Academic literature on the topic 'Laser pulse filamentation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laser pulse filamentation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Laser pulse filamentation"

1

Blonskyi, I. V., V. M. Kadan, S. V. Pavlova, I. A. Pavlov, O. I. Shpotyuk, and O. K. Khasanov. "Ultrashort Light Pulses in Transparent Solids: Propagation Peculiarities and Practical Applications." Ukrainian Journal of Physics 64, no. 6 (August 2, 2019): 457. http://dx.doi.org/10.15407/ujpe64.6.457.

Full text
Abstract:
The peculiarities of the femtosecond filamentation in Kerr media has been studied using a set of time-resoling experimental techniques. These include the temporal self-compression of a laser pulse in the filamentation mode, repulsive and attractive interactions of filaments, and influence of the birefringence on the filamentation. The propagation of femtosecond laser pulses at the 1550-nm wavelength in c-Si is studied for the first time using methods of time-resolved transmission microscopy. The nonlinear widening of the pulse spectrum due to the Kerr- and plasma-caused self-phase modulation is recorded.
APA, Harvard, Vancouver, ISO, and other styles
2

Geints, Y. E., A. A. Zemlyanov, and O. V. Minina. "Diffraction-ray optics of femtosecond laser pulses under normal dispersion conditions in air." Izvestiya vysshikh uchebnykh zavedenii. Fizika, no. 9 (2020): 157–64. http://dx.doi.org/10.17223/00213411/63/9/157.

Full text
Abstract:
The results of a theoretical study of the propagation of femtosecond pulses of a Ti:Sa laser under normal dispersion conditions in air are presented. The use of the diffraction-beam tube method for the analysis of numerical solutions of the nonlinear Schrödinger equation in a dispersion medium with Kerr-plasma nonlinearity made it possible to determine the basic regularities of femtosecond laser pulses self-focusing and filamentation in air at various pulse lengths, initial beam radius, and peak powers. It is shown that in the case of the group velocity dispersion influence with an increase in the initial laser beam radius, the filamentation breaks down even at large supercritical powers. It is shown that with an increase in the dispersion distortions of the pulse the radius of the energetically replenishing diffraction beam tube, the angular divergence of the post-filamentation light channel, and the nonlinear focus coordinate normalized to the Rayleigh length for the central time layers of the laser pulse and the integral picture are increasing.
APA, Harvard, Vancouver, ISO, and other styles
3

Smetanin, Igor V., Alexey V. Shutov, Nikolay N. Ustinovskii, Polad V. Veliev, and Vladimir D. Zvorykin. "A New Insight into High-Aspect-Ratio Channel Drilling in Translucent Dielectrics with a KrF Laser for Waveguide Applications." Materials 15, no. 23 (November 24, 2022): 8347. http://dx.doi.org/10.3390/ma15238347.

Full text
Abstract:
A new insight into capillary channel formation with a high aspect ratio in the translucent matter by nanosecond UV laser pulses is discussed based on our experiments on KrF laser multi-pulse drilling of polymethyl methacrylate and K8 silica glass. The proposed mechanism includes self-consistent laser beam filamentation along a small UV light penetration depth caused by a local refraction index increase due to material densification by both UV and ablation pressure, followed by filamentation-assisted ablation. A similar mechanism was shown to be realized in highly transparent media, i.e., KU-1 glass with a multiphoton absorption switched on instead of linear absorption. Waveguide laser beam propagation in long capillary channels was considered for direct electron acceleration by high-power laser pulses and nonlinear compression of excimer laser pulses into the picosecond range.
APA, Harvard, Vancouver, ISO, and other styles
4

Kompanets, V. O., A. A. Arkhipova, A. A. Melnikov, and S. V. Chekalin. "Control of Femtosecond Filamentation by Means of the Alignment of Gas Molecules by Short-Wavelength Infrared Laser Pulses." JETP Letters 116, no. 4 (August 2022): 217–23. http://dx.doi.org/10.1134/s0021364022601440.

Full text
Abstract:
It has been demonstrated experimentally that both the single and multiple filamentation of a femtosecond laser pulse in gaseous nitrogen can be controlled by means of the nonadiabatic alignment of molecules by 1400-nm pulses. The spectral shifts and change in the duration of a pulse caused by changes in the refractive index in the revival regions of a rotational wave packet have been detected. The stable and reproducible localization of radiation into separate filaments with the subdiffraction divergence and broadening of the spectrum by more than an octave has been observed in the multiple filamentation regime upon the alignment of molecules in the direction perpendicular to the pulse polarization.
APA, Harvard, Vancouver, ISO, and other styles
5

Deha, I., V. Biancalana, F. Bianconi, M. Borghesi, P. Chessa, A. Giulietti, D. Giulietti, L. A. Gizzi, L. Nocera, and E. Schifano. "Forward second harmonic emission from laser plasma filaments." Laser and Particle Beams 10, no. 4 (December 1992): 617–27. http://dx.doi.org/10.1017/s0263034600004547.

Full text
Abstract:
Experimental observations are reported on the interaction of 1-μm laser light with underdense plasmas (n ≤ 0·25 nc) from thin foil plastic targets. Nominal laser intensity on target was up to 3 × 1013 W/cm2 in a 3-ns pulse, but much higher intensity was reached due to spiky laser pulses. We studied forward-emitted second harmonic light as a diagnostic of the interaction and in particular of the occurrence of filamentation. Measurements included: energy monitoring of 2ω forward emission vs. target position and laser energy; time resolved (120-ps gate) imaging of the interaction region cross section. The second harmonic energy level was found to be sensitive to target position. In addition, the images obtained with the target in position of maximum second harmonic generation showed unstable structures whose scale length is comparable with the expected one for maximum filamentation growth. These results are shortly discussed in the framework of stationary filamentation theory and second harmonic generation in inhomogeneous media.
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Hsin-Hui, Saulius Juodkazis, Eugene G. Gamaly, Vladimir T. Tikhonchuk, and Koji Hatanaka. "Mechanism of Single-Cycle THz Pulse Generation and X-ray Emission: Water-Flow Irradiated by Two Ultra-Short Laser Pulses." Nanomaterials 13, no. 18 (September 5, 2023): 2505. http://dx.doi.org/10.3390/nano13182505.

Full text
Abstract:
The interaction of two subsequent ultra-short sub-milli-Joule laser pulses with a thin water flow results in an emission of a strong single-cycle THz pulse associated with enhanced soft X-ray emission. In this paper, a chain of processes produced in this interaction is analyzed and compared with other THz generation studies. It is demonstrated that the enhanced THz and X-ray emissions are produced by an energetic electron beam accelerated in the interaction of a main laser pulse with liquid water ejected from the surface by the pre-pulse. This scheme thus provides an efficient laser energy conversion in a THz pulse, avoiding laser self-focusing and filamentation in air.
APA, Harvard, Vancouver, ISO, and other styles
7

Kudryashov, Sergey, Alexey Rupasov, Mikhail Smayev, Pavel Danilov, Evgeny Kuzmin, Irina Mushkarina, Alexey Gorevoy, Anna Bogatskaya, and Alexander Zolot’ko. "Multi-Parametric Birefringence Control in Ultrashort-Pulse Laser-Inscribed Nanolattices in Fluorite." Nanomaterials 13, no. 6 (March 22, 2023): 1133. http://dx.doi.org/10.3390/nano13061133.

Full text
Abstract:
An ultrashort-pulse laser inscription of embedded birefringent microelements was performed inside bulk fluorite in pre-filamentation (geometrical focusing) and filamentation regimes as a function of laser wavelength, pulsewidth and energy. The resulting elements composed of anisotropic nanolattices were characterized by retardance (Ret) and thickness (T) quantities, using polarimetric and 3D-scanning confocal photoluminescence microscopy, respectively. Both parameters exhibit a monotonous increase versus pulse energy, going over a maximum at 1-ps pulsewidth at 515 nm, but decrease versus laser pulsewidth at 1030 nm. The resulting refractive-index difference (RID) Δn = Ret/T ~ 1 × 10−3 remains almost constant versus pulse energy and slightly decreases at a higher pulsewidth, generally being higher at 515 nm. The birefringent microelements were visualized using scanning electron microscopy and chemically characterized using energy-dispersion X-ray spectroscopy, indicating the increase of calcium and the contrary decrease of fluorine inside them due to the non-ablative inscription character. Dynamic far-field optical diffraction of the inscribing ultrashort laser pulses also demonstrated the accumulative inscription character, depending on the pulse energy and the laser exposure. Our findings revealed the underlying optical and material inscription processes and demonstrated the robust longitudinal homogeneity of the inscribed birefringent microstructures and the facile scalability of their thickness-dependent retardance.
APA, Harvard, Vancouver, ISO, and other styles
8

Faccio, D., S. Cacciatori, V. Gorini, V. G. Sala, A. Averchi, A. Lotti, M. Kolesik, and J. V. Moloney. "Analogue gravity and ultrashort laser pulse filamentation." EPL (Europhysics Letters) 89, no. 3 (February 1, 2010): 34004. http://dx.doi.org/10.1209/0295-5075/89/34004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kristiyana, Samuel, and Dilan Dwanurendra. "Laser Guiding of Three Phase Tesla Coil High Voltage Discharges." WSEAS TRANSACTIONS ON ELECTRONICS 11 (May 20, 2020): 54–59. http://dx.doi.org/10.37394/232017.2020.11.7.

Full text
Abstract:
Guiding and triggering of discharges from a three phase Tesla coil type 280 kHz AC high voltage source using filaments created by a femtosecond Terawatt laser pulse. Without the laser the discharges were maximum 30 cm long. With the laser straight, guided discharges up to 110 cm length were detected. The discharge length was limited by the voltage amplitude of the Tesla coil. A significant reduction of the breakdown voltage threshold due to the pre-ionization of the air gap by laser pulse filamentation was observed. The lifetime of filaments is measured by using time-resolved fluorescence spectrum, and the lifetime of filaments generated by dual fs laser pulses was doubled due to the re-ionization by the succeeding pulse
APA, Harvard, Vancouver, ISO, and other styles
10

Lu, Qi, Xiang Zhang, Arnaud Couairon, and Yi Liu. "Revealing Local Temporal Profile of Laser Pulses of Intensity above 1014 W/cm2." Sensors 23, no. 6 (March 14, 2023): 3101. http://dx.doi.org/10.3390/s23063101.

Full text
Abstract:
We demonstrated a method for in situ temporal characterization of an intense femtosecond laser pulse around its focus where the laser intensity exceeds 1014 W/cm2. Our method is based on the second harmonic generation (SHG) by a relatively weak femtosecond probe pulse and the intense femtosecond pulses under analysis in the gas plasma. With the increase in the gas pressure, it was found that the incident pulse evolves from a Gaussian profile to a more complicated structure featured by multiple peaks in the temporal domain. Numerical simulations of filamentation propagation support the experimental observations of temporal evolution. This simple method can be applied to many situations involving femtosecond laser–gas interaction, when the temporal profile of the femtosecond pump laser pulse with an intensity above 1014 W/cm2 cannot be measured in traditional ways.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Laser pulse filamentation"

1

Lotti, Antonio. "Pulse shaping and ultrashort laser pulse filamentation for applications in extreme nonlinear optics." Palaiseau, Ecole polytechnique, 2012. http://pastel.archives-ouvertes.fr/docs/00/66/56/70/PDF/tesi.pdf.

Full text
Abstract:
Cette thèse traite de l'étude numérique des propriétés et des applications des impulsions spatio-temporellement couplées, paquets d'ondes coniques et filaments laser, dans les processus fortement non-linéaires, comme la génération d'harmoniques d'ordre élevé. Nous étudions la redistribution de l'énergie au sein de ces paquets d'ondes en propagation linéaire et non-linéaire. Le flux d'énergie constitue un diagnostic des couplages spatio-temporels que nous avons appliqué à des résultats expérimentaux réels. Nous analysons l'évolution spectrale des filaments dans un gaz et nous obtenons les conditions pour la génération d'impulsions de quelques cycles dans le spectre UV. Nous étudions la génération d'harmoniques d'ordre élevé par des ondes coniques ultra-courtes. En particulier, nous montrons comment leurs propriétés de propagation influencent le champ généré dans la région X-UV. Nous étudions aussi l'interférence des différents chemins quantiques correspondant aux trajectoires électroniques. Enfin, nous obtenons la forme des faisceaux d'Airy stationnaires dans le régime non-linéaire. Pour chaque sujet, nous présentons des résultats expérimentaux qui ont motivé nos travaux ou ont été motivés par nos simulations
This thesis deals with numerical studies of the properties and applications of spatio-temporally coupled pulses, conical wavepackets and laser filaments, in strongly nonlinear processes, such as harmonic generation and pulse reshaping. We study the energy redistribution inside these wavepackets propagating in gases and condensed media, in the linear and nonlinear regime. The energy flux constitutes a diagnostic for space-time couplings that we applied to actual experimental results. We analyze the spectral evolution of filaments in gases and derive the conditions for the generation of ultrashort pulses in the UV range. We study high harmonic generation in a gas from ultrashort conical wavepackets. In particular, we show how their propagation properties influence the harmonic output. We also study the interference of different electron trajectories. Finally, we derive the shape of stationary Airy beams in the nonlinear regime. For each topic, we present experimental results that motivated our works or were motivated by our simulations
APA, Harvard, Vancouver, ISO, and other styles
2

Faccio, Daniele. "Nonlinear conical waves in ultrashort pulse filamentation and applications." Nice, 2007. http://www.theses.fr/2007NICE4089.

Full text
Abstract:
Ce travail de thèse a pour sujet le développement du modèle appelé modèle d’inde X (X-wave model) pour la filamentation d’impulsions laser ultra-courtes. La filamentation a été découverte pour la première fois au début des années 1960 et a beaucoup attiré l’attention depuis, en raison des nombreux phénomènes physiques non-linéaires impliqués et des applications possibles des filaments. Le modèle d’onde X propose une vision de la filamentation qui, en fait, n’est pas complètement nouvelle, dans le sens que c’est une évolution de l’idée originale de propagation stationnaire et de type solitonique, proposée par Townes et collaborateurs. Maintenant il est bien connu que le filament ne peut pas être identifié avec un soliton ou un paquet d’onde réellement stationnaire, mais plutôt à un état extrêmement dynamique continuellement en évolution, donnant lieu à une cassure temporelle de l’impulsion (splitting), une recombinaison éventuelle des sous impulsions, et à un fort élargissement spectral. Le modèle d’onde X est basé sur l’hypothèse que, malgré tout, la dynamique globale est dominée par l’évolution spontanée de l’impulsion vers un état stationnaire linéaire. Cet état stationnaire a été identifié avec l’onde X, une onde (paquet d’onde) conique particulière dans laquelle un flux d’énergie se propage sur une surface conique, remplissant continuellement un pic central intense. Les ondes X étant stationnaires dans les deux régimes, linéaire et non linéaire respectivement (se distinguant ainsi des solitons), la dynamique du filament peut être décrite comme une diffusion continue d’états d’ondes coniques stationnaires. Pour pouvoir étudier les détails de ce processus, il faut nécessairement considérer la nature complète du couplage en espace et en temps de la filamentation. Pour cette raison, nous avons développé une nouvelle technique de diagnostics spectraux, décrite dans le chapitre 3, qui dépasse certaines limites propres aux méthodes traditionnelles de caractérisation d’impulsions laser. Cette caractérisation spectrale, combinée avec une interprétation basée sur la description en tant qu’ondes X des impulsions qui interagissent dans le système, apporte une compréhension profonde des nombreux processus associés à la filamentation, comme par exemple la séparation temporelle de l’impulsion (pulse splitting), l’émission conique, la génération super continuum, et les vitesses de groupe de l’impulsion inférieures ou supérieures à la vitesse de groupe de référence du milieu. La partie finale de ce travail de thèse est dédiée à l’étude de l’interaction entre filaments et une impulsion plus faible (seed) qui ne filamente pas. L’effet de la modulation de phase croisée (cross-phase-modulation) domine l’interaction entre les impulsions et entraîne l’émission conique de l’impulsion de faible énergie (seed). Cette émission conique a une vitesse de groupe qui est en accord avec celle de l’impulsion de pompe en forme de filament ; cette découverte a des conséquences importantes. En accordant la longueur d’onde du seed sur celle de la composante Stokes de l’effet Raman, on peut observer la formation de ce que nous avons appelé les ondes X Raman, une amplification extrêmement efficace qui a lieu grâce à la réduction du désaccord entre la vitesse de groupe de la pompe et la composante de Raman. Ces idées sont enfin étendues au cas de réseaux de filaments, confirmant la compréhension unique que le modèle d’ondes X nous apporte, et la possibilité d’exploiter les interactions non-linéaires où intervient la filamentation pour de futures applications
This thesis work regards the development of the so-called X wave model for ultra short laser pulse filamentation. Filamentation was first discovered in the early 1960’s and has since attracted much attention due to the great number of nonlinear physical processes involved and to possible applications. The x wave model proposes a view of filamentation that actually is not completely new in the sense that it is a revival of the original idea proposed by Townes et al. Of stationary, soliton-like propagation. It is now well-known that the filament may not be identified with a soliton or truly stationary wave packet as it is an extremely dynamical state continuously evolving, splitting, recombining and broadening in spectrum. The x wave model is based on the assumption that however the overall dynamics are dominated by a spontaneous evolution toward a linear stationary state. The stationary state has been identified with the X wave, a particular conical wave or wave packet in which the energy flows along a conical surface continuously refilling a central intense peak. X waves are stationary I both the linear and nonlinear regime (distinguishing them from solitons) so that the evolution within the filament dynamics may be described as a continuous diffusion of stationary conical wave states. In order to study the details of this process it is necessary to consider the full space-time coupled nature of the filamentation process. For this reason a novel spectral experimental technique that overcomes some limitations of traditional laser pulse characterization methods was developed as described in chapter 3. This spectral characterization, combined combined with an interpretation based on the description of the interacting pulses in terms of X waves leads to a deep understanding of many processes associated to filamentation such as pulse splitting, conical emission, continuum generation and sub or super-luminal (with respect to the reference material group velocity) pulse group velocities. The final part of the thesis work is dedicated to the study of the interaction between filaments and a weaker non-filamenting pulse. Cross-Phase-Modulation dominates the nonlinear interaction between the pulses and induces conical emission on the seed pulse. The conical emission has a group velocity that is matched to that of the filament pump pulse, a discovery that has important implications. Tuning the seed wavelength to the Raman Stokes wavelength and extremely efficient amplification due to the reduction of the group-velocity-mismatch with the pump, is observed with the formation of what we have called Raman X waves. These ideas are then extended from the single filament arrays, confirming the unique understanding provided by the X wave model and the potentially to exploit filament-mediated nonlinear interactions future applications
APA, Harvard, Vancouver, ISO, and other styles
3

Meesat, Ridthee. "Evaluation of the radiosensitizing or radioprotective/antioxidant potential of some selected compounds by polyacrylamide gel dosimetry and Fricke dosimeter, and utilization of the femtosecond infrared laser pulse filamentation as a novel, powerful beam for cancer radiotherapy." Thèse, Université de Sherbrooke, 2012. http://hdl.handle.net/11143/6246.

Full text
Abstract:
In radiation treatment, a sufficiently high radiation dose must be delivered to the tissue volumes containing the tumor cells while the lowest possible dose should be deposited in surrounding healthy tissue. We developed an original approach that is fast and easy to implement for the early assessment of the efficiency of radiation sensitizers and protectors. In addition, we characterized a new femtosecond laser pulse irradiation technique. We are able to deposit a considerable dose with a very high dose rate inside a well-controlled macroscopic volume without deposition of energy in front or behind the target volume. The radioprotective efficiency was measured by irradiation of the Fricke solution incorporating a compound under study and measuring the corresponding production of ferric ions G (Fe3+ ). The production of ferric ions is most sensitive to the radical species produced in the radiolysis of water. We studied experimentally and simulated with a full Monte-Carlo computer code the radiation-induced chemistry of Fricke/cystamine solutions. Results clearly indicate that the protective effect of cystamine originates from its radical-capturing ability, which allows this compound to compete with the ferrous ions for the various fre radicals - especially · OH radicals and H· atoms - formed during irradiation of the surrounding water. The sensitizing capacity of radiation sensitizers was measured by irradiation of a polyacrylamide gel (PAG) dosimeter incorporating a compound under study and measuring the corresponding increase in the gradient between spin-spin relaxation rate (R2 ) and absorbed dose. We measured an irradiation energy-dependent increase in R 2 -dose sensitivity for halogenated compounds or a decrease for radioprotectors. Finally, we studied a novel laser irradiation method called "filamentation". We showed that this phenomenon results in an unprecedented deposition of energy and the dose rate thus achieved exceeds by orders of magnitude values previously reported for the most intense clinical radiotherapy systems. Moreover, the length of the dose-fre entrance region was adjusted by selecting the duration of femtosecond laser pulses. In addition, we provided evidence that the biological damage caused by this irradiation was similar to other ionizing radiation sources. [symboles non conformes]
APA, Harvard, Vancouver, ISO, and other styles
4

Schmitt-Sody, Andreas, Heiko G. Kurz, Luc Bergé, Stefan Skupin, and Pavel Polynkin. "Picosecond laser filamentation in air." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/621795.

Full text
Abstract:
The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.
APA, Harvard, Vancouver, ISO, and other styles
5

Painter, John. "Direct observation of laser filamentation in high-order harmonic generation /." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1316.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barbieri, Nicholas. "Engineering and Application of Ultrafast Laser Pulses and Filamentation in Air." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5602.

Full text
Abstract:
Continuing advances in laser and photonic technology has seen the development of lasers with increasing power and increasingly short pulsewidths, which have become available over an increasing range of wavelengths. As the availability of laser sources grow, so do their applications. To make better use of this improving technology, understanding and controlling laser propagation in free space is critical, as is understanding the interaction between laser light and matter. The need to better control the light obtained from increasingly advanced laser sources leads to the emergence of beam engineering, the systematic understanding and control of light through refractive media and free space. Beam engineering enables control over the beam shape, energy and spectral composition during propagation, which can be achieved through a variety of means. In this dissertation, several methods of beam engineering are investigated. These methods enable improved control over the shape and propagation of laser light. Laser-matter interaction is also investigated, as it provides both a means to control the propagation of pulsed laser light through the atmosphere, and provides a means to generation remote sources of radiation.
Ph.D.
Doctorate
Physics
Sciences
Physics
APA, Harvard, Vancouver, ISO, and other styles
7

Emms, Rhys Mullin. "Impact of Plasma Dynamics On Femtosecond Filamentation." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35126.

Full text
Abstract:
In this thesis we ran a series of 2D simulations of femtosecond laser pulses filamenting in air using the FDTD method, a saturable Lorentz oscillator model of air [1], and two separate models of plasma: a Drude model where the plasma density is static in space, and a particle-in-cell model where plasma is free to migrate throughout the simulation space. By comparing matched pairs of simulations, which varied in pulse size, duration, and intensity, we can gauge the impact plasma dynamics has upon the evolution of a filamenting laser pulse. From these tests we determine that, while there are some visible differences between dynamic and static plasmas, plasma dynamics do not significantly alter the evolution of the pulse.
APA, Harvard, Vancouver, ISO, and other styles
8

Salamé, Rami. "Études sur la filamentation des impulsions laser ultrabrèves dans l’air." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10124/document.

Full text
Abstract:
La propagation des impulsions laser ultra brèves dans l’air se fait sous la forme de structures d’une centaine de micromètres de diamètre appelées filaments, qui ont entre autres les propriétés d’être autoguidées, de se propager sur plusieurs centaines de mètres, de générer un continuum de lumière blanche, etc. Ces propriétés originales trouvent de nombreuses applications dans le domaine de la télédétection des polluants par mesures lidar, le déclenchement et le guidage de la foudre par laser, le LIBS à distance, etc.Au cours de mon travail de thèse, nous avons mené de nombreuses expériences de laboratoire et sur terrain dans le cadre du projet Tera mobile. Nous avons en particulier étudié la géométrie de la filamentation, sa robustesse dans une région de turbulence étendue, la propagation verticale d’un faisceau d’impulsions ultra brèves dans un régime multi joules, et des applications atmosphériques de la filamentation. Nous avons par exemple caractérisé la distribution angulaire de l’émission conique dans le visible et dans l’ultraviolet. Nous avons également prouvé que la turbulence atmosphérique n’est pas un facteur limitant de la propagation des filaments qui arrivent même à garder leurs propriétés spectrales nécessaires aux applications atmosphériques. Enfin nous avons illustré une méthode de déclenchement et de guidage de foudre par laser et réalisé une expérience de condensation de gouttelettes d’eau assistée par laser en laboratoire ainsi que dans une atmosphère réelle
Ultrashort laser pulses propagate in the air in the form of structures of one hundredmicrons of diameter called “filaments”, which have the properties of self-guiding, propagatingfor hundreds of meters, white light generation, etc. These original properties find severalapplications in the domain of remote sensing of pollutants by non-linear Lidar measurements,lightning control, remote LIBS, etc.During my PhD work we have performed several laboratory experiments and field campaignwithin the context of Teramobile project. In particular we have studied the geometry offilamentation, its robustness in an extended region of turbulent air, the propagation ofultrashort pulses beam in multijoules regime, and atmospheric applications of filamentation.For example, we have characterized the angular distribution of the conical emission in thevisible and ultraviolet spectral bands. In another series of experiments, we have proved thatatmospheric turbulence is not a limiting factor of filaments propagation, which also keep theirspectral properties useful for atmospheric applications. Finally, we have illustrated a methodof laser triggering and guiding of lightning and realized laser induced condensation of waterdroplets in laboratory as well as in a reel atmosphere
APA, Harvard, Vancouver, ISO, and other styles
9

Théberge, Francis. "Third-order parametric processes during the filamentation of ultrashort laser pulses in gases." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24401/24401.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ackermann, Roland. "Propagation of terawatt-femtosecond laser pulses and its application to the triggering and guiding of high-voltage discharges." Phd thesis, Université Claude Bernard - Lyon I, 2006. http://tel.archives-ouvertes.fr/tel-00133125.

Full text
Abstract:
La propagation d'une impulsion térawatt ultra-brµeve dans l'atmosphère peut s'accompagner du phénomène de filamentation. La lumière se trouve alors auto-guidée dans des plasmas appelés filaments dont le diamètre est de l'ordre de 100 µm et la longueur peut s'étendre jusqu'à quelques centaines de mètres. De plus, le spectre initial de l'impulsion est considérablement élargi. Ces propriétés ouvrent la possibilité d'améliorer la technique LIDAR et de contrôler la foudre. Nous avons montré que les filaments survivent à la propagation dans une turbulence forte et peuvent se développer sous une pression atmosphérique réduite et sous la pluie. Pour la première fois, la lumière blanche genérée par une impulsion ultra-brève, multi-térawatt a été détectée à une altitude de 20 km.
En collaberation avec des installations haute-tension, nous avons déterminé la durée de vie du plasma du filament et la longueur sur laquelle il est possible de guider des décharges électriques. Nous avons pu augmenter l'efficacité de déclenchement avec une configuration à double impulsion. Enfin, nous avons montré que le déclenchement et le guidage sont possibles sous une pluie artificielle.
Ces résultats se sont révélés très encourageants en vue d'expériences LIDAR à lumière blanche et du contrôle de la foudre.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Laser pulse filamentation"

1

Femtosecond laser filamentation. New York: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chin, See Leang. Femtosecond Laser Filamentation. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chin, See Leang. Femtosecond Laser Filamentation. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moloney, Jerome V., Andre D. Bandrauk, and Emmanuel Lorin. Laser Filamentation: Mathematical Methods and Models. Springer, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moloney, Jerome V., Andre D. Bandrauk, and Emmanuel Lorin. Laser Filamentation: Mathematical Methods and Models. Springer, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moloney, Jerome V., Andre D. Bandrauk, and Emmanuel Lorin. Laser Filamentation: Mathematical Methods and Models. Springer International Publishing AG, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Laser pulse filamentation"

1

Newell, Alan C. "Short Pulse Evolution Equation." In Laser Filamentation, 1–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lorin, E., M. Lytova, and A. D. Bandrauk. "Nonperturbative Nonlinear Maxwell–Schrödinger Models for Intense Laser Pulse Propagation." In Laser Filamentation, 167–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Couairon, A., V. Jukna, J. Darginavičius, D. Majus, N. Garejev, I. Gražulevičiūtė, G. Valiulis, et al. "Filamentation and Pulse Self-compression in the Anomalous Dispersion Region of Glasses." In Laser Filamentation, 147–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Panagiotopoulos, Paris, Patrick Townsend Whalen, Miroslav Kolesik, and Jerome V. Moloney. "Numerical Simulation of Ultra-Short Laser Pulses." In Laser Filamentation, 185–213. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Peng, Ruxin Li, and Zhizhan Xu. "THz Waveforms and Polarization from Laser Induced Plasmas by Few-Cycle Pulses." In Laser Filamentation, 97–120. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23084-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fuji, Takao, Yutaka Nomura, Yu-Ting Wang, Atsushi Yabushita, and Chih-Wei Luo. "Carrier-Envelope Phase of Single-Cycle Pulses Generated Through Two-Color Laser Filamentation." In Springer Proceedings in Physics, 717–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13242-6_176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Han, Hui Xiong, See Leang Chin, Ya Cheng, and Zhizhan Xu. "Third Harmonic X-waves Generation by Filamentation of Infrared Femtosecond Laser Pulses in Air." In Springer Series in Chemical Physics, 822–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hauri, C. P., M. Merano, A. Trisorio, G. Rey, and R. B. López-Martens. "Generation of high-fidelity sub-10-fs milIijoule pulses through filamentation for relativistic laser-matter experiments at 1 kHz." In Ultrafast Phenomena XV, 101–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stenz, C., F. Blasco, J. Stevefelt, J. C. Pellicer, A. Antonetti, J. P. Chambaret, G. Chériaux, et al. "Observation of Relativistic Self-Focusing, Self-Channeling and Filamentation of Multiterawatt Ultra-Short Laser Pulses in Optical-Field Ionized Argon Gas Jets." In Springer Series in Chemical Physics, 115–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80314-7_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Couairon, Arnaud, Christoph M. Heyl, and Cord L. Arnold. "Dimensionless numbers for numerical simulations and scaling of ultrashort laser pulse filamentation." In Light Filaments: Structures, challenges and applications, 219–39. Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/sbew527e_ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Laser pulse filamentation"

1

Vuong, L. T., M. A. Foster, A. L. Gaeta, R. B. Lopez-Martens, C. P. Hauri, T. Ruchon, and A. L'Huillier. "Optimal pulse compression via sequential filamentation." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Faccio, D., F. Belgiorno, S. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, and V. G. Sala. "Analogue gravity and ultrashort laser pulse filamentation." In SPIE Photonics Europe, edited by Benjamin J. Eggleton, Alexander L. Gaeta, and Neil G. R. Broderick. SPIE, 2010. http://dx.doi.org/10.1117/12.855845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ionin, Andrey A., Leonid V. Seleznev, and Elena S. Sunchugasheva. "Controlling plasma channels through ultrashort laser pulse filamentation." In SPIE Security + Defence, edited by David H. Titterton, Mark A. Richardson, Robert J. Grasso, Harro Ackermann, and Willy L. Bohn. SPIE, 2013. http://dx.doi.org/10.1117/12.2028118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kosareva, O. G., A. Brodeur, V. P. Kandidov, and S. L. Chin. "Conical Emission of a Femtosecond Pulse Undergoing Self-focusing and Ionization in Air." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the21.

Full text
Abstract:
Recently, the phenomenon of intense femtosecond light pulse filamentation over distances of several tens of meters was observed [1,2]. The study of long-interaction-length intense laser pulses has interesting applications including laser-induced lightning, laser-pumped x-ray sources, and laser-plasma based accelerators.
APA, Harvard, Vancouver, ISO, and other styles
5

Couairon, A., M. Franco, A. Mysyrowicz, J. Biegert, U. Keller, H. S. Chakraborty, and M. B. Gaarde. "Single-cycle pulse generation by filamentation in noble gases." In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Couairon, A., A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, F. Courvoisier, and J. M. Dudley. "Ultrashort laser pulse filamentation with Airy and Bessel beams." In Seventeenth International School on Quantum Electronics: Laser Physics and Applications, edited by Tanja N. Dreischuh and Albena T. Daskalova. SPIE, 2013. http://dx.doi.org/10.1117/12.2014198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, Jiayu, Nan Zhang, Ping Chen, Cheng Gong, Lu Sun, Lie Lin, Xiaolei Wang, and Weiwei Liu. "Strong confinement of THz pulse by femtosecond laser filamentation." In Nonlinear Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/nlo.2017.nw2a.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bragheri, F., V. Degiorgio, D. Faccio, A. Averchi, A. Couairon, M. A. Porras, A. Matijosius, et al. "Shocked-X-Wave Dynamics in Fs Laser Pulse Filamentation." In Frontiers in Optics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/fio.2006.jthb3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Jiayu, Jing Yang, Ping Chen, Cheng Gong, Lu Sun, and Weiwei Liu. "Strong confinement of THz pulse by femtosecond laser filamentation." In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Young, P. E., and P. R. Bolton. "Propagation of sub-picosecond laser pulses through a fully ionized plasma." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the38.

Full text
Abstract:
The development of high intensity lasers has led to the possibility of observing relativistic effects when a laser pulse interacts with a fully ionized plasma. The propagation of high intensity laser pulses through a fully ionized plasma has practical applications for compact x-ray lasers [1,2], laser-plasma-based particle accelerators [3], and advanced inertial confinement fusion schemes [4], The relativistic filamentation instability [5] can lead to modifications of the propagating pulse by spatially modulating the laser intensity transverse to the direction of propagation; growth of the instability can lead to spreading of the beam as the result of the density modulation set up by the filamented ponderomotive force. The beam propagation needs to be understood before further nonlinear effects are investigated [6,7]. Previous experimental studies of high-intensity laser pulses have employed neutral gases which are ionized by the propagating pulse [8]. That technique is limited by technical constraints to relatively low electron densities (≤ 1019 cm-3) and introduces the possibility of the modification of the propagation behavior by the formation of an ionization front at the leading edge of the pulse [8].
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography