Academic literature on the topic 'Laser plaama'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laser plaama.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Laser plaama"

1

Lou, Qihong. "UV excimer laser produced plasma and it's application to laser plasma switching." Laser and Particle Beams 6, no. 2 (May 1988): 335–41. http://dx.doi.org/10.1017/s0263034600004092.

Full text
Abstract:
The characteristics of a laser plasma created by a high intensity UV excimer laser were investigated. The UV laser plasma was used as a switch for control of the laser pulse duration for the first time. An X-ray preionized XeCl laser pulse duration can be changed from 10 to 85 ns. This technique is useful for many applications of excimer lasers requiring various pulse durations.
APA, Harvard, Vancouver, ISO, and other styles
2

Grigorian, Galina M., and Adam Cenian. "Influence of nitrogen on CO-laser characteristics." Photonics Letters of Poland 9, no. 2 (July 1, 2017): 69. http://dx.doi.org/10.4302/plp.v9i2.675.

Full text
Abstract:
The role of the addition of nitrogen to the discharge plasma of CO lasers on plasma-chemical processes is discussed here. It is shown that nitrogen addition improves laser characteristics and changes the composition of the laser active medium. A reduction of CO highly-excited vibrational-states populations with current is smaller in the case of mixtures with nitrogen additions. The addition of nitrogen significantly decreases CO dissociation level and concentrations of C atoms created in plasma-chemical reactions of laser discharge. Full Text: PDF ReferencesG.M. Grigorian and I.V. Kochetov, "Balance of CO molecules in the plasma of a sealed-off CO laser", Plasma Phys. Rep. 30, 788 (2004). CrossRef V.S. Aleinikov and V.I. Masychev, CO Lasers (Moscow, Radio i Svyaz' 1990).A. Cenian, A. Chernukho, V. Borodin and G.Śliwiński, "Modeling of Plasma-Chemical Reactions in Gas Mixture of CO2 Lasers I. Gas Decomposition in Pure CO2 Glow Discharge", Contr. Plasma Phys. 34, 25 (1994). CrossRef A. Cenian, A. Chernukho, V. Borodin, "Modeling of Plasma-Chemical Reactions in Gas Mixture of CO2 lasers. II. Theoretical Model and its Verification", Contrib. Plasma Phys. 35, 273 (1995). CrossRef A. Cenian, A. Chernukho, P. Kukiełło, R. Zaremba, V. Borodin and G. Śliwiński, "Improvement of self-regeneration of gas mixtures in a convection-cooled 1.2 kW laser", J.Phys. D: Appl.Phys. 30, 1103 (1997). CrossRef E.A. Trubacheev, Trudy FIAN 102, 3 (1977).G.M. Grigorian, B.M. Dymshits and Yu.Z. Ionikh, "Influence of oxygen on the parameters of the active medium in an electric-discharge CO laser", Sov J Quant Electron 19, 889 (1989). CrossRef V.N. Ochkin, S.Yu. Savinov, N.N. Sobolev and E.A. Trubacheev, Kvant. Elektr. 1, 573 (1974).
APA, Harvard, Vancouver, ISO, and other styles
3

Křivková, Anna, Vojtěch Laitl, Elias Chatzitheodoridis, Lukáš Petera, Petr Kubelík, Antonín Knížek, Homa Saeidfirozeh, et al. "Morphology of Meteorite Surfaces Ablated by High-Power Lasers: Review and Applications." Applied Sciences 12, no. 10 (May 11, 2022): 4869. http://dx.doi.org/10.3390/app12104869.

Full text
Abstract:
Under controlled laboratory conditions, lasers represent a source of energy with well-defined parameters suitable for mimicking phenomena such as ablation, disintegration, and plasma formation processes that take place during the hypervelocity atmospheric entry of meteoroids. Furthermore, lasers have also been proposed for employment in future space exploration and planetary defense in a wide range of potential applications. This highlights the importance of an experimental investigation of lasers’ interaction with real samples of interplanetary matter: meteorite specimens. We summarize the results of numerous meteorite laser ablation experiments performed by several laser sources—a femtosecond Ti:Sapphire laser, the multislab ceramic Yb:YAG Bivoj laser, and the iodine laser known as PALS (Prague Asterix Laser System). The differences in the ablation spots’ morphology and their dependence on the laser parameters are examined via optical microscopy, scanning electron microscopy, and profilometry in the context of the meteorite properties and the physical characteristics of laser-induced plasma.
APA, Harvard, Vancouver, ISO, and other styles
4

Hematizadeh, A., F. Bakhtiari, S. M. Jazayeri, and B. Ghafary. "Strong terahertz radiation generation by beating of two laser beams in magnetized overdense plasma." Laser and Particle Beams 34, no. 3 (July 22, 2016): 527–32. http://dx.doi.org/10.1017/s0263034616000410.

Full text
Abstract:
AbstractTerahertz (THz) radiation generation by nonlinear mixing of two laser beams, obliquely incident on an overdense plasma is investigated. In an overdense plasma, the laser beams penetrate to only thin layer of a plasma surface and reflected. At this thin layer, the laser beams exert a ponderomotive force on the electrons of plasma and impart them oscillatory velocity at the different frequency of lasers. THz waves appear in the reflected component from the plasma surface. The amplitude of THz waves can be augmented by applying the magnetic field perpendicular to the direction of propagation of lasers. It is found that the field strength of the emitted THz radiations is sensitive to the angle of incident of the laser beams, beat frequency, and magnetic field strength. In this scheme, the magnetic field strength plays an important role for strong THz wave generation.
APA, Harvard, Vancouver, ISO, and other styles
5

Hematizadeh, A., S. M. Jazayeri, and B. Ghafary. "Generation of terahertz radiation by beating of two laser beams in collisional magnetized plasma." Laser and Particle Beams 34, no. 4 (August 30, 2016): 569–75. http://dx.doi.org/10.1017/s0263034616000513.

Full text
Abstract:
AbstractThis paper presents analytical calculations for terahertz (THz) radiation by beating of two cosh-Gaussian laser beams in a density rippled collisional magnetized plasma. Lasers beams exert a ponderomotive force on the electrons of plasma in beating frequency which generates THz waves. The magnetic field was considered parallel to the direction of lasers which leads to propagate right-hand circularly polarized or left-hand circularly polarized waves in the plasma depending on the phase matching conditions. Effects of collision frequency, decentered parameter of lasers and the magnetic field strength are analyzed for THz radiation generation. By the optimization of laser and plasma parameters, the efficiency of order 27% can be achieved.
APA, Harvard, Vancouver, ISO, and other styles
6

Bingham, Robert. "Basic concepts in plasma accelerators." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (February 2006): 559–75. http://dx.doi.org/10.1098/rsta.2005.1722.

Full text
Abstract:
In this article, we present the underlying physics and the present status of high gradient and high-energy plasma accelerators. With the development of compact short pulse high-brightness lasers and electron and positron beams, new areas of studies for laser/particle beam–matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high-acceleration gradients. These include the plasma beat wave accelerator (PBWA) mechanism which uses conventional long pulse (∼100 ps) modest intensity lasers ( I ∼10 14 –10 16 W cm −2 ), the laser wakefield accelerator (LWFA) which uses the new breed of compact high-brightness lasers (<1 ps) and intensities >10 18 W cm −2 , self-modulated laser wakefield accelerator (SMLWFA) concept which combines elements of stimulated Raman forward scattering (SRFS) and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches the plasma wakefield accelerator. In the ultra-high intensity regime, laser/particle beam–plasma interactions are highly nonlinear and relativistic, leading to new phenomenon such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm −1 have been generated with monoenergetic particle beams accelerated to about 100 MeV in millimetre distances recorded. Plasma wakefields driven by both electron and positron beams at the Stanford linear accelerator centre (SLAC) facility have accelerated the tail of the beams.
APA, Harvard, Vancouver, ISO, and other styles
7

JUNGWIRTH, K. "Recent highlights of the PALS research program." Laser and Particle Beams 23, no. 2 (June 2005): 177–82. http://dx.doi.org/10.1017/s0263034605050317.

Full text
Abstract:
The Prague Asterix Laser System (PALS) research program covers a broad spectrum of laser–plasma experiments in the range of power densities of 1014-5 × 1016W/cm2, aimed at development and applications of laser plasma-based ion and soft X-ray sources of plasma based ultra-bright XUV lasers in particular. In parallel to these two main lines of research, various principal tasks of laser plasma physics are being studied, such as generation and propagation of laser-induced shock waves, laser ablation, and crater creation processes or laser imprint treatment. Results selected of numerous experimental projects performed at PALS within the period 2002–2004 are surveyed in the paper, experiments with intense soft XUV laser beams being highlighted on the first place.
APA, Harvard, Vancouver, ISO, and other styles
8

Tan, Chao, Binliang Hu, Shiping Zhan, Yonghua Hu, and Bin Zhong. "All-Optical Switching Based on the Plasma Channel Induced by Laser Pulses." Advances in Condensed Matter Physics 2018 (October 1, 2018): 1–7. http://dx.doi.org/10.1155/2018/9621953.

