Academic literature on the topic 'Laser pulse filamentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laser pulse filamentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Laser pulse filamentation"
Blonskyi, I. V., V. M. Kadan, S. V. Pavlova, I. A. Pavlov, O. I. Shpotyuk, and O. K. Khasanov. "Ultrashort Light Pulses in Transparent Solids: Propagation Peculiarities and Practical Applications." Ukrainian Journal of Physics 64, no. 6 (August 2, 2019): 457. http://dx.doi.org/10.15407/ujpe64.6.457.
Full textGeints, Y. E., A. A. Zemlyanov, and O. V. Minina. "Diffraction-ray optics of femtosecond laser pulses under normal dispersion conditions in air." Izvestiya vysshikh uchebnykh zavedenii. Fizika, no. 9 (2020): 157–64. http://dx.doi.org/10.17223/00213411/63/9/157.
Full textSmetanin, Igor V., Alexey V. Shutov, Nikolay N. Ustinovskii, Polad V. Veliev, and Vladimir D. Zvorykin. "A New Insight into High-Aspect-Ratio Channel Drilling in Translucent Dielectrics with a KrF Laser for Waveguide Applications." Materials 15, no. 23 (November 24, 2022): 8347. http://dx.doi.org/10.3390/ma15238347.
Full textKompanets, V. O., A. A. Arkhipova, A. A. Melnikov, and S. V. Chekalin. "Control of Femtosecond Filamentation by Means of the Alignment of Gas Molecules by Short-Wavelength Infrared Laser Pulses." JETP Letters 116, no. 4 (August 2022): 217–23. http://dx.doi.org/10.1134/s0021364022601440.
Full textDeha, I., V. Biancalana, F. Bianconi, M. Borghesi, P. Chessa, A. Giulietti, D. Giulietti, L. A. Gizzi, L. Nocera, and E. Schifano. "Forward second harmonic emission from laser plasma filaments." Laser and Particle Beams 10, no. 4 (December 1992): 617–27. http://dx.doi.org/10.1017/s0263034600004547.
Full textHuang, Hsin-Hui, Saulius Juodkazis, Eugene G. Gamaly, Vladimir T. Tikhonchuk, and Koji Hatanaka. "Mechanism of Single-Cycle THz Pulse Generation and X-ray Emission: Water-Flow Irradiated by Two Ultra-Short Laser Pulses." Nanomaterials 13, no. 18 (September 5, 2023): 2505. http://dx.doi.org/10.3390/nano13182505.
Full textKudryashov, Sergey, Alexey Rupasov, Mikhail Smayev, Pavel Danilov, Evgeny Kuzmin, Irina Mushkarina, Alexey Gorevoy, Anna Bogatskaya, and Alexander Zolot’ko. "Multi-Parametric Birefringence Control in Ultrashort-Pulse Laser-Inscribed Nanolattices in Fluorite." Nanomaterials 13, no. 6 (March 22, 2023): 1133. http://dx.doi.org/10.3390/nano13061133.
Full textFaccio, D., S. Cacciatori, V. Gorini, V. G. Sala, A. Averchi, A. Lotti, M. Kolesik, and J. V. Moloney. "Analogue gravity and ultrashort laser pulse filamentation." EPL (Europhysics Letters) 89, no. 3 (February 1, 2010): 34004. http://dx.doi.org/10.1209/0295-5075/89/34004.
Full textKristiyana, Samuel, and Dilan Dwanurendra. "Laser Guiding of Three Phase Tesla Coil High Voltage Discharges." WSEAS TRANSACTIONS ON ELECTRONICS 11 (May 20, 2020): 54–59. http://dx.doi.org/10.37394/232017.2020.11.7.
Full textLu, Qi, Xiang Zhang, Arnaud Couairon, and Yi Liu. "Revealing Local Temporal Profile of Laser Pulses of Intensity above 1014 W/cm2." Sensors 23, no. 6 (March 14, 2023): 3101. http://dx.doi.org/10.3390/s23063101.
Full textDissertations / Theses on the topic "Laser pulse filamentation"
Lotti, Antonio. "Pulse shaping and ultrashort laser pulse filamentation for applications in extreme nonlinear optics." Palaiseau, Ecole polytechnique, 2012. http://pastel.archives-ouvertes.fr/docs/00/66/56/70/PDF/tesi.pdf.
Full textThis thesis deals with numerical studies of the properties and applications of spatio-temporally coupled pulses, conical wavepackets and laser filaments, in strongly nonlinear processes, such as harmonic generation and pulse reshaping. We study the energy redistribution inside these wavepackets propagating in gases and condensed media, in the linear and nonlinear regime. The energy flux constitutes a diagnostic for space-time couplings that we applied to actual experimental results. We analyze the spectral evolution of filaments in gases and derive the conditions for the generation of ultrashort pulses in the UV range. We study high harmonic generation in a gas from ultrashort conical wavepackets. In particular, we show how their propagation properties influence the harmonic output. We also study the interference of different electron trajectories. Finally, we derive the shape of stationary Airy beams in the nonlinear regime. For each topic, we present experimental results that motivated our works or were motivated by our simulations
Faccio, Daniele. "Nonlinear conical waves in ultrashort pulse filamentation and applications." Nice, 2007. http://www.theses.fr/2007NICE4089.
Full textThis thesis work regards the development of the so-called X wave model for ultra short laser pulse filamentation. Filamentation was first discovered in the early 1960’s and has since attracted much attention due to the great number of nonlinear physical processes involved and to possible applications. The x wave model proposes a view of filamentation that actually is not completely new in the sense that it is a revival of the original idea proposed by Townes et al. Of stationary, soliton-like propagation. It is now well-known that the filament may not be identified with a soliton or truly stationary wave packet as it is an extremely dynamical state continuously evolving, splitting, recombining and broadening in spectrum. The x wave model is based on the assumption that however the overall dynamics are dominated by a spontaneous evolution toward a linear stationary state. The stationary state has been identified with the X wave, a particular conical wave or wave packet in which the energy flows along a conical surface continuously refilling a central intense peak. X waves are stationary I both the linear and nonlinear regime (distinguishing them from solitons) so that the evolution within the filament dynamics may be described as a continuous diffusion of stationary conical wave states. In order to study the details of this process it is necessary to consider the full space-time coupled nature of the filamentation process. For this reason a novel spectral experimental technique that overcomes some limitations of traditional laser pulse characterization methods was developed as described in chapter 3. This spectral characterization, combined combined with an interpretation based on the description of the interacting pulses in terms of X waves leads to a deep understanding of many processes associated to filamentation such as pulse splitting, conical emission, continuum generation and sub or super-luminal (with respect to the reference material group velocity) pulse group velocities. The final part of the thesis work is dedicated to the study of the interaction between filaments and a weaker non-filamenting pulse. Cross-Phase-Modulation dominates the nonlinear interaction between the pulses and induces conical emission on the seed pulse. The conical emission has a group velocity that is matched to that of the filament pump pulse, a discovery that has important implications. Tuning the seed wavelength to the Raman Stokes wavelength and extremely efficient amplification due to the reduction of the group-velocity-mismatch with the pump, is observed with the formation of what we have called Raman X waves. These ideas are then extended from the single filament arrays, confirming the unique understanding provided by the X wave model and the potentially to exploit filament-mediated nonlinear interactions future applications
Meesat, Ridthee. "Evaluation of the radiosensitizing or radioprotective/antioxidant potential of some selected compounds by polyacrylamide gel dosimetry and Fricke dosimeter, and utilization of the femtosecond infrared laser pulse filamentation as a novel, powerful beam for cancer radiotherapy." Thèse, Université de Sherbrooke, 2012. http://hdl.handle.net/11143/6246.
Full textSchmitt-Sody, Andreas, Heiko G. Kurz, Luc Bergé, Stefan Skupin, and Pavel Polynkin. "Picosecond laser filamentation in air." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/621795.
Full textPainter, John. "Direct observation of laser filamentation in high-order harmonic generation /." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1316.pdf.
Full textBarbieri, Nicholas. "Engineering and Application of Ultrafast Laser Pulses and Filamentation in Air." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5602.
Full textPh.D.
Doctorate
Physics
Sciences
Physics
Emms, Rhys Mullin. "Impact of Plasma Dynamics On Femtosecond Filamentation." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35126.
Full textSalamé, Rami. "Études sur la filamentation des impulsions laser ultrabrèves dans l’air." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10124/document.
Full textUltrashort laser pulses propagate in the air in the form of structures of one hundredmicrons of diameter called “filaments”, which have the properties of self-guiding, propagatingfor hundreds of meters, white light generation, etc. These original properties find severalapplications in the domain of remote sensing of pollutants by non-linear Lidar measurements,lightning control, remote LIBS, etc.During my PhD work we have performed several laboratory experiments and field campaignwithin the context of Teramobile project. In particular we have studied the geometry offilamentation, its robustness in an extended region of turbulent air, the propagation ofultrashort pulses beam in multijoules regime, and atmospheric applications of filamentation.For example, we have characterized the angular distribution of the conical emission in thevisible and ultraviolet spectral bands. In another series of experiments, we have proved thatatmospheric turbulence is not a limiting factor of filaments propagation, which also keep theirspectral properties useful for atmospheric applications. Finally, we have illustrated a methodof laser triggering and guiding of lightning and realized laser induced condensation of waterdroplets in laboratory as well as in a reel atmosphere
Théberge, Francis. "Third-order parametric processes during the filamentation of ultrashort laser pulses in gases." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24401/24401.pdf.
Full textAckermann, Roland. "Propagation of terawatt-femtosecond laser pulses and its application to the triggering and guiding of high-voltage discharges." Phd thesis, Université Claude Bernard - Lyon I, 2006. http://tel.archives-ouvertes.fr/tel-00133125.
Full textEn collaberation avec des installations haute-tension, nous avons déterminé la durée de vie du plasma du filament et la longueur sur laquelle il est possible de guider des décharges électriques. Nous avons pu augmenter l'efficacité de déclenchement avec une configuration à double impulsion. Enfin, nous avons montré que le déclenchement et le guidage sont possibles sous une pluie artificielle.
Ces résultats se sont révélés très encourageants en vue d'expériences LIDAR à lumière blanche et du contrôle de la foudre.
Books on the topic "Laser pulse filamentation"
Femtosecond laser filamentation. New York: Springer, 2010.
Find full textChin, See Leang. Femtosecond Laser Filamentation. Springer, 2010.
Find full textChin, See Leang. Femtosecond Laser Filamentation. Springer, 2010.
Find full textMoloney, Jerome V., Andre D. Bandrauk, and Emmanuel Lorin. Laser Filamentation: Mathematical Methods and Models. Springer, 2015.
Find full textMoloney, Jerome V., Andre D. Bandrauk, and Emmanuel Lorin. Laser Filamentation: Mathematical Methods and Models. Springer, 2015.
Find full textMoloney, Jerome V., Andre D. Bandrauk, and Emmanuel Lorin. Laser Filamentation: Mathematical Methods and Models. Springer International Publishing AG, 2016.
Find full textBook chapters on the topic "Laser pulse filamentation"
Newell, Alan C. "Short Pulse Evolution Equation." In Laser Filamentation, 1–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_1.
Full textLorin, E., M. Lytova, and A. D. Bandrauk. "Nonperturbative Nonlinear Maxwell–Schrödinger Models for Intense Laser Pulse Propagation." In Laser Filamentation, 167–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_7.
Full textCouairon, A., V. Jukna, J. Darginavičius, D. Majus, N. Garejev, I. Gražulevičiūtė, G. Valiulis, et al. "Filamentation and Pulse Self-compression in the Anomalous Dispersion Region of Glasses." In Laser Filamentation, 147–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_6.
Full textPanagiotopoulos, Paris, Patrick Townsend Whalen, Miroslav Kolesik, and Jerome V. Moloney. "Numerical Simulation of Ultra-Short Laser Pulses." In Laser Filamentation, 185–213. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_8.
Full textLiu, Peng, Ruxin Li, and Zhizhan Xu. "THz Waveforms and Polarization from Laser Induced Plasmas by Few-Cycle Pulses." In Laser Filamentation, 97–120. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_4.
Full textFuji, Takao, Yutaka Nomura, Yu-Ting Wang, Atsushi Yabushita, and Chih-Wei Luo. "Carrier-Envelope Phase of Single-Cycle Pulses Generated Through Two-Color Laser Filamentation." In Springer Proceedings in Physics, 717–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13242-6_176.
Full textXu, Han, Hui Xiong, See Leang Chin, Ya Cheng, and Zhizhan Xu. "Third Harmonic X-waves Generation by Filamentation of Infrared Femtosecond Laser Pulses in Air." In Springer Series in Chemical Physics, 822–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_267.
Full textHauri, C. P., M. Merano, A. Trisorio, G. Rey, and R. B. López-Martens. "Generation of high-fidelity sub-10-fs milIijoule pulses through filamentation for relativistic laser-matter experiments at 1 kHz." In Ultrafast Phenomena XV, 101–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_33.
Full textStenz, C., F. Blasco, J. Stevefelt, J. C. Pellicer, A. Antonetti, J. P. Chambaret, G. Chériaux, et al. "Observation of Relativistic Self-Focusing, Self-Channeling and Filamentation of Multiterawatt Ultra-Short Laser Pulses in Optical-Field Ionized Argon Gas Jets." In Springer Series in Chemical Physics, 115–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80314-7_48.
Full textCouairon, Arnaud, Christoph M. Heyl, and Cord L. Arnold. "Dimensionless numbers for numerical simulations and scaling of ultrashort laser pulse filamentation." In Light Filaments: Structures, challenges and applications, 219–39. Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/sbew527e_ch9.
Full textConference papers on the topic "Laser pulse filamentation"
Vuong, L. T., M. A. Foster, A. L. Gaeta, R. B. Lopez-Martens, C. P. Hauri, T. Ruchon, and A. L'Huillier. "Optimal pulse compression via sequential filamentation." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431507.
Full textFaccio, D., F. Belgiorno, S. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, and V. G. Sala. "Analogue gravity and ultrashort laser pulse filamentation." In SPIE Photonics Europe, edited by Benjamin J. Eggleton, Alexander L. Gaeta, and Neil G. R. Broderick. SPIE, 2010. http://dx.doi.org/10.1117/12.855845.
Full textIonin, Andrey A., Leonid V. Seleznev, and Elena S. Sunchugasheva. "Controlling plasma channels through ultrashort laser pulse filamentation." In SPIE Security + Defence, edited by David H. Titterton, Mark A. Richardson, Robert J. Grasso, Harro Ackermann, and Willy L. Bohn. SPIE, 2013. http://dx.doi.org/10.1117/12.2028118.
Full textKosareva, O. G., A. Brodeur, V. P. Kandidov, and S. L. Chin. "Conical Emission of a Femtosecond Pulse Undergoing Self-focusing and Ionization in Air." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the21.
Full textCouairon, A., M. Franco, A. Mysyrowicz, J. Biegert, U. Keller, H. S. Chakraborty, and M. B. Gaarde. "Single-cycle pulse generation by filamentation in noble gases." In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628574.
Full textCouairon, A., A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley. "Ultrashort laser pulse filamentation with Airy and Bessel beams." In Seventeenth International School on Quantum Electronics: Laser Physics and Applications, edited by Tanja N. Dreischuh and Albena T. Daskalova. SPIE, 2013. http://dx.doi.org/10.1117/12.2014198.
Full textZhao, Jiayu, Nan Zhang, Ping Chen, Cheng Gong, Lu Sun, Lie Lin, Xiaolei Wang, and Weiwei Liu. "Strong confinement of THz pulse by femtosecond laser filamentation." In Nonlinear Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/nlo.2017.nw2a.4.
Full textBragheri, F., V. Degiorgio, D. Faccio, A. Averchi, A. Couairon, M. A. Porras, A. Matijosius, et al. "Shocked-X-Wave Dynamics in Fs Laser Pulse Filamentation." In Frontiers in Optics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/fio.2006.jthb3.
Full textZhao, Jiayu, Jing Yang, Ping Chen, Cheng Gong, Lu Sun, and Weiwei Liu. "Strong confinement of THz pulse by femtosecond laser filamentation." In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758923.
Full textYoung, P. E., and P. R. Bolton. "Propagation of sub-picosecond laser pulses through a fully ionized plasma." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the38.
Full text