://dx.doi.org/10.1088/1748-0221/18/05/c05007.
Full textLazzarini, C. M., L. V. Goncalves, G. M. Grittani, S. Lorenz, M. Nevrkla, P. Valenta, T. Levato, S. V. Bulanov, and G. Korn. "Electron acceleration at ELI-Beamlines: Towards high-energy and high-repetition rate accelerators." International Journal of Modern Physics A 34, no. 34 (December 10, 2019): 1943010. http://dx.doi.org/10.1142/s0217751x19430103.
Full textCosta, G., M. P. Anania, S. Arjmand, A. Biagioni, M. Del Franco, M. Del Giorno, M. Galletti, et al. "Characterisation and optimisation of targets for plasma wakefield acceleration at SPARC_LAB." Plasma Physics and Controlled Fusion 64, no. 4 (March 3, 2022): 044012. http://dx.doi.org/10.1088/1361-6587/ac5477.
Full textLuo, W., H. B. Zhuo, Y. Y. Ma, X. H. Yang, N. Zhao, and M. Y. Yu. "Ultrashort-pulse MeV positron beam generation from intense Compton-scattering γ-ray source driven by laser wakefield acceleration." Laser and Particle Beams 31, no. 1 (December 20, 2012): 89–94. http://dx.doi.org/10.1017/s0263034612000948.
Full textLai, P. W., K. N. Liu, D. K. Tran, S. W. Chou, H. H. Chu, S. H. Chen, J. Wang, and M. W. Lin. "Laser wakefield acceleration of 10-MeV-scale electrons driven by 1-TW multi-cycle laser pulses in a sub-millimeter nitrogen gas cell." Physics of Plasmas 30, no. 1 (January 2023): 010703. http://dx.doi.org/10.1063/5.0131155.
Full textZhang, Luyao, Yinghui Zheng, Guicun Li, Zhengmao Jia, Yanyan Li, Yi Xu, Yuxin Leng, Zhinan Zeng, Ruxin Li, and Zhizhan Xu. "Bright High-Order Harmonic Generation around 30 nm Using Hundred-Terawatt-Level Laser System for Seeding Full Coherent XFEL." Applied Sciences 8, no. 9 (August 24, 2018): 1446. http://dx.doi.org/10.3390/app8091446.
Full textD'Arcy, R., A. Aschikhin, S. Bohlen, G. Boyle, T. Brümmer, J. Chappell, S. Diederichs, et al. "FLASHForward: plasma wakefield accelerator science for high-average-power applications." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2151 (June 24, 2019): 20180392. http://dx.doi.org/10.1098/rsta.2018.0392.
Full textTAJIMA, T., and K. HOMMA. "FUNDAMENTAL PHYSICS EXPLORED WITH HIGH INTENSITY LASER." International Journal of Modern Physics A 27, no. 25 (October 10, 2012): 1230027. http://dx.doi.org/10.1142/s0217751x1230027x.
Full textBOLTON, PAUL R. "NONINVASIVE LASER PROBING OF ULTRASHORT SINGLE ELECTRON BUNCHES FOR ACCELERATOR AND LIGHT SOURCE DEVELOPMENT." International Journal of Modern Physics B 21, no. 03n04 (February 10, 2007): 527–39. http://dx.doi.org/10.1142/s0217979207042331.
Full textNing, Li, Mu Jie, and Kong Fancun. "Numerical Studies on Bow Waves in Intense Laser-Plasma Interaction." Laser and Particle Beams 2023 (February 15, 2023): 1–11. http://dx.doi.org/10.1155/2023/9414451.
Full textWELSH, G. H., S. M. WIGGINS, R. C. ISSAC, E. BRUNETTI, G. G. MANAHAN, M. R. ISLAM, S. CIPICCIA, C. ANICULAESEI, B. ERSFELD, and D. A. JAROSZYNSKI. "High resolution electron beam measurements on the ALPHA-X laser–plasma wakefield accelerator." Journal of Plasma Physics 78, no. 4 (February 27, 2012): 393–99. http://dx.doi.org/10.1017/s0022377812000220.
Full textBenka, Stephen G. "Laser wakefield acceleration." Physics Today 57, no. 11 (November 2004): 9. http://dx.doi.org/10.1063/1.4796314.
Full textSha, Weijian, Jean-Christophe Chanteloup, and Gérard Mourou. "Ultrafast Fiber Technologies for Compact Laser Wake Field in Medical Application." Photonics 9, no. 6 (June 16, 2022): 423. http://dx.doi.org/10.3390/photonics9060423.
Full textKotaki, Hideyuki, Masaki Kando, Tomonao Hosokai, Shuji Kondo, Shinichi Masuda, Shuhei Kanazawa, Takashi Yokoyama, Toru Matoba, and Kazuhisa Nakajima. "High energy laser wakefield acceleration." International Journal of Applied Electromagnetics and Mechanics 14, no. 1-4 (December 20, 2002): 255–62. http://dx.doi.org/10.3233/jae-2002-383.
Full textShaw, J. L., N. Lemos, K. A. Marsh, D. H. Froula, and C. Joshi. "Experimental signatures of direct-laser-acceleration-assisted laser wakefield acceleration." Plasma Physics and Controlled Fusion 60, no. 4 (February 28, 2018): 044012. http://dx.doi.org/10.1088/1361-6587/aaade1.
Full textWang Jian, Gu Yu-Qiu, Cai Da-Feng, Jiao Chun-Ye, Wu Yu-Chi, He Ying-Ling, Teng Jian, Yang Xiang-Dong, Wang Lei, and Zhao Zong-Qing. "Photon acceleration in the laser wakefield." Acta Physica Sinica 57, no. 10 (2008): 6471. http://dx.doi.org/10.7498/aps.57.6471.
Full textCaizergues, C., S. Smartsev, V. Malka, and C. Thaury. "Phase-locked laser-wakefield electron acceleration." Nature Photonics 14, no. 8 (July 6, 2020): 475–79. http://dx.doi.org/10.1038/s41566-020-0657-2.
Full textMendon�a, J. T., and E. Ribeiro. "Quantum Mechanisms of Laser Wakefield Acceleration." Physica Scripta T107, no. 5 (2004): 252. http://dx.doi.org/10.1238/physica.topical.107a00252.
Full textLevato, Tadzio, Michal Nevrkla, Muhammad Fahad Nawaz, Lorenzo Giuffrida, Filip Grepl, Haris Zulic, Jan Pilar, et al. "Experimental Study of Nanosecond Laser-Generated Plasma Channels." Applied Sciences 10, no. 12 (June 13, 2020): 4082. http://dx.doi.org/10.3390/app10124082.
Full textNajmudin, Z., K. Krushelnick, E. L. Clark, S. P. D. Mangles, B. Walton, A. E. Dangor, S. Fritzler, et al. "Self-modulated wakefield and forced laser wakefield acceleration of electrons." Physics of Plasmas 10, no. 5 (May 2003): 2071–77. http://dx.doi.org/10.1063/1.1564083.
Full textWoodbury, D., L. Feder, V. Shumakova, C. Gollner, R. Schwartz, B. Miao, F. Salehi, et al. "Laser wakefield acceleration with mid-IR laser pulses." Optics Letters 43, no. 5 (February 28, 2018): 1131. http://dx.doi.org/10.1364/ol.43.001131.
Full textZhang, Guo-Bo, N. A. M. Hafz, Yan-Yun Ma, Lie-Jia Qian, Fu-Qiu Shao, and Zheng-Ming Sheng. "Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses." Chinese Physics Letters 33, no. 9 (September 2016): 095202. http://dx.doi.org/10.1088/0256-307x/33/9/095202.
Full textGorbunov, L. M., S. Yu Kalmykov, and P. Mora. "Laser wakefield acceleration by petawatt ultrashort laser pulses." Physics of Plasmas 12, no. 3 (March 2005): 033101. http://dx.doi.org/10.1063/1.1852469.
Full textAndreev, N. E., and S. V. Kuznetsov. "Laser wakefield acceleration of short electron bunches." IEEE Transactions on Plasma Science 28, no. 4 (August 2000): 1211–17. http://dx.doi.org/10.1109/27.893309.
Full textKITAGAWA, Yoneyoshi, and Yoshitaka MORI. "Progress of Laser Wakefield Electron Acceleration Research." Review of Laser Engineering 45, no. 2 (2017): 58. http://dx.doi.org/10.2184/lsj.45.2_58.
Full textMendonça, J. T. "Laser wakefield acceleration in the Petawatt regime." Plasma Physics and Controlled Fusion 51, no. 2 (January 7, 2009): 024007. http://dx.doi.org/10.1088/0741-3335/51/2/024007.
Full textPugacheva, D. V., N. E. Andreev, and B. Cros. "Laser wakefield acceleration of polarized electron beams." Journal of Physics: Conference Series 774 (November 2016): 012107. http://dx.doi.org/10.1088/1742-6596/774/1/012107.
Full textAmiranoff, F., S. Baton, D. Bernard, B. Cros, D. Descamps, F. Dorchies, F. Jacquet, et al. "Observation of Laser Wakefield Acceleration of Electrons." Physical Review Letters 81, no. 5 (August 3, 1998): 995–98. http://dx.doi.org/10.1103/physrevlett.81.995.
Full text