Full text
Abstract:
We display a theoretical and experimental study of all-optical switching for signal lasers based on the plasma channel induced by the control laser. Using the plasma channel generated in the carbon disulfide (CS2) solution, the signal light can be modulated as some spatial distributions including unchanging, ring-shaped beam, and other intensity profiles. The modulation on the signal light can be conveniently adjusted by changing the control light’s incident intensity distribution. We can infer the dark spot shape in the modulated signal laser through the intensity profile of control laser beam. These results provide the great potential of plasma channel induced by lasers as an all-optical switching for various optoelectronic applications.
APA, Harvard, Vancouver, ISO, and other styles
9

Grigorian, Galina M., and Adam Cenian. "Influence of nitrogen on thermodynamic properties and plasma composition in discharge tube of CO-laser." Archives of Thermodynamics 37, no. 3 (September 1, 2016): 31–43. http://dx.doi.org/10.1515/aoter-2016-0018.

Full text
Abstract:
Abstract The role of the addition of nitrogen to the discharge plasma of CO lasers on thermodynamic properties and composition of the laser active medium is discussed here. It is shown that nitrogen addition improves laser characteristics and changes the composition of the laser active medium. The addition of nitrogen significantly decreases CO dissociation level and concentrations of C atoms created in plasma-chemical reactions of laser discharge.
APA, Harvard, Vancouver, ISO, and other styles
10

Geng, Congrui, Jixing Cai, Yubo Liu, Zequn Zhang, Hongtao Mao, Hao Yu, and Yunpeng Wang. "Study on the Expansion Kinetics of Plasma and Absorption Wave Induced by Millisecond-Nanosecond Combined Pulse Lasers in Fused Quartz." Photonics 10, no. 4 (April 6, 2023): 411. http://dx.doi.org/10.3390/photonics10040411.

Full text
Abstract:
The transient temperature field, the velocity and pressure of plasma, and the absorption wave of fused quartz induced by millisecond-nanosecond combined pulse lasers are simulated. The theoretical model of plasma and absorption wave produced by fused quartz irradiated by a millisecond-nanosecond pulsed laser is established, in which pulse delay and laser energy are essential variables. The results show that the damaged effect of the millisecond-nanosecond combined pulse laser is different under the damaged effect of different pulse delay conditions. When the energy densities of millisecond-nanosecond combined pulse lasers are 800 J/cm2 and 20 J/cm2, respectively, the range of pulse delay is 0 ms < Δt ≤ 3 ms, and the energy coupling efficiency is the highest when Δt = 1 ms. The addition of a nanosecond pulsed laser causes more obvious thermal damage and optical breakdown to fused quartz. The high pressure is concentrated at the plasma expansion interface or the shock wave front. The results can optimize the simulation parameters and be applied to laser plasma processing technology.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Laser plaama"

1

McKenna, RossAllan D. "A study of laser plasma interactions in a cylindrical cavity." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29588.

Full text
Abstract:
A CO₂ laser system delivering a 12 J pulse with a FWHM of 2 ns on target was developed to serve as a driver for studies of laser plasma interactions within a cylindrical cavity. The system consisted of a hybrid oscillator, followed by an amplifier chain, and it achieved its design goals of delivering an intense CO₂ pulse, Gaussian in time and space, with a high contrast ratio on a reliable basis. The targets in which the plasma was produced consisted of small rectangular plates of lucite, with holes drilled through one of the long axes. The holes were 350 μm to 600 μm in diameter, and 10 mm in length. These dimensions allowed the laser beam, focused at the entrance of the hole, to produce sufficient intensity on the inner walls of the cylindrical cavity for plasma formation, while allowing the beam, with a waist diameter of 100 μm at the focus to deliver most of its energy within the cavity. The beam propagated via multiple reflections from the plasma through the cavity. Diagnostics were performed on the beam transmitted through the target. Streak camera images were collected of the intensity of visible emission from the plasma along the axis of the target. Anomalous results were obtained with respect to the reproducible observation of maximum visible light emission from regions at the far end cavity from where the laser beam is injected. Another unforseen but interesting result was the small divergence of the beam transmitted through the cavity. Preliminary models were developed to attempt to explain the observations.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
2

Maitrallain, Antoine. "Accélération laser-plasma : mise en forme de faisceaux d’électrons pour les applications." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS314/document.

Full text
Abstract:
L'accélération laser plasma (ALP) est le produit de l'interaction non linéaire entre un faisceau laser intense (≈10¹⁸ W/cm²) et une cible gazeuse. Sous certaines conditions, l’onde plasma générée peut piéger et accélérer des électrons jusqu’à des énergies très importantes grâce à des champs accélérateurs élevés (≈ 50 GV/m). Ce processus très prometteur fait l'objet de nombreux travaux au sein de la communauté, qui, après avoir identifié les mécanismes de base, cherche aujourd’hui à améliorer les propriétés de la source (énergie, divergence, reproductibilité...).Les applications de ces faisceaux d'électrons issus de sources ultra-compactes sont variées. Parmi celles-ci, la physique des hautes énergies pour laquelle a été conçu le schéma d'accélération multi-étages. Il s’agit d’un concept basé sur la succession d’étages accélérateurs pour répondre à la problématique de l’augmentation de la longueur d’accélération en vue d’augmenter l’énergie des électrons. Dans sa version de base, un premier étage (injecteur) fournit un faisceau d'électrons d'énergie modérée doté d’une charge très importante. Ce faisceau est alors accéléré vers de plus hautes énergies dans un second étage appelé accélérateur. Cette thèse s'inscrit dans une série de travaux préliminaires aux expériences d'accélération laser-plasma double étages prévues sur la plateforme expérimentale CILEX autour du laser APOLLON 10 PW.Dans ce cadre, une nouvelle cible a été conçue et caractérisée avec le laser UHI100. Les propriétés du faisceau d'électrons ont ensuite été modifiées par mise en forme optique du faisceau laser produisant l'onde de plasma, ainsi que par mise en forme magnétique.Ce dernier dispositif nous a permis de pouvoir utiliser la source pour une application visant à mettre au point un système de dosimétrie adapté au fort débit de dose associé aux électrons issus de l'ALP
Laser plasma acceleration (LPA) comes from the nonlinear interaction between an intense laser beam (≈10¹⁸ W/cm²) and a gas target. The plasma wave which is generated can, trap and accelerate electrons to very high energies due to large accelerating fields (≈ 50 GV/m). Numerous studies have been done on this promising process among our scientific community aiming at understanding the basic mechanisms involved. As a second step, we now try tries to improve the properties of the source (energy, divergence, reproducibility…).Such ultra-compact electronic sources can be used for various applications. Among them, high energy physics for which a specific scheme was designed, based on the multi-stage acceleration. The scheme relies on the addition of successive accelerating modules to increase the effective accelerating length and therefore the final electron energy. In its basic version, a first stage (injector) delivers an electron beam at moderate energy including a high charge. This beam is then further accelerated to high energy through a second stage (accelerator). This thesis is part of preliminary studies performed to prepare the future 2-stages laser plasma accelerator that will be developed on platform CILEX with APOLLON 10 PW laser.In this context, a new target has been designed and characterized with the UHI100 laser. Then the electron beam properties have been adjusted by optical shaping of the laser generating the plasma wave, and also by magnetic shaping.The electron beam, magnetically shaped, has been used for a specific application devoted to the set-up of a new dosimetric diagnostic, dedicated to the measurement of high dose rate delivered by these electrons from LPA
APA, Harvard, Vancouver, ISO, and other styles
3

Dyson, Anthony Edmund. "Measurements on under-dense plasmas with intense lasers and experiments on the laser-plasma beat wave." Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lui, Siu Lung. "Spectrochemical analysis of solid samples using resonance-enhanced laser-induced plasma spectroscopy." HKBU Institutional Repository, 2005. http://repository.hkbu.edu.hk/etd_ra/620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

El-Rabii, Hazem. "Etude à l'allumage par laser de mélanges en phases liquides dispersées et gazeuses." Châtenay-Malabry, Ecole centrale de Paris, 2004. http://www.theses.fr/2004ECAP0959.

Full text
Abstract:
L'étude de l'allumage d'un mélange gazeux combustible/comburant est d'un intérêt fondamental et d'une importance cruciale dans les moteurs à combustion interne et dans les turbines à gaz. Une nouvelle méthode d'allumage, récemment utilisée, consiste à créer une étincelle par focalisation d'un faisceau laser. 'Objectif du présent travail est d'effectuer une étude paramétrique de ce mode d'allumage pour des mélanges en phases liquides dispersées et gazeuses, ainsi que d'apporter une contribution à la compréhension des phénomènes physiques liés au claquage optique, aussi bien dans l'air que dans les mélanges inflammables. Les plasmas rencontrés sont caractérisés, en termes de concentrations et de températures électroniques, avant d'aborder l'étude paramétrique du claquage dans l'air et de l'allumage des mélanges gazeux et diphasiques inflammables. L'importance de la dynamique induite par l'étincelle laser sur l'évolution de la structure et de la forme du noyau d'allumage est considérée. Le rôle des aberrations, et en particulier de l'aberration sphérique, est soigneusement étudié du point de vue théorique. Des conclusions importantes sur l'interprétation des résultats expérimentaux sont dégagées. La détermination des seuils de claquage, ainsi que l'identification des processus déterminants, sont analysés à la lumière d'un modèle basé sur la détermination de l'évolution de la concentration d'électrons libres dans le volume focal. Finalement, la faisabilité de l'allumage laser à la sortie d'un injecteur prévaporisé, prémélangé en régime pauvre est démontrée.
APA, Harvard, Vancouver, ISO, and other styles
6

Mollica, Florian. "Interaction laser-plasma ultra-intense à densité proche-critique pour l'accélération d'ions." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX058/document.

Full text
Abstract:
L'interaction d'un laser ultra-intense et ultra-court avec la matière donne naissance à une grande variété de processus issus du couplage des ondes électromagnétiques associées au laser avec les modes du plasma. Ce couplage hautement non-linéaire excite des phénomènes plasmas collectifs capables de produire des champs intenses pouvant atteindre le TV/m. Ces champs ouvrent la possibilité de réaliser des accélérateurs de particules compacts, aussi bien d'électrons que d'ions. Des sources laser-plasma d'ions de plusieurs dizaines de MeV ont été démontré au début des années 2000 et de nombreux mécanismes ont été suggérés depuis afin d'en améliorer les propriétés. Historiquement, les sources d'ions par laser ont été obtenues à partir de cibles solides dîtes sur-denses. L’innovation sur les cibles a été un moteur majeur de l’amélioration de ces sources. Dans la continuité de cette dynamique, l’utilisation de cibles gazeuses a été proposé afin d’alléger les contraintes de contraste laser et de taux de répétition. De récentes démonstrations expérimentales sont venus renforcer l’intérêt pour ces cibles, dîtes sous-denses ou proche critiques, dont la valeur est propice à la propagation, à l’absorption du laser et à la création de structures accélératrices que sont les chocs plasmas et les vortex magnétiques. Les travaux présentés dans cette thèse constituent une exploration expérimentale des paramètres plasmas nécessaires à l’accélération d’ions dans des cibles gazeuses de densité proche-critique. Pour la première fois ces régimes sont explorés avec un laser ultra-intense femtoseconde de 150TW. Une partie des travaux a été consacrée à la réalisation d’une cible innovante, adaptée aux contraintes de densité et de gradients plasma requises par ces régimes. Suivent, les travaux expérimentaux décrivant la propagation du laser et l’accélération d’électrons dans des cibles proche-critiques. Enfin une dernière partie décrit la production d’un faisceau d’atome issue d’une source d’ion laser
Interaction of ultra-intense, ultra-short laser with matter gives rise to a wealth of phenomena, due to the coupling between the electromagnetic field and the plasma. The non-linear coupling excites collective plasma processes able to sustain intense electric fields up to 1TV/m. This property spurred early interest in laser accelerator as compact, next-generation source of accelerated electrons and ions. Laser-driven ion source of several MeV was demonstrated in early 2000 an various mechanisms had been suggest to improve the their properties. These first ion sources have been obtained on solid targets, called “overdense”. Target innovation has driven the improvement of these sources. In the continuity of this dynamic, new gaseous targets had been proposed in order to relax the constraints that solid targets impose on laser contrast and repetition rate. Recent experimental demonstrations of monoenergetic ion acceleration in gas renew the interest in such targets, called under-dense or near-critical because of their intermediate densities. At near-critical density the laser can propagate, but undergoes significant absorbtion, giving rise to the accelerating structures of plasma shocks and magnetic vortex.The work presented in this thesis is an experimental exploration of the plasma conditions required to drive ion acceleration in gaseous near-critical target. For the first time, these regimes are explored with an ultra-intense, femtosecond laser of 150TW. A part of this work has been dedicated to the design of an innovative gas target, suited for plasma density and gradient constraints set by these regimes. Then the experimental works describe laser propagation and electron acceleration in near-critical targets. Finally the last part report the efficient production of an atomic beam from a laser-driven ion source
APA, Harvard, Vancouver, ISO, and other styles
7

Holden, Philip Bernard. "Numerical modelling of laser produced plasmas as XUV lasers." Thesis, University of York, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Carrer, Eric. "Etude expérimentale de l'influence d'une couverture gazeuse sur les plasmas créés lors du soudage par laser." Aix-Marseille 2, 1986. http://www.theses.fr/1986AIX22011.

