Dissertations / Theses on the topic 'LASER WAKEFIELD ACCELERATION (LWFA)'

To see the other types of publications on this topic, follow the link: LASER WAKEFIELD ACCELERATION (LWFA).

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 39 dissertations / theses for your research on the topic 'LASER WAKEFIELD ACCELERATION (LWFA).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Koschitzki, Christian. "Injection mechanisms in Laser Wakefield Acceleration." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17760.

Full text
Abstract:
Die Beschleunigung von Elektronen im Wechselwirkungsbereich hochintensiver Laserfelder mit einem Plasma wird als mögliche Alternative zu konventionellen Radiofrequenz basierten Beschleunigerkonzepten gehandelt. Die gezeigten Experimente sind die ersten Versuche zur Laser getriebenen Elektronenbeschleunigung am Max Born Institut. Im Rahmen dieser Dissertation konzentriere ich mich auf kontrollierte Injektion und es werden zwei verschiedene Methoden gezeigt. Die erste demonstrierte Variante einer stimulierten Injektion ist die Ionisationsinjektion, welche typischerweise zu einem kontinuierlichen Elektroneneinfang über einen ausgedehnten Bereich entlang der Propagation des Lasers führt. Die injizierten Elektronen werden dadurch über unterschiedliche Längen beschleunigt, was zu einem breiten Energiespektrum des beschleunigten Eletronenpaketes führt. Die zweite untersuchte Injektionsmethode basiert auf einem Überschallphänomen, welches eine quasi-instantane Injektion ermöglicht. Wird ein Überschall-Gasfluß durch eine scharfe Kante gestört, bildet sich ein scharfer Dichteübergang, bekannt als Schock Front, durch welchen eine Injektion stimuliert werden kann. Es wurde gezeigt, dass die Machzahl der Düse bzw. die Übergangshöhe der Schock Front dazu benutzt werden können, die injizierte Ladungsmenge zu kontrollieren. Eine Erhöhung der Ladungsmenge ist dabei mit einer Erhöhung der Energiebreite verknüpft. Es wurden Elektronenstrahlen demonstriert mit weniger als 2% Energiebreite bei einer Maximalenergie von 300MeV und 5 pC Ladung. Es zeigte sich, dass sowohl bei Shock-Front Injektion als auch bei Ionisationsinjektion die emittierte Ladung pro Energieintervall und Raumwinkel konstant blieb, bei einem Wert von (0.021+-0.001) pC/MeV/mrad^2. Dass sowohl eine kontinuierliche als auch eine instantane Injektion dieselbe Korrelation zwischen Ladung, Divergenz und Energiebreite aufweisen, lässt darauf schließen, dass es sich um eine Eigenschaft der Plasmawelle selbst handelt.
The acceleration of electrons in intense laser fields interacting with a plasma is widely considered as a possible alternative to conventional RF-based accelerator concepts. The presented measurements are the first demonstration of Laser Wakefield Acceleration at the Max Born Institut and a setup was build to perform the described experiments. This thesis focuses on controlled injection and two different methods will be compared. The first method of stimulated injection, presented in this thesis, is ionization injection, which typically causes electron trapping over an extended laser propagation distance. As electrons become injected at different positions, electrons will be accelerated over different distances, yielding a wide energy spread in the emitted electron beam. The second stimulated injection method utilizes a supersonic phenomenon called shock front to stimulate a quasi-instantaneous injection. When a supersonic gas flow is disturbed by a sharp edge, a shock front is created and injection is stimulated at the crossing of the propagating laser pulse and the shock-front region. It is found that the Mach number of the flow or the density transition in the shock front respectively, can be used to tune the total charge injected. This increase in total charge comes at the expense of an increased energy spread. Electron beams are demonstrated with an energy spread of less than 2% at peak energies of 300MeV with 5 pC of charge. For the ionization injection as well as for the shock-front injection it is found, that the charge per energy interval and solid angle is constant and amounts to (0.021+-0.001) pC/MeV/mrad^2 for all observed electron beams. The continuous injection and the quasi-instantaneous injection yield the same correlation between charge, divergence and energy spread. This implies that this correlation is a property of the wakefield structure itself.
APA, Harvard, Vancouver, ISO, and other styles
2

Dann, Stephen John David. "Progress towards a demonstration of multi-pulse laser Wakefield acceleration and implementation of a single-shot Wakefield diagnostic." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:6a7fe676-a9f4-4b50-a04e-9052e08cdd1b.

Full text
Abstract:
An ongoing experiment is described to demonstrate the principle of multi-pulse laser wakefield acceleration, in which a plasma wakefield is resonantly excited by a train of laser pulses, spaced by the plasma wavelength. Particle-in-cell simulations of the initial single-pulse experimental setup are presented, in order to calculate the expected signal. Preliminary results are presented and future plans, based on work done so far, are discussed. Part of this work involves the implementation of a single-shot wakefield diagnostic - frequency-domain holography, which records the phase shift caused by passage of a probe pulse through the plasma. This implementation is described in detail, along with the associated analysis procedure. Practical difficulties encountered while implementing the diagnostic are discussed, along with possible ways of mitigating them in the future. A method is presented by which the noise level in the resulting phase measurements can be predicted, much more accurately than any previously published method for this technique. Methods of generating pulse trains for use in future multi-pulse laser wakefield acceleration experiments are presented. These include techniques proposed for use in this demonstration experiment, as well as one intended for use in a dedicated high-efficiency, high repetition-rate, multi-pulse driver laser. This last method, based on programmable pulse shaping using a spatial light modulator, requires a suitable mask to be computed based on the parameters of the required pulse train; an algorithm is described to perform this computation.
APA, Harvard, Vancouver, ISO, and other styles
3

YADAV, MONIKA. "SOME ASPECTS OF LASER-PLASMA INTERACTION FOR ELECTRON ACCELERATION." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18736.

Full text
Abstract:
This thesis focuses on investigation of laser-plasma interaction relevant to electron acceleration to high energies. This work explores various ideas for producing an energetic and good quality electron beam from laser wakefield acceleration (LWFA) in plasmas. In LWFA, a high-intensity laser pulse excites a plasma wave, which propagates behind the laser pulse with the equal speed of the laser group velocity. For efficient accelerations, electrons should be injected into the wakefield. Thus, the wakefield evolution and electron injection both are quite important aspects in LWFA. In order to draw the maximum output from the wakefield structure, which is called wakefield bubble in case of high-intensity laser, the basic understanding behind the factors controlling electron injection into wake structure must be very clear. This thesis work focus toward controlling the electron beam quality by understanding the factors affecting bubble wake evolution. The dependence of beam energy and the beam quality on the shape of the bubble is the main motivation behind this investigation. Particle-in-cell (PIC) simulations are conducted to study the bubble dynamics for optimum electron accelerations. A good quality electron bunch with pC to nC charge are obtained with current laser-plasma parameters. During LWFA, generation of wakefield results in variation of refractive index that may distort the laser pulse shape. Thus, the laser pulse shape may be a significant factor to control the electron beam parameters in LWFA. Various shapes such as q-Gaussian laser pulse and flattened-Gaussian laser pulse have been taken into account to observe the laser pulse effect on electron beam parameters in LWFA. The implications of laser pulse shape was shown to control and optimize the bunch charge as well as the bunch energy. Our insights into the acceleration process might be quite supportive in the future optimization of electron beam stability and quality. The electron bunch generated by LWFA could be used to obtain femtosecond x-rays and subsequent applications in medical sciences.
APA, Harvard, Vancouver, ISO, and other styles
4

Debus, Alexander. "Brilliant radiation sources by laser-plasma accelerators and optical undulators." Forschungszentrum Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-91303.

Full text
Abstract:
This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical applications, material and life sciences and is going to significantly contribute to a new generation of radiation sources and free-electron lasers (FELs).
APA, Harvard, Vancouver, ISO, and other styles
5

Aniculaesei, Constantin. "Experimental studies of laser plasma wakefield acceleration." Thesis, University of Strathclyde, 2015. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25874.

Full text
Abstract:
This thesis describes experiments thatexplore the possibility of improving the quality of an electron beam obtained from a laser wakefield accelerator (LWFA) by shaping the longitudinal plasma density profile. Different density profiles have been obtained by employing a range of Laval nozzles with different geometries. These are modelled and numerically simulated under different conditions using Fluent 6.3. Density lineouts from simulations for different heights above the nozzle give the plasma density profile for each experimental condition. The plasma density profile is modified by changing the geometry of the nozzle, the interaction point, the laser beam angle relative to the exit plane of the nozzle and pressure of the gas. In this way the leading up-ramp length of the density profile (that interacts first with the laser) has been varied between 0.47 mm to 1.39 mm and the maximum plasma density varied between 1.29 x 1019 cm⁻³ to 2.03 x 1019 cm⁻³. The influence of the density profile parameters on the LWFA process is quantified by monitoring the properties of the generated electron beam. It is shown that the leading ramp of the plasma density profile i.e. the ramp that interacts first with the laser, has a strong influence on the quality of the electron beam. Density profiles with the same peak plasma density but different ramp lengths generate electron beams with a factor of 1.4 difference in charge, 1.1 in electron energy, 2 in pointing and 1.45 in energy spread. Longer ramp lengths enhance the quality of electron beams, which suggest that LWFA injection occurs at the entrance density ramp. Complex density profiles are produced by tilting the nozzle relative to the direction of propagation of the laser. This allows continuous tuning of the peak energy of the electron beam from 135 ± 2MeV up to 171 ± 2MeV. The electron beam energy spread show improvements from 20.7 ± 1.2% to 8.9 ± 0.9%. The charge closely follows the evolution of the energy spread and has a mean value of 0.61 ± 0.16 pC. Experimental results also show that the angular distribution of the electron beam becomes elliptical when the laser focal plane is moved from the edge of the gas jet towards the centre of the density profile. This result is linked to the existence of a distorted LWFA bubble that propagates off-axis therefore affecting the pointing and transverse shape of the electron beam.
APA, Harvard, Vancouver, ISO, and other styles
6

Gaul, Erhard Werner. "Fully ionized helium waveguides for laser wakefield acceleration /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Osterhoff, Jens. "Stable, ultra-relativistic electron beams by laser-wakefield acceleration." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-96539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Doche, Antoine. "Particle acceleration with beam driven wakefield." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX023/document.

Full text
Abstract:
Les accélérateurs par onde de sillage plasma produites par faisceaux de particules (PWFA) ou par faisceaux laser (LWFA) appartiennent à un nouveau type d’accélérateurs de particules particulièrement prometteur. Ils permettent d’exploiter des champs accélérateurs jusqu’à cent Gigaélectronvolt par mètre alors que les dispositifs conventionnels se limitent à cent Megaélectronvolt par mètre. Dans le schéma d’accélération par onde de sillage plasma, ou par onde de sillage laser, un faisceau de particules ou une impulsion laser se propage dans un plasma et créé une structure accélératrice dans son sillage : c’est une onde de densité électronique à laquelle sont associés des champs électromagnétiques dans le plasma. L’un des principaux résultats de cette thèse a été la démonstration de l’accélération par onde de sillage plasma d’un paquet distinct de positrons. Dans le schéma utilisé, un plasma de Lithium était créé dans un four, et une onde plasma était excitée par un premier paquet de positrons (le drive ou faisceau excitateur) et l’énergie était extraite par un second faisceau (le trailing ou faisceau témoin). Un champ accélérateur de 1,36 GeV/m a ainsi été obtenu durant l’expérience, pour une charge accélérée typique de 40 pC. Nous montrons également ici la possibilité d’utiliser différents régimes d’accélération qui semblent très prometteurs. Par ailleurs, l’accélération de particule par sillage laser permet quant à elle, en partant d’une impulsion laser femtoseconde de produire un faisceau d’électron quasi-monoénergétique d’énergie typique de l’ordre de 200 MeV. Nous présentons les résultats d’une campagne expérimentale d’association de ce schéma d’accélération par sillage laser avec un schéma d’accélération par sillage plasma. Au cours de cette expérience un faisceau d’électrons créé par laser est refocalisé lors d’une interaction dans un second plasma. Une étude des phénomènes associés à cette plateforme hybride LWFA-PWFA est également présentée. Enfin, le schéma hybride LWFA-PWFA est prometteur pour optimiser l’émission de rayonnement X par les électrons du faisceau de particule crée dans l’étage LWFA de la plateforme. Nous présentons dans un dernier temps la première réalisation expérimentale d’un tel schéma et ses résultats prometteurs
Plasma wakefield accelerators (PWFA) or laser wakefield accelerators (LWFA) are new technologies of particle accelerators that are particularly promising, as they can provide accelerating fields of hundreds of Gigaelectronvolts per meter while conventional facilities are limited to hundreds of Megaelectronvolts per meter. In the Plasma Wakefield Acceleration scheme (PWFA) and the Laser Wakefield Acceleration scheme (LWFA), a bunch of particles or a laser pulse propagates in a gas, creating an accelerating structure in its wake: an electron density wake associated to electromagnetic fields in the plasma. The main achievement of this thesis is the very first demonstration and experimental study in 2016 of the Plasma Wakefield Acceleration of a distinct positron bunch. In the scheme considered in the experiment, a lithium plasma was created in an oven, and a plasma density wave was excited inside it by a first bunch of positrons (the drive bunch) while the energy deposited in the plasma was extracted by a second bunch (the trailing bunch). An accelerating field of 1.36 GeV/m was reached during the experiment, for a typical accelerated charge of 40 pC. In the present manuscript is also reported the feasibility of several regimes of acceleration, which opens promising prospects for plasma wakefield accelerator staging and future colliders. Furthermore, this thesis also reports the progresses made regarding a new scheme: the use of a LWFA-produced electron beam to drive plasma waves in a gas jet. In this second experimental study, an electron beam created by laser-plasma interaction is refocused by particle bunch-plasma interaction in a second gas jet. A study of the physical phenomena associated to this hybrid LWFA-PWFA platform is reported. Last, the hybrid LWFA-PWFA scheme is also promising in order to enhance the X-ray emission by the LWFA electron beam produced in the first stage of the platform. In the last chapter of this thesis is reported the first experimental realization of this last scheme, and its promising results are discussed
APA, Harvard, Vancouver, ISO, and other styles
9

Lu, Wei. "Nonlinear plasma wakefield theory and optimum scaling for laser wakefield acceleration in the blowout regime." Diss., Restricted to subscribing institutions, 2006. http://proquest.umi.com/pqdweb?did=1260817871&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rowlands-Rees, Thomas. "Laser Wakefield acceleration in the hydrogen-filled capillary discharge waveguide." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kamperidis, Christos Antonios. "Investigation of Electron Laser Wakefield Acceleration in Novel Plasma Structures." Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485616.

Full text
Abstract:
This thesis presents experimental and simulation results on electron acceleration from the interaction of ultra-intense, ultra-short lasers with underdense plasmas, based on two schemes of the Laser Wakefield Acceleration (LWFA) mechanism. Using the 100 TW laser, in LUll, France, with pulse durations of 500 fsec and intensities' greater than 5.1018 W/cm2 , electron energies of up to 200 MeV,)Here observed. The spectra of the electron beams exhibit a maxwellian distribution, which together-with the recording of the Raman satellites of the laser spectrum suggest that we operate in the Self Modulated-LWFA, making these beams the highest energy observed to date, in that scheme. Total charge estimates suggest that a 1% energy transfer to the electron beam is possible. Occasional non-maxwellian features in the electron spectra, backed up by simulations, suggest that mechanisms other than SM-LWFA are also present in the interaction. Most importantly, self-guiding channels of - cm scales are observed adding a new perspective in achieving a commercially viable LWF accelerator. In the classical short pulse regime of LWFA, the ASTRA (0.6 J, < 50 fsec) laser is used to compare electron acceleration, with and without an external waveguide. Maximum electron energy results in the self-guided regime are only 2x lower compared to the externally guided case. The stability and reproducibility of the beam however, is improved when the external waveguide is used. Electron beams with 200 MeV maximum energy and narrow energy spread are consistently observed. The appearance of these beams is strongly linked with ionisation effects, either from high ion states of waveguide wall material, or recombined gas. A particle tracking code shows that electrons released from ionisation processes within the laser pulse, and hence within the plasma wake, are trapped by the wake and accelerated, pro.ducing a bunch with low energy spread. These lay the basis for future experiments, envisaging improved stability, wall-plug energy transfer efficiency and high brilliance electron beams.
APA, Harvard, Vancouver, ISO, and other styles
12

Guillaume, Emilien. "Control of electron injection and acceleration in Laser-Wakefield Accelerators." Palaiseau, Ecole polytechnique, 2015. https://tel.archives-ouvertes.fr/tel-01249964v2/document.

Full text
Abstract:
Les accélérateurs laser-plasma, plus compacts, constituent une alternative prometteuse aux accélérateurs conventionnels. Quand un laser ultra-intense est focalisé dans une cible de gaz sous-dense, des ondes plasma présentant des champs électriques de grande amplitude sont générées. Les électrons qui sont piégés dans ces ondes plasmas peuvent être accélérés jusqu’à des énergies de plusieurs GeV. Malgré leur fort potentiel, les accélérateurs laser-plasma font face à plusieurs difficultés, notamment en ce qui concerne la stabilité et la reproductibilité du faisceau au moment de l’injection dans la structure accélératrice. Dans ce manuscript, plusieurs techniques d’injection d’électrons sont présentées et comparées, notamment les méthodes d’injection dans un gradient raide de densité et d’injection par ionisation. Nous montrons qu’il est possible d’obtenir des faisceaux d’électrons stables et contrôlables en combinant ces deux techniques. Nous étudions également un moyen de manipuler le paquet d’électrons dans l’espace des phases afin de s’affranchir de la limite de déphasage et d’accélérer un peu plus les électrons. Cette technique est utilisée pour augmenter l’énergie de faisceaux d’électrons quasi-monoénergétiques. Par ailleurs, nous analysons l’origine de l’évolution du moment angulaire des électrons, précédemment observé expérimentalement. Enfin, nous présentons la démonstration expérimentale d’une nouvelle méthode permettant de réduire fortement la divergence du faisceau d’électron, la lentille laser-plasma
Laser-plasma accelerators provide a promising compact alternative to conventional accelerators. Plasma waves with extremely strong electric fields are generated when a high intensity laser is focused into an underdense gas target. Electrons that are trapped in these laser-driven plasma waves can be accelerated up to energies of a few GeVs. Despite their great potential, laser-wakefield accelerators face some issues, regarding notably the stability and reproducibility of the beam when electrons are injected in the accelerating structure. In this manuscript, different techniques of electron injection are presented and compared, notably injection in a sharp density gradient and ionization injection. It is shown that combining these two methods allows for the generation of stable and tunable electron beams. We also studied a way to manipulate the electron bunch in the phase-space in order to accelerate the bunch beyond the dephasing limit. Such a technique was used with quasi-monoenergetic electron beams to enhance their energy. Moreover, the origin of the evolution of the angular momentum of electrons observed experimentally was investigated. Finally, we demonstrated experimentally a new method – the laser-plasma lens – to strongly reduce the divergence of the electron beam
APA, Harvard, Vancouver, ISO, and other styles
13

Rittershofer, Wolf. "Laser wakefield acceleration in tapered plasma channels : theory, simulation and experiment." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:be45ca7d-790c-496c-9e52-160ce4fe277d.

Full text
Abstract:
Laser-plasma accelerators are of great interest because of their ability to sustain extremely large acceleration gradients, enabling compact accelerating structures. Laser-plasma acceleration is realized by using a high-intensity short pulse laser to drive a large plasma wave or wakefield in an underdense plasma. This thesis considers the effect of axial plasma density upramps on laser wakefield acceleration. Theoretical groundwork shows that tapered plasma channels can be used to mitigate one of the main limitations of laser plasma acceleration, that is, dephasing of an electron beam with respect to the plasma wave. It is shown that it is possible to maintain an electron bunch at constant phase in the longitudinal electric fields of the laser wake field. This leads to an increased energy gain of an electron trapped in the wakefield. The required shape of the density slope is difficult to implement in experiments. Therefore, a linear density ramp is also considered which is predicted to also increase the energy gain beyond that possible in a uniform density plasma. Towards an experimental implementation it was studied how a suitable gas density profile can be established in a capillary. This was done employing simulations using the computational fluid dynamics tool kit OpenFoam and comparing these to measurements of the axial density profile based on Raman scattering. It was demonstrated that a linear density ramp could be established by applying different pressures on the capillary gas inlets. The dependence of the density profile on the capillary parameters, such as, capillary diameter and length and inlet diameter were also studied. The results of the simulations and the measurement showed excellent agreement and demonstrate that approximately linear density ramps can be generated by flowing gas along a capillary of constant cross-section Laser wakefield acceleration in plasmas with longitudinally varying density was investigated in an experiment at the Astra Laser at Rutherford Laboratories. The experiment utilised ionisation injection in order to operate in the mildly non-linear regime of laser-wakefield acceleration. The measured electron energies agree well with the theoretical predictions. It was demonstrated that an increase in the energy gain can be obtained by driving the accelerator in a ramped plasma, the electron spectrum is more narrow and the injected charge increases significantly. Measurements of the X-ray spectrum emitted by the betatron motion of the accelerated electron bunch allowed the transverse radius of the bunch to be deduced. These measurements showed that retrieved electron bunch radius is inversely proportional to the longitudinal density gradient, that is a plasma density upramp (downramp) has a decreased (increased) electron bunch radius.
APA, Harvard, Vancouver, ISO, and other styles
14

Zemzemi, Imene. "High-performance computing and numerical simulation for laser wakefield acceleration with realistic laser profiles." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX111.

Full text
Abstract:
Le développement des lasers ultra-courts à de hautes intensités a permis l’émergence de nouveaux domaines de recherche en relation avec l’interaction laser-plasma. En particulier, les lasers petawatt femtoseconde ont ouvert la voie vers la possibilité de concevoir une nouvelle génération d’accélérateurs de particules. La modélisation numérique a largement contribué à l’essor de ce domaine d’accélération des électrons par sillage laser. Dans ce contexte, les codes Particle-In-Cell sont les plus répandus dans la communauté. Ils permettent une description fiable de l’interaction laser plasma et surtout de l’accélération par sillage laser.Cependant, une modélisation précise de la physique en jeu nécessite de recourir à des simulations 3D particulièrement coûteuses. Une manière pour accélérer efficacement ce type de simulations est l’utilisation de modèles réduits qui, tout en assurant un gain en temps de calcul très important, garantissent une modélisation fiable du problème. Parmi ces modèles, la décomposition des champs en modes de Fourier dans la direction azimutale est particulièrement adaptée à l’accélération laser plasma.Dans le cadre de ma thèse, j’ai implémenté ce modèle dans le code open-source SMILEI, dans un premier temps, avec un schéma différences finies (FDTD) pour discrétiser les équations de Maxwell. Néanmoins, ce type de solveur peut induire un effet de Cherenkov numérique qui corrompt les résultats de la simulation. Pour mitiger cet artéfact, j’ai également implémenté une version pseudo-spectrale du solveur de Maxwell qui présente de nombreux avantages en termes de précision numérique.Cette méthode est ensuite mise en oeuvre pour étudier l’impact de profils de lasers réalistes sur la qualité du faisceau d’électrons en exploitant des mesures réalisées sur le laser Apollon. Sa capacité à modéliser correctement les processus physiques présents est analysée en déterminant le nombre de modes nécessaires et en comparant les résultats avec ceux issus des simulations 3D en géométrie Cartésienne. Cette étude montre qu’inclure les défauts du laser mène à des différences dans les résultats et que ces derniers dégradent la performance des accélérateurs-laser plasma notamment en termes de quantité de charge injectée. Ces simulations, instructives pour les futures expériences d’accélération d’électrons par le laser Apollon, mettent en avant la nécessité d’inclure les mesures expérimentales dans la simulation et particulièrement celle du front de phase, pour aboutir à des résultats précis
The advent of ultra-short high-intensity lasers has paved the way to new and promising, yet challenging, areas of research in laser-plasma interaction physics. The success of building petawatt femtosecond lasers offers a promising path for designing future particle accelerators and light sources.Achieving this goal intrinsically relies on the combination of experiments and numerical modeling. So far, Particle-In-Cell (PIC) codes have been the ultimate tool to accurately describe the laser-plasma interaction especially in the field of Laser WakeField Acceleration (LWFA). Nevertheless, the numerical modeling of laser-plasma accelerators in 3D can be a very challenging task due to their high computational cost.A useful approach to speed up such simulations consists of employing reduced numerical modes which simplify the problem while retaining a high fidelity.Among these models, Fourier field decomposition in azimuthal modes for the cylindrical geometry is particularly well suited for physical problems with close to cylindrical symmetry, which is the case in LWFA.During my Ph.D., I first implemented this method in the open-source code SMILEI in the Finite Difference Time Domain (FDTD) discretization scheme for the Maxwell solver. However, this kind of solvers may suffer from numerical Cherenkov radiation (NCR). To mitigate this artifact, I also implemented Maxwell’s solver in the Pseudo Spectral Analytical Domain (PSATD) scheme which offers better accuracy of the results.This method is then employed to study the impact of realistic laser profiles from the Apollon facility on the quality of the accelerated electron beam. Its ability to correctly model the involved physical processes is investigated by determining the optimal number of modes and benchmarking its results with full 3D Cartesian simulations. It is shown that the imperfections in the laser pulse lead to differences in the results compared to theoretical profiles. They degrade the performance of laser-plasma accelerators especially in terms of the quantity of injected charge. These simulations, insightful for the future experiments of LWFA that will be held soon with the Apollon laser, put forward the importance of including realistic lasers in the simulation to obtain reliable results
APA, Harvard, Vancouver, ISO, and other styles
15

Cooley, James Hamilton. "Modeling laser pulse evolution in ionizing gas and plasma with application to laser wakefield acceleration." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1770.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2004.
Thesis research directed by: Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
16

Ju, Jinchuan. "Electron acceleration and betatron radiation driven by laser wakefield inside dielectric capillary tubes." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00861267.

Full text
Abstract:
This dissertation addresses electron acceleration and the associated betatron X-ray radiation generated by laser wakefield inside dielectric capillary tubes. Focusing the state-of-the-art multi-terawatt laser pulses, high peak intensity, of the order of 1018 W/cm2, can be achieved in the focal plane, where a plasma bubble free of electron is formed just behind the laser. Owing to space charge separation ultrahigh electric fields, of the order of 100 GV/m, occur inside the plasma bubble, providing the possibility to accelerate electrons up to GeV-class over merely a centimetre-scale distance. Furthermore, ultra-short synchrotron-like X-ray radiation, known as betatron radiation, is produced simultaneously when the accelerated electrons are transversely wiggled by the radial electric field inside the plasma bubble. This thesis reports experimental results on the generation and optimization of electron and X-ray beams, particularly when a capillary tube is used to collect the energy of laser halos in the focal plane to facilitate the laser keeping self-focused over a long distance. Employing the 40 fs, 16 TW Ti:sapphire laser at the Lund Laser Centre (LLC) in Sweden, either peaked or widely-spread accelerated electron spectra with a typical beam charge of tens of pC were measured with a maximum energy up to 300 MeV in 10 mm long capillary tubes. Meanwhile, betatron X-ray radiation consisting of 1-10 keV photons was measured with a peak brightness of the order of 1021 photons/s/mm2/mrad2/0.1%BW, which is around 30 times higher than that in the case of a 2 mm gas jet without external optical guiding. When the laser pointing fluctuation is compensated, exceptionally reproducible electron beams are obtained with fluctuations of only 1 mrad RMS in beam pointing, a few percent in electron energy, and around 20% RMS in beam charge. The relatively large instability of beam charge is found to be essentially correlated to laser power fluctuation. Moreover, betatron radiation is able to provide the diagnostics about electron acceleration process and average number of betatron oscillations fulfilled by electrons inside the plasma bubble. The typical X-ray source size (waist of Gaussian distribution at 1/e2 intensity) is quantified to be ~2.5 μm using Fresnel diffraction induced by a razor blade, which furthermore yields the corresponding normalized RMS emittance of electron beam 0.83π mm mrad. Three dimensional particle-in-cell (PIC) modelings are in good agreement with the experimental findings. The PIC simulations also reveal the generated electron bunches (or X-ray bursts) have pulse durations as short as 10 fs.
APA, Harvard, Vancouver, ISO, and other styles
17

Ibbotson, Thomas P. A. "An investigation of laser-wakefield acceleration in the hydrogen-filled capillary discharge waveguide." Thesis, University of Oxford, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.560930.

Full text
Abstract:
This thesis describes a detailed investigation into the process of laser-wakefield acceleration (LWFA) for the generation of high-energy electron beams using the hydrogen-filled capillary discharge waveguide. In only the second experiment to be performed using the newly commissioned Astra-Gemini laser at the Rutherford Appleton Laboratory, electron beams were accelerated to energies greater than 0.5 GeV by laser pulses of energy 2.5J and peak power of 30T\~T. The injec- tion and acceleration of electron beams was seen to depend on the state of the plasma channel for axial electron densities less than 2.5 x 1018 cm -3. With the aid of simulations performed using the code WAKE it was found that the plasma channel allows the laser pulse to maintain its self-focussed spot size along the length of the capillary even below the critical power for self-guiding. It was found that the threshold laser energy required for the production of elec- tron beams was reduced by the use of an aperture placed early in the laser system. This was attributed to the increased energy contained in the central part of the focal spot of the laser. A short paper on this work was published in Physical Review Special Topics - Accelerators and Beams and a longer paper was published in the New Journal of Physics. Transverse interferometry was used to measure the electron density of the plasma channel used in the Astra-Gemini experiments. An imaging system was devised which used cylindrical optics to increase the field of view of the capillary longitudinally, whilst maintaining the trans- verse resolution. The measured properties were consistent with previous measurements made by Gonsalves et al. [J]. The observed longitudinal variations in the plasma channel parameters were not found to be significant enough to affect the injection process.
APA, Harvard, Vancouver, ISO, and other styles
18

Tzoufras, Michail. "Generation of multi-giga-electron-volt monoenergetic electron beams via laser wakefield acceleration." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1634233741&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Koschitzki, Christian [Verfasser], Andreas [Gutachter] Jankowiak, Lazlo [Gutachter] Veisz, and Matt [Gutachter] Zepf. "Injection mechanisms in Laser Wakefield Acceleration / Christian Koschitzki ; Gutachter: Andreas Jankowiak, Lazlo Veisz, Matt Zepf." Berlin : Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://d-nb.info/1133538843/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Walker, Paul Andreas. "Laser wakefield acceleration of electrons to GeV energies and temporal laser pulse compression characterization in a capillary discharge waveguide." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e347422e-b097-4128-8733-f3686cc452fe.

Full text
Abstract:
This thesis presents results from three strands of experimental work aimed towards establishing more reproducible, higher energy, and more accurately measured electron beams generated by a laser-driven plasma accelerator. The first experiment calibrated two types of detector frequently used to measure the bunch charge in laser wakefield accelerator experiments, namely scintillating screens and image plates. The experiments undertaken at the DAFNE beam test facility in Frascati, Italy, confirmed that the fluorescence signal from Kodak Lanex Regular screens varies linearly with the charge density for a nanosecond elec- tron bunch for charge densities in the range between ρ = 2 × 10−7 C/m2 to ρ = 10−5 C/m2. A sensitivity measurement of FUJIFILM BAS-IP MS image plates resulted in a sensitivity of SMS = (0.0487 ± 0.0028 ) PSL, which is 2.4 times higher than had been assumed prior to this work. The second strand aimed at improving the operation of the capillary discharge waveguide by re-designing the discharge circuit and the waveguide housing. The experiment showed that combining a glow discharge circuit with the pulsed discharge circuit of the capillary discharge waveguide reduced electrical noise, the timing jitter between the trigger pulse and the discharge, and the voltage required to initially break down the capillary gas for pressures below 10 mbar and above 150 mbar. The size of the housing of the capillary discharge waveguide was reduced in all three dimensions by an average of 60 %, enabling the device to be used in future staging experiments, and an open design of the housing eliminated the possibility of unwanted discharges. The new capillary design performed without flaw in the Astra-Gemini experiment and no disadvantages compared with the old housing were found. The third strand of work describes an experiment undertaken with the Astra-Gemini laser at the Central Laser Facility of the Rutherford Appleton Laboratory, United Kingdom. The improved capillary discharge waveguide was used to generate GeV-scale electron beams with good reproducibility. Beams of electrons with energies above 900 MeV, and with root- mean-square divergence of 3.5 mrad, were observed for a plasma density of 2.2 × 1018 cm−3 and a peak input laser power of 55 TW. The variation of the maximum electron energy with the plasma density was measured and found to agree well with simple models. The energy spectra of the generated electron beams exhibited good shot-to-shot reproducibility, with the observed variations attributable to the measured shot-to-shot jitter of the laser parameters. Two methods for correcting the effect of beam pointing variations on the measured energy spectrum were tested and it was found that using a thin Lanex screen in front of the electron spectrometer was easy to implement and did not degrade the recorded energy spectrum. The first observation of temporal compression of a laser pulse within a plasma channel with simultaneous electron acceleration to energies higher than 500 MeV is also presented. This measurement suggests that the pulse compresses linearly from the back as predicted by theory.
APA, Harvard, Vancouver, ISO, and other styles
21

Bajlekov, Svetoslav. "Towards a free-electron laser driven by electrons from a laser-wakefield accelerator : simulations and bunch diagnostics." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:99f9f13a-d0c2-4dd8-a9a4-13926621c352.

Full text
Abstract:
This thesis presents results from two strands of work towards realizing a free-electron laser (FEL) driven by electron bunches generated by a laser-wakefield accelerator (LWFA). The first strand focuses on selecting operating parameters for such a light source, on the basis of currently achievable bunch parameters as well as near-term projections. The viability of LWFA-driven incoherent undulator sources producing nanojoule-level pulses of femtosecond duration at wavelengths of 5 nm and 0.5 nm is demonstrated. A study on the prospective operation of an FEL at 32 nm is carried out, on the basis of scaling laws and full 3-D time-dependent simulations. A working point is selected, based on realistic bunch parameters. At that working point saturation is expected to occur within a length of 1.6 m with peak power at the 0.1 GW-level. This level, as well as the stability of the amplification process, can be improved significantly by seeding the FEL with an external radiation source. In the context of FEL seeding, we study the ability of conventional simulation codes to correctly handle seeds from high-harmonic generation (HHG) sources, which have a broad bandwidth and temporal structure on the attosecond scale. Namely, they violate the slowly-varying envelope approximation (SVEA) that underpins the governing equations in conventional codes. For this purpose we develop a 1-D simulation code that works outside the SVEA. We carry out a set of benchmarks that lead us to conclude that conventional codes are adequately capable of simulating seeding with broadband radiation, which is in line with an analytical treatment of the interaction. The second strand of work is experimental, and focuses on on the use of coherent transition radiation (CTR) as an electron bunch diagnostic. The thesis presents results from two experimental campaigns at the MPI für Quantenoptik in Garching, Germany. We present the first set of single-shot measurements of CTR over a continuous wavelength range from 420 nm to 7 μm. Data over such a broad spectral range allows for the first reconstruction of the longitudinal profiles of electron bunches from a laser-wakefield accelerator, indicating full-width at half-maximum bunch lengths around 1.4 μm (4.7 fs), corresponding to peak currents of several kiloampères. The bunch profiles are reconstructed through the application of phase reconstruction algorithms that were initially developed for studying x-ray diffraction data, and are adapted here for the first time to the analysis of CTR data. The measurements allow for an analysis of acceleration dynamics, and suggest that upon depletion of the driving laser the accelerated bunch can itself drive a wake in which electrons are injected. High levels of coherence at optical wavelengths indicate the presence of an interaction between the bunch and the driving laser pulse.
APA, Harvard, Vancouver, ISO, and other styles
22

Audet, Thomas. "Développement d'un injecteur pour l'accélération laser plasma multi-étages." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS424/document.

Full text
Abstract:
L’accélération laser plasma (ALP) est un mécanisme d’accélération de particules reposant sur l’interaction d’impulsions laser ultra-intenses, de l’ordre de quelques 10^{18} W/cm², avec un plasma. L’onde plasma générée dans le sillage de l’impulsion laser est associée à des champs électriques de grande amplitude (1 − 100 GV/m). Ces champs électriques de trois ordres de grandeurs supérieurs aux champs maximums supportés dans les cavités radiofréquences des accélérateurs conventionnels constituent le principal point fort de l’ALP, permettant d’envisager des accélérateurs de particules plus compacts. Un important travail pour améliorer les propriétés des paquets d’électrons générés par ALP, leur stabilité et la cadence de tir est cependant nécessaire pour rendre l’ALP compétitive en termes d’applications.Un moyen d’améliorer les propriétés des faisceaux d’électrons consiste à les accélérer dans un régime faiblement non linéaire en plusieurs étapes successives : l’ALP multi-étages. La source laser-plasma d’électrons, ou injecteur, doit générer des paquets d’électrons d’énergie modeste (50 − 100 MeV), de charge la plus importante possible, de faible dimension et de faible divergence. Les électrons doivent alors être injectés dans un second étage purement accélérateur dont l’objectif est d’augmenter leur énergie cinétique.L’objet de cette thèse est le développement d’un injecteur laser plasma pour l’ALP multi-étages. Dans le cadre d’une collaboration autour de l’equipex CILEX et du programme d’ALP à deux étages, un prototype d’injecteur a été construit, ELISA, reposant sur une cellule de gaz de longueur variable. La densité électronique du plasma, qui est un paramètre crucial pour le contrôle du faisceau d’électrons, a été caractérisée à la fois expérimentalement et numériquement. ELISA a été utilisée sur deux installations laser différentes, et les mécanismes physiques déterminant les paramètres des paquets d’électrons produits par ELISA ont été étudiés en fonction des nombreux paramètres expérimentaux. Une gamme de paramètres pertinents pour un injecteur laser plasma a été déterminée.Une ligne de transport et diagnostic magnétique a également été construite, implantée et testée sur l’installation UHI100 du CEA Saclay, permettant à la fois de caractériser plus finement les propriétés des paquets d’électrons générés par ELISA, mais aussi d’évaluer la qualité des paquets d’électrons transportés pour l’injection dans un second étage
Laser wakefield acceleration (LWFA) is a particle acceleration process relying on the interaction between high intensity laser pulses, of the order of 10^{18} W/cm² and a plasma. The plasma wave generated in the laser wake sustain high amplitude electric fields (1-100 GV/m). Those electric fields are three orders of magnitude higher than maximum electric fields in radio frequency cavities and represent the main benefit of LWFA, allowing more compact acceleration. However improvements of the LWFA-produced electron bunches properties, stability and repetition rate are mandatory for LWFA to be usable for applications.A scheme to improve electron bunches properties and to potentially increase the repetition rate is multi-stage LWFA. The laser plasma electron source, called the injector, has to produce relatively low energy (50-100 MeV), but high charge, small size and low divergence electron bunches. Produced electron bunches then have to be transported and injected into a second stage to increase electron kinetic energy.The subject of this thesis is to study and design a laser wakefield electron injector for multi-stage LWFA. In the frame of CILEX and the two-stages LWFA program, a prototype of the injector was built : ELISA consisting in a variable length gas cell. The plasma electronic density, which is a critical parameter for the control of the electron bunches properties, was characterized both experimentally and numerically. ELISA was used at two different laser facilities and physical mechanisms linked to electron bunches properties were studied in function of experimental parameters. A range of experimental parameters suitable for an laser wakefield injector was determined.A magnetic transport and diagnostic line was also built, implemented and tested at the UHI100 laser facility of the CEA Saclay. It allowed a more precise characterization of electron bunches generated with ELISA as well as an estimation of the quality of transported electron bunches for their injection in a second laser wakefield stage
APA, Harvard, Vancouver, ISO, and other styles
23

Wittig, Georg [Verfasser], and Brian [Akademischer Betreuer] Foster. "Start-to-end simulations of hybrid laser-and beam-driven plasma wakefield acceleration and free electron lasers / Georg Wittig ; Betreuer: Brian Foster." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://d-nb.info/1150183586/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lee, Patrick. "Modélisation d'un injecteur laser-plasma pour l'accélération multi-étages." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS180/document.

Full text
Abstract:
L’accélération par sillage laser (ASL) repose sur l’interaction entre un faisceau laser intense et un plasma sous-dense. Au travers de cette interaction, une onde de plasma est générée avec un fort champ accélérateur, de trois ordres de grandeur plus élevé que celui d’un accélérateur conventionnel, rendant envisageable la réalisation d’accélérateurs futurs plus compacts. Pour la conception d’un futur accélérateur, un faisceau d’électrons de forte charge, faible dispersion en énergie et faible émittance doit être accéléré à des grandes énergies. Pour ce faire, la solution consiste à accélérer ces électrons dans un schéma multi-étages, qui est composé de trois étages: un injecteur, une ligne de transport et un accélérateur. Ce travail de thèse porte sur la modélisation de l’injecteur avec le code PIC Warp et sur les méthodes numériques telles que la technique de Lorentz-boosted frame pour diminuer le temps de calcul et la couche absorbante parfaite de Bérenger (PML) pour assurer la précision des calculs numériques. Ce travail de thèse a démontré l’efficacité de la PML dans les schémas FDTD à des ordres élevés et pseudo-spectral. Il a aussi démontré la convergence des résultats des simulations réalisées avec la technique de Lorentz-boosted frame dans un régime fortement non-linéaire de l’injecteur, permettant d’accélérer les calculs d’un facteur important (36) tout en assurant leur précision. La modélisation effectuée dans cette thèse a permis d’analyser et de comprendre les résultats expérimentaux, ainsi que de prédire les résultats des futures expériences. Plusieurs méthodes d’optimisation de l’injecteur ont également été proposées pour la génération d’un faisceau d’électrons conforme aux spécifications d’un futur accélérateur
Laser Wakefield Acceleration (LWFA) relies on the interaction between an intense laser pulse and an under-dense plasma. This interaction generates a plasma wave with a strong accelerating field, which is three orders of magnitude higher than the one of the conventional accelerator; more compact accelerator is therefore theoretically possible. In the design of a future accelerator, a high quality electron bunch with a high charge, low energy spread and low emittance has to be accelerated to high energies. A solution for this is a multi-stage accelerator, which consists of an injector, a transport line and accelerator stages. This research work focuses on the modelling of the injector using the PIC code Warp and on the numerical methods such as the Lorentz-boosted frameto speedup calculations and the Perfectly Matched Layer (PML) to ensure the precision in numerical calculations. The outcome of this thesis has demonstrated the efficiency of the PML in the high-order FDTD and the pseudo-spectral solvers. Besides, it has also demonstrated the convergence of the results performed in simulations using the Lorentz-boosted frame technique. This technique speeds up simulations by a large factor (36) while preserving their accuracy. The modelling work in this thesis has allowed analysis and understanding of experimental results, as well as prediction of results for future experiments. This thesis has also shown ways to optimize the injector to deliver an electron bunch that conforms with the specifications of future accelerators
APA, Harvard, Vancouver, ISO, and other styles
25

Ferri, Julien. "Étude des rayonnements Bétatron et Compton dans l'accélération d'électrons par sillage laser." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX094/document.

Full text
Abstract:
Une impulsion laser ultra-courte et ultra-intense se propageant dans un gaz de faible densité est capable d'accélérer une partie des électrons de ce gaz à des énergies relativistes, de l'ordre de quelques centaines de MeV, sur des distances de seulement quelques millimètres. Pendant leur accélération et dû à leur mouvement transverse, ces électrons émettent de plus un rayonnement X fortement collimaté et dirigé vers l'avant appelé rayonnement bétatron. Les caractéristiques de cette source la rendent intéressante pour son utilisation en imagerie à ultra-haute résolution.Dans ce manuscrit, nous explorons trois axes de travail autour de cette source à l'aide de simulations réalisées avec les codes Particle-In-Cell CALDER et CALDER-Circ. Nous commençons ainsi par étudier la création d'une source bétatron avec des impulsions laser de durée picoseconde et d'énergie kilojoule, donc plus longues et plus puissantes que celles habituellement utilisées par la communauté. Nous montrons que malgré les paramètres inhabituels de ces impulsions lasers il est toujours possibles de générer des sources X, et ce dans deux régimes différents.Ensuite, afin de comprendre une partie des différences généralement observées entre expériences et simulations, nous montrons dans une autre étude que l'utilisation dans les simulations de profils lasers réalistes au lieu de profils parfaitement Gaussiens dégrade fortement les performances de l'accélérateur laser-plasma et de la source bétatron. De plus, ceci conduit à un meilleur accord qualitatif et quantitatif avec l'expérience.Enfin nous explorons plusieurs techniques pour augmenter l'émission X basées sur une manipulation des profils de plasmas utilisés pour l'accélération. Nous trouvons que l'utilisation d'un gradient transverse ou d'une marche de densité conduisent tous deux à une augmentation de l'amplitude du mouvement transverse des électrons, et donc de l'énergie émise par la source bétatron. Alternativement, nous montrons que cet objectif peut-être atteint par la transition d'un régime de sillage laser vers un régime d'accélération par sillage plasma induit par une augmentation de la densité. L'accélération des électrons est optimisée dans le premier régime, tandis que l'émission X est fortement favorisée dans le second
An ultra-short and ultra-intense laser pulse propagating in a low-density gas can accelerate in its wake a part of the electrons ionized from the gas to relativistic energies of a few hundreds of MeV over distances of a few millimeters only. During their acceleration, as a consequence of their transverse motion, these electrons emit strongly collimated X-rays in the forward direction, which are called betatron radiations. The characteristics of this source turn it into an interesting tool for high-resolution imagery.In this thesis, we explore three different axis to work on this source using simulations on the Particles-In-Cells codes CALDER and CALDER-Circ. We first study the creation of a betatron X-ray source with kilojoule and picosecond laser pulses, for which duration and energy are then much higher than usual in this domain. In spite of the unusual laser parameters, we show that X-ray sources can still be generated, furthermore in two different regimes.In a second study, the generally observed discrepancies between experiments and simulations are investigated. We show that the use of realistic laser profiles instead of Gaussian ones in the simulations strongly degrades the performances of the laser-plasma accelerator and of the betatron source. Additionally, this leads to a better qualitative and quantitative agreement with the experiment.Finally, with the aim of improving the X-ray emission, we explore several techniques based on the manipulation of the plasma density profile used for acceleration. We find that both the use of a transverse gradient and of a density step increases the amplitude of the electrons transverse motions, and then increases the radiated energy. Alternatively, we show that this goal can also be achieved through the transition from a laser wakefield regime to a plasma wakefield regime induced by an increase of the density. The laser wakefield optimizes the electron acceleration whereas the plasma wakefield favours the X-ray emission
APA, Harvard, Vancouver, ISO, and other styles
26

Rassou, Sébastien. "Accélération d'électrons par onde de sillage laser : Développement d’un modèle analytique étendu au cas d’un plasma magnétisé dans le régime du Blowout." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS066/document.

Full text
Abstract:
Une impulsion laser intense se propageant dans un plasma sous-dense (ne< 10¹⁸ W.cm⁻²) et de durée très courte (τ₀< 100 fs), , on atteint le régime de la bulle. Les champs électriques dans ces bulles, de l’ordre de 100 GV/m, peuvent accélérer un faisceau d’électrons jusqu’au GeV sur des distances de l’ordre du centimètre. Dans ce régime, les électrons expulsés par la force pondéromotrice du laser forment une fine et dense couche à la surface d'une cavité d'ions restés immobiles. Les propriétés de ce régime sont examinées par l’intermédiaire d’un modèle analytique, que nous avons développé en nous inspirant du travail de W. Lu et S. Yi. En nous plaçant dans ce régime prometteur, nous avons étudié les mécanismes d’injection et de piégeage dans l'onde de sillage. Dans l’injection optique, les polarisations parallèles ou circulaires positives conduisent respectivement à une injection mettant en jeu du chauffage stochastique, ou à l’injection froide. Un paramètre de similarité est introduit, celui-ci permet de déterminer la méthode d’injection la plus appropriée pour maximiser la charge injectée. Enfin, le modèle analytique présenté en première partie est étendu afin d’étudier l’onde de sillage dans le régime de la bulle lorsqu’un champ magnétique longitudinal initial est appliqué au plasma. Lorsque le plasma est magnétisé deux phénomènes remarquables se manifestent, d'une part une ouverture apparaît à l'arrière de la bulle et d'autre part un mécanisme d'amplification du champ magnétique longitudinale est induit par la variation du flux magnétique. Les prédictions de notre modèle analytique sont confrontées aux résultats de simulations PIC 3D issues du code CALDER-Circ. La conséquence immédiate de la déformation de l'onde de sillage est la réduction, voire la suppression de l'auto-injection. L’application d’un champ magnétique longitudinal, combinée à un choix judicieux des paramètres laser-plasma, permet de réduire la dispersion en énergie des faisceaux d’électrons produits après injection optique
An intense laser pulse propagating in an under dense plasma (ne< 10¹⁸ W.cm⁻²) and short(τ₀< 100 fs), the bubble regime is reached. Within the bubble the electric field can exceed 100 GV/m and a trapped electron beam is accelerated to GeV energy with few centimetres of plasma.In this regime, the electrons expelled by the laser ponderomotive force are brought back and form a dense sheath layer. First, an analytic model was derived using W. Lu and S. Yi formalisms in order to investigate the properties of the wakefield in the blowout regime. In a second part, the trapping and injection mechanisms into the wakefield were studied. When the optical injection scheme is used, electrons may undergo stochastic heating or cold injection depending on the lasers’ polarisations. A similarity parameter was introduced to find out the most appropriate method to maximise the trapped charge. In a third part, our analytic model is extended to investigate the influence of an initially applied longitudinal magnetic field on the laser wakefield in the bubble regime. When the plasma is magnetized two remarkable phenomena occur. Firstly the bubble is opened at its rear, and secondly the longitudinal magnetic field is amplified - at the rear of the bubble - due to the azimuthal current induced by the variation of the magnetic flux. The predictions of our analytic model were shown to be in agreement with 3D PIC simulation results obtained with Calder-Circ. In most situations the wake shape is altered and self-injection can be reduced or even cancelled by the applied magnetic field. However, the application of a longitudinal magnetic field, combined with a careful choice of laser-plasma parameters, reduces the energy spread of the electron beam produced after optical injection
APA, Harvard, Vancouver, ISO, and other styles
27

Desforges, Frédéric. "Injection induite par ionisation pour l’accélération laser-plasma dans des tubes capillaires diélectriques." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112118/document.

Full text
Abstract:
L’interaction d’une impulsion laser, courte (~ 10 - 100 fs) et ultra-intense (> 10^18 W/cm²), avec un plasma sous-dense (< 10^19 cm^-3) peut accélérer, de manière compacte, une fraction des électrons du plasma jusqu’à des énergies relativistes (~ 100 - 300MeV). Ce phénomène, nommé accélération plasma par sillage laser (APSL), pourrait avoir de nombreuses applications telles que le futur collisionneur d’électrons a ultra-hautes énergies. Cependant, cela requiert au préalable des développements supplémentaires afin que l’APSL produise des paquets d’électrons stables et reproductibles avec une excellente qualité, c’est-à-dire de faibles émittances longitudinale et transverses.Au cours de cette thèse, une étude expérimentale de la stabilité et de la reproductibilité des paquets d’électrons auto-injectes a été réalisée dans des tubes capillaires diélectriques, de longueur 8-20mm et de rayon interne 76-89 µm, contenant du H2 pur a une densité électronique de (10 +/- 1, 5)x10^18 cm^-3. Des paquets d’électrons auto-injectes ont été produits, a une cadence de deux tirs par minute, avec une charge accélérée au-delà de 40 MeV de (66+/-7) pC, une énergie moyenne de (65+/-6) MeV, une divergence de (9+/-1) mrad et une fluctuation de pointe de 2,3 mrad. Trois sources de fluctuations et de dérives des propriétés des paquets d’électrons ont été discutées : dérive d’énergie laser, modification du gradient montant de densité électronique et fluctuations du pointé laser. Des contraintes sur le régime de fonctionnement ont été proposées afin d’améliorer la stabilité et la reproductibilité de la source laser-plasma d’électrons.Un mécanisme alternatif d’injection d’électrons dans l’onde de plasma a également été examiné : l’injection induite par ionisation. Une étude expérimentale a montré que les paquets d’électrons accélérés dans un mélange de 99%H2 + 1%N2 ont une charge deux fois plus importante qu’en présence de H2 pur. De plus, une injection plus précoce a été observée pour le mélange de 99%H2 + 1%N2, indiquant que les premiers électrons sont captures selon le mécanisme d’injection induite par ionisation. Une étude complémentaire, utilisant des simulations Particle-In-Cell avec le code WARP, confirment les résultats expérimentaux et suggèrent que l’auto-injection est supprimée par l’injection induite par ionisation
The interaction of a short (~ 10 - 100 fs) and ultra-intense (> 10^18 W/cm²) laser pulse with an underdense (< 10^19 cm^-3) plasma can accelerate, in a compact way, a fraction of the electrons of the plasma toward relativistic energies (~ 100 - 300MeV). This mechanism, called laser wakefield acceleration (LWFA), might have various applications such as the future ultra-high energy electron collider. Prior to this, additional investigations are needed to ensure, through LWFA, a stable and reproducible generation of electron bunches of high quality, i.e. low transverse and longitudinal emittances.In this thesis, the stability and the reproducibility of the electron self-injection were experimentally investigated in 8-20mm long, dielectric capillary tubes, with an internal radius of 76-89 µm, and filled with pure H2 at an electronic density of de (10 +/- 1.5)x10^18 cm^-3. Electron bunches were produced, at a rate of two shots per minute, with an accelerated charge above 40 MeV of (66+/-7) pC, a mean energy of (65+/-6) MeV, a divergence of (9+/-1) mrad, and a pointing fluctuation of 2.3 mrad. Three sources were identified for the fluctuations and drifts of the electron bunch properties: laser energy drift, change of the electron number density upramp, and laser pointing fluctuations. Restrictions on the operating regime were proposed in order to improve the stability and the reproducibility of the laser-plasma electron source.An alternative mechanism of electron injection into the plasma wave was also investigated: the ionization-induced injection. An experimental study demonstrated that electron bunches generated in a mixture of 99%H2 + 1%N2 have twice more accelerated charge than in the case of pure H2. Moreover, the earlier onset of electron injection was observed for the mixture 99%H2 + 1%N2, indicating that the first electrons were trapped under the mechanism of ionization-induced injection. Particle-In-Cell simulations performed with the code WARP confirm the experimental results and suggest that the self-injection was inhibited by the ionization-induced injection
APA, Harvard, Vancouver, ISO, and other styles
28

Bedacht, Stefan. "Beam diagnostics for the Texas Petawatt Laser Wakefield Acceleration Project." Thesis, 2009. http://hdl.handle.net/2152/ETD-UT-2009-12-640.

Full text
Abstract:
An overview of the beam diagnostics for the laser wakefield acceleration project at the Texas Petawatt Laser facility is presented. In this experiment, short and intense laser pulses of 165 fs and up to 190 J will be used to accelerate electrons up to the GeV energy range using laser wakefield acceleration. The density variation of the plasma generated in a helium gas cell will be measured with different optical detection systems such as frequency domain holography. Spectra of the transmitted laser beam and optical transition radiation will yield information about the energy transfer to the plasma and the energy of the electrons, respectively. In addition, a calorimeter will measure accelerated electron energies. Prior to the final experiment, preliminary frequency shift measurements and simulations on optical transition radiation were performed.
text
APA, Harvard, Vancouver, ISO, and other styles
29

Couperus, Jurjen Pieter. "Optimal beam loading in a nanocoulomb-class laser wakefield accelerator." 2018. https://hzdr.qucosa.de/id/qucosa%3A31953.

Full text
Abstract:
Laser plasma wakefield accelerators have seen tremendous progress in the last years, now capable of producing electron beams in the GeV energy range. The inherent few-femtoseconds short bunch duration of these accelerators leads to ultra-high peak-currents. Reducing the energy spread found in these accelerators, while scaling their output to hundreds of kiloampere peak current would stimulate the next generation of radiation sources covering high-field THz, high-brightness X-ray and -ray sources, compact free-electron lasers and laboratory-size beam-driven plasma accelerators. At such high currents, an accelerator operates in the beam loaded regime where the accelerating field is strongly modified by the self-fields of the injected bunch, potentially deteriorating key beam parameters. However, if appropriately controlled, the beam loading effect can be employed to improve the accelerator’s performance, specifically to reduce the energy spread. In this thesis the beam-loading effect is systematically studied at a quasi-monoenergetic nanocoulomb-class laser wakefield accelerator. For this purpose, a tailored scheme of the self-truncated ionisation injection process is introduced for the non-linear bubble regime. This scheme facilitates stable and tunable injection of high-charge electron bunches within a short and limited time-frame, ensuring low energy spread right after injection. Employing a three millimetres gas-jet acceleration medium and a moderate 150 TW short pulse laser system as driver, unprecedented charges of up to 0.5 nC within a quasi-monoenergetic peak and energies of ~0.5 GeV are achieved. Studying the beam loading mechanism, it is demonstrated that at the optimal loading condition, i.e. at a specific amount of injected charge, performance of the accelerator is optimised with a minimisation of the energy spread. At a relative energy spread of only 15%, the associated peak current is around 10 kA, while scaling this scheme to operate with a petawatt driver laser promises peak-currents up to 100 kA.
APA, Harvard, Vancouver, ISO, and other styles
30

FILIPPI, FRANCESCO. "Plasma source characterization for plasma-based acceleration experiments." Doctoral thesis, 2017. http://hdl.handle.net/11573/1102637.

Full text
Abstract:
This thesis shows the characterization of the plasma sources needed for the plasma-based experiments of SPARC_LAB. During this thesis work, I have studied and implemented the tools needed to measure the plasma density into both gas-filled and laser trigger ablative capillaries. The diagnostic system, based on the analysis of the Stark broadening of the emitted spectral lines, allowed to measure in a single shot the evolution of the plasma density variation along the entire capillary length in steps of 100 ns. As far as we know, this is the first single-shot, longitudinally-resolved measurement based on the Stark broadening analysis to measure low density plasma evolution (10^17 cm^-3) in a capillary discharge. By knowing the temporal evolution of the plasma density, it is possible to chose the correct working point for the accelerator and to check its stability and reliability. Moreover, the versatility of the system allows to verify online the proper functioning of the acceleration process, monitoring the variation of plasma density distribution along the acceleration path. This system has been implemented in the SPARC bunker and it has been used to characterize hydrogen filled capillary discharge. To complete the characterization of these capillaries, the discharge current profile has been characterized. The same diagnostic tool has been used to study how to proper engineering of the longitudinal plasma density can be performed with 3D printed laser trigger ablative capillaries whose prototyping cost is negligible, thanks to relatively fast manufacturing processes and their cheap materials. This investigation leads to measure the effect of the tapering of the capillary on the plasma density distribution along the whole capillary length. Tailoring the density from the beginning to the end of the interaction let to preserve the beam quality after the acceleration, but also it ensures the matching between the beams and the plasma. Finally, I implemented a Mach-Zehnder interferometer to detect the plasma density along the propagation length of a laser pulse in a gas-jet for self injection LWFA experiments performed at SPARC_LAB.
APA, Harvard, Vancouver, ISO, and other styles
31

Debus, Alexander. "Brilliant radiation sources by laser-plasma accelerators and optical undulators." Doctoral thesis, 2011. https://tud.qucosa.de/id/qucosa%3A26096.

Full text
Abstract:
Die vorliegende Arbeit beschäftigt sich in Experiment und Theorie mit Laser-Plasma beschleunigten Elektronen und optischen Undulatoren zur Erzeugung von brillianter Synchrotronstrahlung. Zum ersten Mal wird experimentell nachgewießen, dass laserbeschleunigte Elektronenpulse kürzer als 30 fs sind. Ferner werden solche Elektronenpulse erstmalig in einem Demonstrationsexperiment durch einen magnetischen Undulator als Synchrotronstrahlenquelle genutzt. Aufbauend auf diesen experimentellen Erkenntnissen, sowie umfangreichen numerischen Simulationen zur Thomsonstreuung, werden die theoretischen Grundlagen einer neuartigen Interaktionsgeometrie für Laser-Materie Wechselwirkungen entwickelt. Diese neue, in der Anwendbarkeit sehr allgemeine Methode basiert auf raum-zeitlicher Laserpulsformung durch nichtlineare Winkeldispersion wie diese durch VLS- (varied-line spacing) Gitter erzeugt werden kann und hat den Vorteil nicht durch die Fokussierbarkeit des Lasers (Rayleighlänge) begrenzt zu sein. Zusammen mit laserbeschleunigten Elektronen ermöglicht dieser traveling-wave Thomson scattering (TWTS) benannte Ansatz neuartige, nur auf optischer Technologie basierende Synchrotronstrahlenquellen mit Zentimeter bis Meter langen optische Undulatoren. Die hierbei mit existierenden Lasern erzielbaren Brillianzen übersteigen diese bestehender Thomsonquellen-Designs um 2-3 Größenordnungen. Die hier vorgestellten Ergebnisse weisen weit über die Grenzen der vorliegenden Arbeit hinaus. Die Möglichkeit Laser als Teilchenbeschleuniger und auch optischen Undulator zu verwenden führt zu bauartbedingt sehr kompakten und energieeffizienten Synchrotronstrahlungsquellen. Die hieraus resultierende monochromatische Strahlung hoher Brillianz in einem Wellenlängenbereich von extremen ultraviolett (EUV) zu harten Röntgenstrahlen ist für die Grundlagenforschung, medizinische Anwendungen, Material- und Lebenswissenschaften von fundamentaler Bedeutung und wird maßgeblich zu einer neuen Generation ultrakurzer Strahlungsquellen und freien Elektronenlasern (FELs) beitragen.
This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical applications, material and life sciences and is going to significantly contribute to a new generation of radiation sources and free-electron lasers (FELs).
APA, Harvard, Vancouver, ISO, and other styles
32

Vafaei-Najafabadi, Navid. "Laser acceleration of MeV to GeV electrons." Master's thesis, 2010. http://hdl.handle.net/10048/1514.

Full text
Abstract:
In this thesis electron generation is studied via laser plasma interaction known as laser wakefield acceleration in two regimes of weakly relativistic and highly relativistic laser intensity regimes. The plasma targets consisted of gas jets photonionized by rising edge of the laser pulse to densities as high as 10^20cm3. In the weakly relativistic regime, 210 mJ at 33 fs were focused to intensities of up to 310^18 Wcm2 on the gas targets of 2.4 mm length. In the highly relativistic regime, 3 J of energy compressed in 30 fs were delivered at intensity as high as 6.5 10^18 Wcm2 on targets of 2.4, 5, and 10 mm. Monoenergetic electrons in tens of MeV were observed in weakly relativistic regime, while electron energies as high as 300 MeV were observed in highly relativistic regime. Higher input laser intensity and prepulse levels were found to enhance electron production. Scaling of energy and stability of electron generation were also studied.
Photonics and Plasmas
APA, Harvard, Vancouver, ISO, and other styles
33

COSTA, GEMMA. "Design study of plasma targets for laser driven wakefield acceleration experiments." Doctoral thesis, 2021. http://hdl.handle.net/11573/1545227.

Full text
Abstract:
In this work, a characterisation conducted in the SPARC_LAB (LNF-INFN) laboratories on some plasma targets, i.e. different nozzle geometries and different types of capillaries, is presented. The main goal of the work is the study and the realisation of the plasma guiding process of a laser pulse, inside a plasma-filled capillary discharge. This technique is necessary to increase the acceleration length and thus the energy gain of the accelerated beam, in the external-injection scheme of the Laser Wake Field Acceleration (LWFA). Plasma density is a characteristic of fundamental importance as it determines both the guiding and the acceleration process. Two different methods of plasma density measurement, interferometric and spectroscopic, are therefore reported. Preliminary studies of new techniques for the diagnostics of plasma inside channels and new schemes for the delivery/extraction of laser pulses inside capillaries are proposed. All topics covered include theoretical study, one-dimensional and/or fluid-dynamic simulations, and experimental data.
APA, Harvard, Vancouver, ISO, and other styles
34

Jolly, Spencer Windhorst. "Two-color high intensity laser plasma interaction phenomena, and status of experiments on the UT³ laser system." Thesis, 2014. http://hdl.handle.net/2152/26483.

Full text
Abstract:
We report the status of two-color high intensity laser-plasma interaction experiments on the UT³ laser system at the University of Texas at Austin. After an outline of the experimental apparatus, an overview of the motivating theoretical work, and a characterization of the performance of our Chirped Pulse Raman Amplification system (CPRA) we report the status of our most recent experiment. We have attempted to seed the growth of the Raman Forward Scattering (RFS) instability in order to produce electrons at lower driving pulse power than is conventionally needed. We have been unsuccessful, and provide reasons why and recommendations for future modifications to the experimental apparatus. The most significant conclusion is that the CPRA system as it is now is not appropriate for this experiment because the observed RFS spectrum is at higher wavelength than our system. Possible future changes include either amplifying a separate barium nitrate sideband at 938 nm through the CPRA system or using a different Raman active medium after the main 800 nm UT³ pulse is compressed. The feasibility study of these possible modifications is not yet complete.
text
APA, Harvard, Vancouver, ISO, and other styles
35

Osterhoff, Jens [Verfasser]. "Stable, ultra-relativistic electron beams by laser wakefield acceleration / von Jens Osterhoff." 2009. http://d-nb.info/993013651/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Huang, Tzu-Hsiang, and 黃子翔. "Nonthermal electron acceleration due to a wakefield induced by an intense laser." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/trsxc9.

Full text
Abstract:
碩士
國立中央大學
物理學系
106
Cosmic rays in the universe show power law distributions rather than the Maxwell-Boltzmann distribution. Acceleration mechanisms have been proposed to explain the ultrahigh energy cosmic rays, and wakefield acceleration is one of candidates. However, many fundamental physical quantities are highly challenging to be measured directly in astrophysical plasmas. We use the 100 TW laser facility at the National Central University. By irradiating hydrogen gas jet with the 100 TW laser, relativistic electrons are generated by wakefield acceleration. The accelerated electrons are detected with electron spectrometer, and the plasma structures associated with the wakefields are observed with shadowgraphy. We integrate the energy distribution functions over different shots. The energy distribution functions of energetic electrons show nonthermal tails well represented by power law.
APA, Harvard, Vancouver, ISO, and other styles
37

Dong, Peng. "Laboratory visualization of laser-driven plasma accelerators in the bubble regime." Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-08-1881.

Full text
Abstract:
Accurate single-shot visualization of laser wakefield structures can improve our fundamental understanding of plasma-based accelerators. Previously, frequency domain holography (FDH) was used to visualize weakly nonlinear sinusoidal wakes in plasmas of density n[subscript e] < 0.6 × 10¹⁹/cm³ that produced few or no relativistic electrons. Here, I address the more challenging task of visualizing highly nonlinear wakes in plasmas of density n[subscript e] ~ 1 to 3× 10¹⁹/cm³ that can produce high-quality relativistic electron beams. Nonlinear wakes were driven by 30 TW, 30 fs, 800 nm pump pulses. When bubbles formed, part of a 400 nm, co-propagating, overlapping probe pulse became trapped inside them, creating a light packet of plasma wavelength dimensions--that is, an optical "bullet"--that I reconstruct by FDH methods. As ne increased, the bullets first appeared at 0.8 × 10¹⁹/cm³, the first observation of bubble formation below the electron capture threshold. WAKE simulations confirmed bubble formation without electron capture and the trapping of optical bullets at this density. At n[subscript] >1× 10¹⁹/cm³, bullets appeared with high shot-to-shot stability together with quasi-monoenergetic relativistic electrons. I also directly observed the temporal walk-off of the optical bullet from the beam-loaded plasma bubble revealed by FDH phase shift data, providing unprecedented visualization of the electron injection and beam loading processes. There are five chapters in this thesis. Chapter 1 introduces general laser plasma- based accelerators (LPA). Chapter 2 discusses the FDH imaging technique, including the setup and reconstruction process. In 2006, Dr. N. H. Matlis used FDH to image a linear plasma wakefield. His work is also presented in Chapter 2 but with new analyses. Chapter 3, the main part of the thesis, discusses the visualization of LPAs in the bubble regime. Chapter 4 presents the concept of frequency domain tomography. Chapter 5 suggests future directions for research in FDH.
text
APA, Harvard, Vancouver, ISO, and other styles
38

Köhler, Alexander. "Transverse electron beam dynamics in the beam loading regime." 2019. https://hzdr.qucosa.de/id/qucosa%3A34393.

Full text
Abstract:
GeV electron bunches accelerated on a centimeter scale device exemplify the extraordinary advances of laser-plasma acceleration. The combination of high charges from optimized injection schemes and intrinsic femtosecond short bunch duration yields kiloampere peak currents. Further enhancing the current while reducing the energy spread will pave the way for future application, e.g. the driver for compact secondary radiation sources such as high-field THz, high-brightness x-ray or gamma-ray sources. One essential key for beam transport to a specific application is an electron bunch with high quality beam parameters such as low energy spread as well as small divergence and spot size. The inherent micrometer size at the plasma exit is typically sufficient for an efficient coupling into a conventional beamline. However, energy spread and beam divergence require optimization before the beam can be transported efficiently. Induced by the high peak current, the beam loading regime can be used in order to achieve optimized beam parameters for beam transport.
In this thesis, the impact of beam loading on the transverse electron dynamic is systematically studied by investigating betatron radiation and electron beam divergence. For this reason, the bubble regime with self-truncated ionization injection (STII) is applied to set up a nanocoulomb-class laser wakefield accelerator. The accelerator is driven by 150TW laser pulses from the DRACO high power laser system. A supersonic gas jet provides a 3mm long acceleration medium with electron densities from 3 × 10^18 cm^−3 to 5 × 10^18 cm^−3. The STII scheme together with the employed setup yields highly reproducible injections with bunch charges of up to 0.5 nC. The recorded betatron radius at the accelerator exit is about one micron and reveals that the beam size stays at the same value. The optimal beam loading, which is observed at around 250 pC to 300 pC, leads to the minimum energy spread of ~40MeV and a 20% smaller divergence. It is demonstrated that an incomplete betatron phase mixing due to the small energy spread can explain the experimentally observed minimum beam divergence.
APA, Harvard, Vancouver, ISO, and other styles
39

Zarini, Omid. "Measuring sub-femtosecond temporal structures in multi-ten kiloampere electron beams." 2019. https://hzdr.qucosa.de/id/qucosa%3A33977.

Full text
Abstract:
In laser wakefield acceleration, an ultra-short high-intensity laser pulse excites a plasma wave, which can sustain accelerating electric fields of several hundred GV/m. This scheme advances a novel concept for compact and less expensive electron accelerators, which can be hosted in a typical university size laboratory. Furthermore, laser wakefield accelerators (LWFA) feature unique electron bunch characteristics, namely micrometer size with duration ranging from several fs to tens of fs. Precise knowledge of the longitudinal profile of such ultra-short electron bunches is essential for the design of future table-top X-ray light-sources and remains a big challenge due to the resolution limit of existing diagnostic techniques. Spectral measurement of broadband coherent and incoherent transition radiation (TR) produced when electron bunches passing through a metal foil is a promising way to analyze longitudinal characteristics of these bunches. Due to the limited reproducibility of the electron source this measurement highly requires single-shot capability. An ultra-broadband spectrometer combines the TR spectrum in UV/NIR (200-1000 nm), NIR (0.9-1.7 µm) and mid-IR (1.6-12 µm). A high spectral sensitivity, dynamic bandwidth and spectral resolution are realized by three optimized dispersion and detection systems integrated into a single-shot spectrometer. A complete characterization and calibration of the spectrometer have been done concerning wavelengths, relative spectral sensitivities, and absolute photometric sensitivities, also taking into account for the light polarization. The TR spectrometer is able to characterize electron bunches with charges as low as 1pC and can resolve time-scales of 0.4 fs. Electron bunches up to 16 fs (rms width) can be reconstructed from their TR spectrum. In the presented work, the self-truncated ionization induced injection (STII) scheme has been explored to study the relevant beam parameters especially its longitudinal bunch profile and the resulting peak current.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography