Academic literature on the topic 'Laser plaama'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laser plaama.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Laser plaama"
Lou, Qihong. "UV excimer laser produced plasma and it's application to laser plasma switching." Laser and Particle Beams 6, no. 2 (May 1988): 335–41. http://dx.doi.org/10.1017/s0263034600004092.
Full textGrigorian, Galina M., and Adam Cenian. "Influence of nitrogen on CO-laser characteristics." Photonics Letters of Poland 9, no. 2 (July 1, 2017): 69. http://dx.doi.org/10.4302/plp.v9i2.675.
Full textKřivková, Anna, Vojtěch Laitl, Elias Chatzitheodoridis, Lukáš Petera, Petr Kubelík, Antonín Knížek, Homa Saeidfirozeh, et al. "Morphology of Meteorite Surfaces Ablated by High-Power Lasers: Review and Applications." Applied Sciences 12, no. 10 (May 11, 2022): 4869. http://dx.doi.org/10.3390/app12104869.
Full textHematizadeh, A., F. Bakhtiari, S. M. Jazayeri, and B. Ghafary. "Strong terahertz radiation generation by beating of two laser beams in magnetized overdense plasma." Laser and Particle Beams 34, no. 3 (July 22, 2016): 527–32. http://dx.doi.org/10.1017/s0263034616000410.
Full textHematizadeh, A., S. M. Jazayeri, and B. Ghafary. "Generation of terahertz radiation by beating of two laser beams in collisional magnetized plasma." Laser and Particle Beams 34, no. 4 (August 30, 2016): 569–75. http://dx.doi.org/10.1017/s0263034616000513.
Full textBingham, Robert. "Basic concepts in plasma accelerators." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (February 2006): 559–75. http://dx.doi.org/10.1098/rsta.2005.1722.
Full textJUNGWIRTH, K. "Recent highlights of the PALS research program." Laser and Particle Beams 23, no. 2 (June 2005): 177–82. http://dx.doi.org/10.1017/s0263034605050317.
Full textTan, Chao, Binliang Hu, Shiping Zhan, Yonghua Hu, and Bin Zhong. "All-Optical Switching Based on the Plasma Channel Induced by Laser Pulses." Advances in Condensed Matter Physics 2018 (October 1, 2018): 1–7. http://dx.doi.org/10.1155/2018/9621953.
Full textGrigorian, Galina M., and Adam Cenian. "Influence of nitrogen on thermodynamic properties and plasma composition in discharge tube of CO-laser." Archives of Thermodynamics 37, no. 3 (September 1, 2016): 31–43. http://dx.doi.org/10.1515/aoter-2016-0018.
Full textGeng, Congrui, Jixing Cai, Yubo Liu, Zequn Zhang, Hongtao Mao, Hao Yu, and Yunpeng Wang. "Study on the Expansion Kinetics of Plasma and Absorption Wave Induced by Millisecond-Nanosecond Combined Pulse Lasers in Fused Quartz." Photonics 10, no. 4 (April 6, 2023): 411. http://dx.doi.org/10.3390/photonics10040411.
Full textDissertations / Theses on the topic "Laser plaama"
McKenna, RossAllan D. "A study of laser plasma interactions in a cylindrical cavity." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29588.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Maitrallain, Antoine. "Accélération laser-plasma : mise en forme de faisceaux d’électrons pour les applications." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS314/document.
Full textLaser plasma acceleration (LPA) comes from the nonlinear interaction between an intense laser beam (≈10¹⁸ W/cm²) and a gas target. The plasma wave which is generated can, trap and accelerate electrons to very high energies due to large accelerating fields (≈ 50 GV/m). Numerous studies have been done on this promising process among our scientific community aiming at understanding the basic mechanisms involved. As a second step, we now try tries to improve the properties of the source (energy, divergence, reproducibility…).Such ultra-compact electronic sources can be used for various applications. Among them, high energy physics for which a specific scheme was designed, based on the multi-stage acceleration. The scheme relies on the addition of successive accelerating modules to increase the effective accelerating length and therefore the final electron energy. In its basic version, a first stage (injector) delivers an electron beam at moderate energy including a high charge. This beam is then further accelerated to high energy through a second stage (accelerator). This thesis is part of preliminary studies performed to prepare the future 2-stages laser plasma accelerator that will be developed on platform CILEX with APOLLON 10 PW laser.In this context, a new target has been designed and characterized with the UHI100 laser. Then the electron beam properties have been adjusted by optical shaping of the laser generating the plasma wave, and also by magnetic shaping.The electron beam, magnetically shaped, has been used for a specific application devoted to the set-up of a new dosimetric diagnostic, dedicated to the measurement of high dose rate delivered by these electrons from LPA
Dyson, Anthony Edmund. "Measurements on under-dense plasmas with intense lasers and experiments on the laser-plasma beat wave." Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47418.
Full textLui, Siu Lung. "Spectrochemical analysis of solid samples using resonance-enhanced laser-induced plasma spectroscopy." HKBU Institutional Repository, 2005. http://repository.hkbu.edu.hk/etd_ra/620.
Full textEl-Rabii, Hazem. "Etude à l'allumage par laser de mélanges en phases liquides dispersées et gazeuses." Châtenay-Malabry, Ecole centrale de Paris, 2004. http://www.theses.fr/2004ECAP0959.
Full textMollica, Florian. "Interaction laser-plasma ultra-intense à densité proche-critique pour l'accélération d'ions." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX058/document.
Full textInteraction of ultra-intense, ultra-short laser with matter gives rise to a wealth of phenomena, due to the coupling between the electromagnetic field and the plasma. The non-linear coupling excites collective plasma processes able to sustain intense electric fields up to 1TV/m. This property spurred early interest in laser accelerator as compact, next-generation source of accelerated electrons and ions. Laser-driven ion source of several MeV was demonstrated in early 2000 an various mechanisms had been suggest to improve the their properties. These first ion sources have been obtained on solid targets, called “overdense”. Target innovation has driven the improvement of these sources. In the continuity of this dynamic, new gaseous targets had been proposed in order to relax the constraints that solid targets impose on laser contrast and repetition rate. Recent experimental demonstrations of monoenergetic ion acceleration in gas renew the interest in such targets, called under-dense or near-critical because of their intermediate densities. At near-critical density the laser can propagate, but undergoes significant absorbtion, giving rise to the accelerating structures of plasma shocks and magnetic vortex.The work presented in this thesis is an experimental exploration of the plasma conditions required to drive ion acceleration in gaseous near-critical target. For the first time, these regimes are explored with an ultra-intense, femtosecond laser of 150TW. A part of this work has been dedicated to the design of an innovative gas target, suited for plasma density and gradient constraints set by these regimes. Then the experimental works describe laser propagation and electron acceleration in near-critical targets. Finally the last part report the efficient production of an atomic beam from a laser-driven ion source
Holden, Philip Bernard. "Numerical modelling of laser produced plasmas as XUV lasers." Thesis, University of York, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292556.
Full textCarrer, Eric. "Etude expérimentale de l'influence d'une couverture gazeuse sur les plasmas créés lors du soudage par laser." Aix-Marseille 2, 1986. http://www.theses.fr/1986AIX22011.
Full textGrimes, Mikal Keola. "Vacuum heating absorption and expansion of solid surfaces induced by intense femtosecond laser irradiation /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Full textNg, Lun Chiu. "Spatial and temporal probing of particle density in UV laser generated plasma and high pressure TE discharge plasma." HKBU Institutional Repository, 1994. http://repository.hkbu.edu.hk/etd_ra/11.
Full textBooks on the topic "Laser plaama"
Lurie, Jonathan B. Medium- and long-wavelength infrared emission from a laser-produced oxygen plasma. Hanscom AFB, MA: Infrared Technology Division, Air Force Geophysics Laboratory, 1985.
Find full textLurie, Jonathan B. Medium- and long-wavelength infrared emission from a laser-produced oxygen plasma. Hanscom AFB, MA: Infrared Technology Division, Air Force Geophysics Laboratory, 1985.
Find full textLurie, Jonathan B. Medium- and long-wavelength infrared emission from a laser-produced oxygen plasma. Hanscom AFB, MA: Infrared Technology Division, Air Force Geophysics Laboratory, 1985.
Find full textLurie, Jonathan B. Medium- and long-wavelength infrared emission from a laser-produced oxygen plasma. Hanscom AFB, MA: Infrared Technology Division, Air Force Geophysics Laboratory, 1985.
Find full textThe interaction of high-power lasers with plasmas. Bristol: Institute of Physics Publishing, 2002.
Find full text1916-, Prokhorov A. M., ed. Medlennoe gorenie lazernoĭ plazmy i opticheskie razri͡a︡dy. Moskva: "Nauka", 1988.
Find full textV, Sklizkov G., ed. Teorii͡a︡ szhatii͡a︡ misheneĭ izlucheniem dlinnovolnovykh lazerov. Moskva: "Nauka", 1986.
Find full textShalom, Eliezer, and Mima Kunioki, eds. Applications of laser plasma interactions. Boca Raton: Taylor & Francis, 2009.
Find full text1942-, Haglund R. F., Wood Richard F, and Society of Photo-optical Instrumentation Engineers., eds. Laser plasma generation and diagnostics: 27 January 2000, San Jose, California. Bellingham, Wash., USA: SPIE, 2000.
Find full textScottish Universities Summer School in Physics (60th 2005 St Andrews, Scotland). Laser-plasma interactions. Edited by Jaroszynski Dino A, Bingham R, and Cairns R. A. Boca Raton: Taylor & Francis, 2009.
Find full textBook chapters on the topic "Laser plaama"
Noll, Reinhard. "Plasma Dynamics and Plasma Parameters." In Laser-Induced Breakdown Spectroscopy, 119–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20668-9_8.
Full textPyatnitsky, Lev. "Laser Diagnostics of Plasmas." In Plasma Technology, 11–26. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3400-6_2.
Full textNoll, Reinhard. "Plasma Emission." In Laser-Induced Breakdown Spectroscopy, 167–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20668-9_9.
Full textShiraishi, Satomi. "Laser-Plasma Accelerators." In Springer Theses, 7–30. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08569-2_2.
Full textMihailescu, Ion N., and Jörg Hermann. "Laser–Plasma Interactions." In Laser Processing of Materials, 49–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13281-0_4.
Full textMalka, Victor. "Laser Plasma Accelerators." In Laser-Plasma Interactions and Applications, 281–301. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00038-1_11.
Full textKruer, William L. "Laser Plasma Experiments." In The Physics Of Laser Plasma Interactions, 153–78. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781003003243-13.
Full textOstermayr, Tobias. "Laser-Plasmas." In Springer Theses, 17–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22208-6_2.
Full textBäuerle, Dieter. "Vaporization, Plasma Formation." In Laser Processing and Chemistry, 201–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17613-5_11.
Full textBäuerle, Dieter. "Vaporization, Plasma Formation." In Laser Processing and Chemistry, 173–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03253-4_11.
Full textConference papers on the topic "Laser plaama"
Thompson, B. D., A. McPherson, A. B. Borisov, K. Boyer, and C. K. Rhodes. "Experimental Studies of the Propagation of Ultrashort, Intense Laser Pulses in Underdense Plasmas." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.thb1.
Full textPawlak, Ryszard. "Laser-remelted plasma coatings." In Laser Technology VII: Applications of Lasers, edited by Wieslaw L. Wolinski, Zdzislaw Jankiewicz, and Ryszard Romaniuk. SPIE, 2003. http://dx.doi.org/10.1117/12.520757.
Full textCoverdale, C. A., C. B. Darrow, B. A. Hammel, W. B. Mori, C. Decker, K. C. Tzeng, C. Joshi, and C. Clayton. "Observation of Forward Raman Scattering and Energetic Electrons in High Intensity, Sub-Picosecond Laser, Underdense Plasma Interaction Experiments." In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.pd4.
Full textKodama, R., Y. Kato, H. Daido, K. Murai, G. Yuan, S. Ninomiya, D. Neely, A. Macphee, C. H. Nam, and I. W. Choi. "Efficient Generation of a Collisional X-ray Laser with a Small Beam Divergence." In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.wb3.
Full textGlendinning, S. Gail, Peter A. Amendt, Kimberly S. Budil, Bruce A. Hammel, D. H. Kalantar, Michael H. Key, Otto L. Landen, Bruce A. Remington, and Denis E. Desenne. "Laser plasma diagnostics of dense plasmas." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Martin C. Richardson and George A. Kyrala. SPIE, 1995. http://dx.doi.org/10.1117/12.220989.
Full textNantel, M., T. Buma, J. Workman, A. Maksimchuk, and D. Umstadter. "Continuum lowering in 100-fs laser produced plasmas." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.thb4.
Full textWood, Wm M. "Plasma Creation in Dense, Preformed Transient Gas Channels by Ultrashort Laser Pulses." In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.mc14.
Full textHoffman, Jacek, Tomasz Moscicki, and Zygmunt Szymanski. "Laser beam-plasma plume interaction during laser welding." In Laser Technology VII: Applications of Lasers, edited by Wieslaw L. Wolinski, Zdzislaw Jankiewicz, and Ryszard Romaniuk. SPIE, 2003. http://dx.doi.org/10.1117/12.520722.
Full textBorisov, V., A. Eltzov, A. Ivanov, O. Khristoforov, Yu Kirykhin, A. Vinokhodov, V. Vodchits, V. Mishhenko, and A. Prokofiev. "Discharge produced plasma source for EUV lithography." In Laser Optics 2006: High-Power Gas Lasers, edited by Oleg B. Danilov. SPIE, 2007. http://dx.doi.org/10.1117/12.740590.
Full textXu, Zhi-Zhan, P. H. Y. Lee, L. H. Lin, W. Q. Zhang, Y. Z. Zhang, and Z. M. Jiang. "Interactions of line-focused laser light with plasmas." In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.wg6.
Full textReports on the topic "Laser plaama"
Baldis, H. Laser-Plasma Interactions in High-Energy-Density Plasmas. Office of Scientific and Technical Information (OSTI), October 2006. http://dx.doi.org/10.2172/900158.
Full textMacGowan, B., R. Berger, and J. Fernandez. Laser-plasma interactions in NIF-scale plasmas (HLP5 and HLP6). Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/376965.
Full textB. H. FAILOR, J. C. FERNANDEZ, and ET AL. HOT, DENSE, MILLIMETER-SCALE, HIGH-Z PLASMAS FOR LASER-PLASMA INTERACTIONS STUDIES. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/764191.
Full textSperling, J. L., P. G. Coakley, and N. C. Wild. Laboratory Simulation of Plasma Structure in Later-Time HANE Plasmas. Fort Belvoir, VA: Defense Technical Information Center, February 1986. http://dx.doi.org/10.21236/ada170627.
Full textLumpkin, A. H., D. W. Rule, LaBerge M. LaBerge M., and M. C. Downer. Observations on Microbunching of Electrons in Laser-Driven Plasma Accelerators and Free-Electron Lasers. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1596020.
Full textPennington, D. M., M. A. Henesian, and R. B. Wilcox. Four-color laser irradiation system for laser-plasma interaction experiments. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/376948.
Full textIp, Precila C., Russell A. Armstrong, and James C. Baird. Investigation of Laser-Induced Plasma Processes. Fort Belvoir, VA: Defense Technical Information Center, December 1986. http://dx.doi.org/10.21236/ada190463.
Full textScharer, J. E. Laser and Radiofrequency Air Plasma Sources. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada416280.
Full textScharer, J. E. Laser and Radiofrequency Air Plasma Sources. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada377833.
Full textRobertson, Scott, and Raul Stern. Laser Diagnostics for Plasma Turbulence Research. Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada170994.
Full text