Full text
Abstract:
Mesures destinees a definir les caracteristiques de la couverture gazeuse protectrice employee lors du soudage par laser, a etudier les plasmas crees dans l'interaction et a comprendre l'influence de la couverture gazeuse sur ces derniers
APA, Harvard, Vancouver, ISO, and other styles
9

Grimes, Mikal Keola. "Vacuum heating absorption and expansion of solid surfaces induced by intense femtosecond laser irradiation /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ng, Lun Chiu. "Spatial and temporal probing of particle density in UV laser generated plasma and high pressure TE discharge plasma." HKBU Institutional Repository, 1994. http://repository.hkbu.edu.hk/etd_ra/11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Laser plaama"

1

Lurie, Jonathan B. Medium- and long-wavelength infrared emission from a laser-produced oxygen plasma. Hanscom AFB, MA: Infrared Technology Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lurie, Jonathan B. Medium- and long-wavelength infrared emission from a laser-produced oxygen plasma. Hanscom AFB, MA: Infrared Technology Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lurie, Jonathan B. Medium- and long-wavelength infrared emission from a laser-produced oxygen plasma. Hanscom AFB, MA: Infrared Technology Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lurie, Jonathan B. Medium- and long-wavelength infrared emission from a laser-produced oxygen plasma. Hanscom AFB, MA: Infrared Technology Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

The interaction of high-power lasers with plasmas. Bristol: Institute of Physics Publishing, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1916-, Prokhorov A. M., ed. Medlennoe gorenie lazernoĭ plazmy i opticheskie razri͡a︡dy. Moskva: "Nauka", 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

V, Sklizkov G., ed. Teorii͡a︡ szhatii͡a︡ misheneĭ izlucheniem dlinnovolnovykh lazerov. Moskva: "Nauka", 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shalom, Eliezer, and Mima Kunioki, eds. Applications of laser plasma interactions. Boca Raton: Taylor & Francis, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1942-, Haglund R. F., Wood Richard F, and Society of Photo-optical Instrumentation Engineers., eds. Laser plasma generation and diagnostics: 27 January 2000, San Jose, California. Bellingham, Wash., USA: SPIE, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Scottish Universities Summer School in Physics (60th 2005 St Andrews, Scotland). Laser-plasma interactions. Edited by Jaroszynski Dino A, Bingham R, and Cairns R. A. Boca Raton: Taylor & Francis, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Laser plaama"

1

Noll, Reinhard. "Plasma Dynamics and Plasma Parameters." In Laser-Induced Breakdown Spectroscopy, 119–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20668-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pyatnitsky, Lev. "Laser Diagnostics of Plasmas." In Plasma Technology, 11–26. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3400-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Noll, Reinhard. "Plasma Emission." In Laser-Induced Breakdown Spectroscopy, 167–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20668-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shiraishi, Satomi. "Laser-Plasma Accelerators." In Springer Theses, 7–30. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08569-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mihailescu, Ion N., and Jörg Hermann. "Laser–Plasma Interactions." In Laser Processing of Materials, 49–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13281-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Malka, Victor. "Laser Plasma Accelerators." In Laser-Plasma Interactions and Applications, 281–301. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00038-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kruer, William L. "Laser Plasma Experiments." In The Physics Of Laser Plasma Interactions, 153–78. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781003003243-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ostermayr, Tobias. "Laser-Plasmas." In Springer Theses, 17–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22208-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bäuerle, Dieter. "Vaporization, Plasma Formation." In Laser Processing and Chemistry, 201–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17613-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bäuerle, Dieter. "Vaporization, Plasma Formation." In Laser Processing and Chemistry, 173–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03253-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Laser plaama"

1

Thompson, B. D., A. McPherson, A. B. Borisov, K. Boyer, and C. K. Rhodes. "Experimental Studies of the Propagation of Ultrashort, Intense Laser Pulses in Underdense Plasmas." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.thb1.

Full text
Abstract:
Many practical applications of ultrashort, high power laser pulses require the laser pulse to be focused to a high intensity and remain relatively collimated over large distances in plasmas. Such applications include x-ray lasers [1], laser-plasma-based electron accelerators [2] and laser-induced nuclear fusion schemes [3]. Self-focusing and self-channeling of laser pulses by relativistic and ponderomotive mechanisms [4] are laser-plasma processes which can accomplish this feat.
APA, Harvard, Vancouver, ISO, and other styles
2

Pawlak, Ryszard. "Laser-remelted plasma coatings." In Laser Technology VII: Applications of Lasers, edited by Wieslaw L. Wolinski, Zdzislaw Jankiewicz, and Ryszard Romaniuk. SPIE, 2003. http://dx.doi.org/10.1117/12.520757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Coverdale, C. A., C. B. Darrow, B. A. Hammel, W. B. Mori, C. Decker, K. C. Tzeng, C. Joshi, and C. Clayton. "Observation of Forward Raman Scattering and Energetic Electrons in High Intensity, Sub-Picosecond Laser, Underdense Plasma Interaction Experiments." In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.pd4.

Full text
Abstract:
Many theoretical and computer simulation results have been published recently involving the interaction of short pulse, high intensity lasers with underdense plasmas.1-4 This is a new regime in which to study laser-plasma interactions since the length of the laser pulse is shorter than the Rayleigh range of the laser and the length of the plasma (cτL< LR, Lp). Developments in laser technology over the last several years have made the experimental investigation of this regime possible. In this paper, we describe the first experimental observation of forward stimulated Raman scattering and energetic electrons from the interaction of a subpicosecond, high intensity laser with an underdense plasma.
APA, Harvard, Vancouver, ISO, and other styles
4

Kodama, R., Y. Kato, H. Daido, K. Murai, G. Yuan, S. Ninomiya, D. Neely, A. Macphee, C. H. Nam, and I. W. Choi. "Efficient Generation of a Collisional X-ray Laser with a Small Beam Divergence." In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.wb3.

Full text
Abstract:
For the improvement of collisional x-ray laser propagation in laser produced plasmas, we have experimentally investigated the plasma waveguiding of the x-ray laser beam propagation by using a curved slab target. Double-short pulse pumping was also examined to improve the generation efficiency of the collisional x-ray lasers.
APA, Harvard, Vancouver, ISO, and other styles
5

Glendinning, S. Gail, Peter A. Amendt, Kimberly S. Budil, Bruce A. Hammel, D. H. Kalantar, Michael H. Key, Otto L. Landen, Bruce A. Remington, and Denis E. Desenne. "Laser plasma diagnostics of dense plasmas." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Martin C. Richardson and George A. Kyrala. SPIE, 1995. http://dx.doi.org/10.1117/12.220989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nantel, M., T. Buma, J. Workman, A. Maksimchuk, and D. Umstadter. "Continuum lowering in 100-fs laser produced plasmas." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.thb4.

Full text
Abstract:
We present what we believe to be the first measurements of continuum lowering in high-density plasmas produced by 100-fs laser pulses. Continuum lowering arises in dense plasmas when the excited states of an ion are perturbed by the close proximity of the neighboring ions, and can be a useful density diagnostic. It is a fundamental atomic physics concept in high-density plasmas important to work in X-ray lasers, ICF plasma diagnostics, astrophysics and plasma simulations. In our experiments, a 10-Hz, 100 mJ 100-fs laser system is used to create the plasmas studied, essentially providing a delta-function heat pump which terminates before significant hydrodynamic motion occurs. Continuum lowering was observed both in the high-density, high-temperature expanding plasma plume and in the solid, low-temperature shocked material of the target. In the expanding plasma, we used XUV emission spectroscopy to observe the suppression of high-lying excited levels of He-like and H-like boron. In the compressed plasma behind the shock wave, we used XUV absorption spectroscopy to measure the shifts in inner-shell absorption edges in boron (K-edge) and in aluminium (L-edge).
APA, Harvard, Vancouver, ISO, and other styles
7

Wood, Wm M. "Plasma Creation in Dense, Preformed Transient Gas Channels by Ultrashort Laser Pulses." In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.mc14.

Full text
Abstract:
The study of high-intensity (>1014 W/cm2) laser interactions with dense (1017 cm-3 < ρ ≲ 1021 cm-3) plasmas has been limited by the concomitant problems introduced in beam propagation with the creation of a plasma. Typical experiments under these conditions experience severe limiting of the peak intensity which can be achieved. Furthermore, these experiments often have a large uncertainty about the actual plasma density/laser intensity conditions which occur in the interaction region. Experiments such as plasma wakefield acceleration and XUV recombination lasers require long interaction regions with well-characterized intensity and plasma density conditions. To solve the problem of beam propagation limitations in laser plasma interactions, two potential methods for creating transient propagation channels in gaseous targets are investigated. Each method comprises a two-pulse experiment, where the channel is formed by an initial laser pulse, and then is probed by a second, ultrashort, high-intensity pulse.
APA, Harvard, Vancouver, ISO, and other styles
8

Hoffman, Jacek, Tomasz Moscicki, and Zygmunt Szymanski. "Laser beam-plasma plume interaction during laser welding." In Laser Technology VII: Applications of Lasers, edited by Wieslaw L. Wolinski, Zdzislaw Jankiewicz, and Ryszard Romaniuk. SPIE, 2003. http://dx.doi.org/10.1117/12.520722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Borisov, V., A. Eltzov, A. Ivanov, O. Khristoforov, Yu Kirykhin, A. Vinokhodov, V. Vodchits, V. Mishhenko, and A. Prokofiev. "Discharge produced plasma source for EUV lithography." In Laser Optics 2006: High-Power Gas Lasers, edited by Oleg B. Danilov. SPIE, 2007. http://dx.doi.org/10.1117/12.740590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Zhi-Zhan, P. H. Y. Lee, L. H. Lin, W. Q. Zhang, Y. Z. Zhang, and Z. M. Jiang. "Interactions of line-focused laser light with plasmas." In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.wg6.

Full text
Abstract:
Plasmas have been experimentally diagnosed produced by line-focused laser light (1064 nm, 1-20 J, 250 ps; and 0.1 x 3.5-mm focal line) irradiated planar and thin cylindrical targets. In the experiments the principal plasma diagnostics included microphotographic diagnoses of fundamental and harmonic emissions, picosecond interferometry, and shadow photography using a stimulated Raman backscattering probe beam, Faraday cups, space-resolved and space-integrated x-ray crystal spectrometers, and x-ray pinhole cameras, etc. The experimental results indicate that the space anisotropy of the ion emission from line-focused laser-produced plasma is more noticeable than that from generally spot-focused laser-produced plasma. The ion peak due to the ions accelerated by the resonantly driven electrostatic field also is more obvious. For high Z (such as Au) targets, we have observed for the first time line-focused laser beam filamentation in plasmas. The plasma jetlike structures have also been seen using optical probing techniques. In addition, the x-ray line spectra emitted from line-focused laser plasmas also display the characteristics of the spectral lines being remarkably broadened due to the large source size.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Laser plaama"

1

Baldis, H. Laser-Plasma Interactions in High-Energy-Density Plasmas. Office of Scientific and Technical Information (OSTI), October 2006. http://dx.doi.org/10.2172/900158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MacGowan, B., R. Berger, and J. Fernandez. Laser-plasma interactions in NIF-scale plasmas (HLP5 and HLP6). Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/376965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

B. H. FAILOR, J. C. FERNANDEZ, and ET AL. HOT, DENSE, MILLIMETER-SCALE, HIGH-Z PLASMAS FOR LASER-PLASMA INTERACTIONS STUDIES. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/764191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sperling, J. L., P. G. Coakley, and N. C. Wild. Laboratory Simulation of Plasma Structure in Later-Time HANE Plasmas. Fort Belvoir, VA: Defense Technical Information Center, February 1986. http://dx.doi.org/10.21236/ada170627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lumpkin, A. H., D. W. Rule, LaBerge M. LaBerge M., and M. C. Downer. Observations on Microbunching of Electrons in Laser-Driven Plasma Accelerators and Free-Electron Lasers. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1596020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pennington, D. M., M. A. Henesian, and R. B. Wilcox. Four-color laser irradiation system for laser-plasma interaction experiments. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/376948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ip, Precila C., Russell A. Armstrong, and James C. Baird. Investigation of Laser-Induced Plasma Processes. Fort Belvoir, VA: Defense Technical Information Center, December 1986. http://dx.doi.org/10.21236/ada190463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Scharer, J. E. Laser and Radiofrequency Air Plasma Sources. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada416280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scharer, J. E. Laser and Radiofrequency Air Plasma Sources. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada377833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Robertson, Scott, and Raul Stern. Laser Diagnostics for Plasma Turbulence Research. Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada170994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography