Academic literature on the topic 'Laser frequency noise'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laser frequency noise.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Laser frequency noise"

1

TOURRENC, J. P., P. SIGNORET, M. MYARA, E. ALABEDRA, F. MARIN, and K. D. CHOQUETTE. "FREQUENCY NOISE IN 850nm SELECTIVELY OXIDIZED VCSELs." Fluctuation and Noise Letters 03, no. 04 (December 2003): L407—L412. http://dx.doi.org/10.1142/s0219477503001506.

Full text
Abstract:
The frequency noise of a laser has a direct influence on the lineshape and the linewidth. We present here the frequency-noise spectrum we obtained with selectively-oxidized Vertical-Cavity Surface-Emitting Lasers (VCSELs) emitting in the range of 850nm. We noticed different parts in the spectrum: a 1/fn part in the low-frequency range, independent of the output power, and a white-noise part in the high-frequency range, inversely dependent of the output power. The link with the laser lineshape is theoretically performed.
APA, Harvard, Vancouver, ISO, and other styles
2

Pedersen, Anders Tegtmeier, and Karsten Rottwitt. "Frequency noise in frequency swept fiber laser." Optics Letters 38, no. 7 (March 22, 2013): 1089. http://dx.doi.org/10.1364/ol.38.001089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ohtani, Y., and R. Imazawa. "Conceptual design and demonstration of a three-color laser interferometer for noise reduction in fusion plasma measurements." Review of Scientific Instruments 94, no. 1 (January 1, 2023): 013502. http://dx.doi.org/10.1063/5.0128536.

Full text
Abstract:
A three-color laser interferometer consisting of three Mach–Zehnder-type, one-color laser interferometers with heterodyne detection and coaxial laser beams is demonstrated. The three-color laser interferometer is considered as three sets of a two-color laser interferometer. From the two sets of the two-color laser interferometer, the value consisting only of the noise floor can be assessed. The noise floor can be reduced by subtracting the value consisting only of the noise floor from the measurement value obtained with the other two-color laser interferometer. In the case of the three lasers with wavelengths 9.25 μm, 10.59 μm, and 532 nm, a 15% noise reduction was obtained compared to the two sets of the two-color laser interferometers contained in the three-color laser interferometer. The 100-Hz noise reduction by 53% was achieved, and the other frequency noises were equal to or less than the smallest noise achieved by the two-color laser interferometers. The 100-Hz noise floor is caused by the vibration noise, which remains because of the non-coaxiality of the three beams.
APA, Harvard, Vancouver, ISO, and other styles
4

Liokumovich, L. B., A. O. Kostromitin, N. A. Ushakov, and A. V. Kudryashov. "Method for Measuring Laser Frequency Noise." Journal of Applied Spectroscopy 86, no. 6 (January 2020): 1106–12. http://dx.doi.org/10.1007/s10812-020-00947-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Cong. "Impact of Strong Raman Self-Frequency Shift on Bound State of Dissipative Solitons." International Journal of Optics 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/365648.

Full text
Abstract:
Bound dissipative solitons are numerically studied by implementing strong Raman self-frequency shift (RSFS) in an all-normal-dispersion (ANDi) Yb-doped fiber laser. Results demonstrated that overstrong RSFS had no filter-like effect in the ANDi fiber laser when a bandpass filter was present in the intracavity. However, overstrong RSFS could cause the bandpass filter to destabilize the ANDi fiber laser. For the first time in the field, we have demonstrated that strong RSFS could destabilize bound DS pulses and generate noise-like bound pulses. Furthermore, the generation mechanism of destabilized noise-like bound pulses in the fiber laser with intracavity filter is different from the noise-like pulses in the fiber lasers without a bandpass filter.
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Mingyang, Hanzhong Wu, Yurong Liang, Dan Luo, Panpan Wang, Yujie Tan, and Chenggang Shao. "Weak-Light Phase-Locking Time Delay Interferometry with Optical Frequency Combs." Sensors 22, no. 19 (September 28, 2022): 7349. http://dx.doi.org/10.3390/s22197349.

Full text
Abstract:
In the future space-borne gravitational wave (GW) detector, the optical transponder scheme, i.e., the phase-locking scheme, will be utilized so as to maintain the signal-to-noise ratio (SNR). In this case, the whole constellation will share one common laser equivalently, which enables the considerable simplification of time-delay interferometry (TDI) combinations. Recently, and remarkably, the unique combination of TDI and optical frequency comb (OFC) has shown a bright prospect for the future space-borne missions. When the laser frequency noise and the clock noise are synchronized using OFC as the bridge, the data streams will be reasonably simplified. However, in the optical transponder scheme, the weak-light phase-locking (WLPL) loops could bring additional noises. In this work, we analyze the phase-locking scheme with OFC and transfer characteristics of the noises including the WLPL noise. We show that the WLPL noise can be efficiently reduced by using the specific TDI combination, and the cooperation of phase-locking and frequency combs can greatly simplify the post-processing.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Bowen, Xiang Peng, Haidong Wang, Yang Liu, and Hong Guo. "Laser-frequency stabilization with differential single-beam saturated absorption spectroscopy of 4He atoms." Review of Scientific Instruments 93, no. 4 (April 1, 2022): 043001. http://dx.doi.org/10.1063/5.0084605.

Full text
Abstract:
Differential single-beam saturated-absorption spectroscopy (DSSAS) is proposed to stabilize lasing frequency and suppress Doppler-broadened background and common-mode optical noise. The spectral first-derivative demodulated signal of metastable [Formula: see text] atoms is used as an error signal to stabilize a fiber laser around 1083 nm. Experimental results show that, compared with existing non-DSSAS frequency stabilization, DSSAS stabilization produces better stability and lower fluctuations, especially for frequency-noise-corrupted lasers. In DSSAS stabilization, for data acquired over 7000 s, the root mean square frequency fluctuation of the fiber laser is 16.4 kHz, and the frequency stability described by the modified Allan deviation is 4.1 × 10−12 at 100 s. Even for a defective laser with poor frequency stability, the proposed scheme demonstrates experimentally high capability of noise suppression and reduces the frequency fluctuations by two orders of magnitude. Given its simplicity and compact design, frequency stabilization by DSSAS is promising for quantum-sensor applications, such as atomic magnetometers, atomic gyroscopes, and atomic clocks.
APA, Harvard, Vancouver, ISO, and other styles
8

Fu, Shijie, Xiushan Zhu, Jie Zong, Michael Li, Arturo Chavez-Pirson, Robert A. Norwood, and Nasser Peyghambarian. "Single-frequency fiber laser at 880 nm." Optics Express 30, no. 18 (August 22, 2022): 32600. http://dx.doi.org/10.1364/oe.470958.

Full text
Abstract:
Single-frequency fiber lasers with extremely low noise and narrow spectral linewidth have found many scientific and practical applications. There is great interest in developing single-frequency fiber lasers at new wavelengths. In this paper, we report a single-frequency Nd3+-doped phosphate fiber laser operating at 880 nm, which is the shortest demonstrated wavelength for a single-frequency fiber laser thus far, to the best of our knowledge. An output power of 44.5 mW and a slope efficiency of 20.4% with respect to the absorbed pump power were obtained with a 2.5-cm-long 1 wt.% Nd3+-doped phosphate fiber. Our simulation results show that higher single-frequency laser output can be achieved with 1.5 wt.% or 2 wt.% Nd3+-doped phosphate fiber with mitigated ion clustering.
APA, Harvard, Vancouver, ISO, and other styles
9

Xiang Jingfeng, 项静峰, 王利国 Wang Liguo, 任伟 Ren Wei, 李唐 Li Tang, 吕德胜 Lü Desheng, and 刘亮 Liu Liang. "Frequency Noise Suppression of Single-Frequency Laser with Radio-Frequency Modulation." Chinese Journal of Lasers 44, no. 5 (2017): 0501009. http://dx.doi.org/10.3788/cjl201744.0501009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Kui, Fenglei Zhang, Zongyang Li, Xiaohua Feng, Ke Li, Yuanbo Du, Karl Ulrich Schreiber, Zehuang Lu, and Jie Zhang. "Noise Analysis of a Passive Resonant Laser Gyroscope." Sensors 20, no. 18 (September 19, 2020): 5369. http://dx.doi.org/10.3390/s20185369.

Full text
Abstract:
Large-scale laser gyroscopes have found important applications in Earth sciences due to their self-sufficient property of measurement of the Earth’s rotation without any external references. In order to extend the relative rotation measurement accuracy to a better level so that it can be used for the determination of the Earth orientation parameters (EOP), we investigate the limitations in a passive resonant laser gyroscope (PRG) developed at Huazhong University of Science and Technology (HUST) to pave the way for future development. We identify the noise sources from the derived noise transfer function of the PRG. In the frequency range below 10−2Hz, the contribution of free-spectral-range (FSR) variation is the dominant limitation, which comes from the drift of the ring cavity length. In the 10−2 to 103Hz frequency range, the limitation is due to the noises of the frequency discrimination system, which mainly comes from the residual amplitude modulation (RAM) in the frequency range below 2 Hz. In addition, the noise contributed by the Mach–Zehnder-type beam combiner is also noticeable in the 0.01 to 2 Hz frequency range. Finally, possible schemes for future improvement are also discussed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Laser frequency noise"

1

De, Syamsundar. "Noise in dual-frequency semiconductor and solid-state lasers." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112114/document.

Full text
Abstract:
Les sources cohérentes de lumière émettant deux fréquences optiques avec une différence largement accordable dans le domaine radiofréquence et un fort degré de corrélation entre leurs fluctuations respectives peuvent être d’un grand intérêt pour de nombreuses applications telles que la photonique micro-onde, les horloges atomiques ultra stables, la physique atomique, la métrologie, etc. C’est le cas des lasers bifréquences émettant deux modes de polarisations linéaires croisées avec une différence de fréquence dans le domaine radiofréquence. Nous comparons les caractéristiques de telles sources bifréquences basées sur des lasers à semiconducteurs (VECSEL: vertical-external-cavity surface-emitting laser) ou des lasers à solide (notamment les solides dopés Nd3+ ou Er3+). Au-delà de la différence évidente entre les mécanismes de gain dans les lasers à semiconducteurs et dans les lasers à solide, le VECSEL bifréquence et le laser Nd:YAG bifréquence ne présentent pas la même dynamique. Le VECSEL bifréquence, comme pour un laser de classe A, a une dynamique dénuée d’oscillations de relaxation puisque la durée de vie des photons dans la cavité est beaucoup plus longue que celle de l’inversion de population. A l’opposé, le laser Nd:YAG bifréquence possède une dynamique présentant des oscillations de relaxation comme pour un laser de classe B, en vertu du fait que la durée de vie des photons dans la cavité est plus courte que celle de l’inversion de population. Dans cette thèse, nous explorons les mécanismes par lesquels cette dynamique, en plus du couplage non linéaire entre les deux modes, gouverne le bruit dans les lasers bifréquences. En particulier, nous analysons à la fois expérimentalement et théoriquement les propriétés spectrales des différents bruits (intensité, phase) ainsi que leurs corrélations dans le cas d’un VECSEL bifréquence de classe A et d’un laser Nd:YAG bifréquence de classe B. Enfin, un modèle de réponse linéaire de deux oscillateurs amortis couplés permet d’interpréter les résultats obtenus sur la corrélation entre ces différents bruits
Coherent sources emitting two optical frequencies with a widely tunable frequency difference lying in the radio-frequency range and having a high degree of correlation between their fluctuations can be useful for numerous applications such as microwave photonics, ultra-stable atomic clocks, atom manipulation and probing, metrology, etc. Dual-frequency lasers, which emit two orthogonal linearly polarized modes with a frequency difference lying in the radio-frequency range, have huge potentials for the above mentioned applications. We compare the characteristics of such dual-frequency oscillation in lasers based on either semiconductor (VECSEL: vertical-external-cavity surface-emitting laser) or solid-state active media (mainly Nd3+, or Er3+ doped crystalline host). Apart from the obvious difference between the gain mechanisms in semiconductor and solid-state laser media, the dual-frequency VECSEL and the dual-frequency Nd:YAG laser exhibit different dynamical behaviors. The dual-frequency VECSELs exhibit relaxation oscillation free class-A dynamics as the photon lifetime inside the cavity is longer than the population inversion lifetime. On the contrary, the dual-frequency Nd:YAG lasers obey class-B dynamics linked with the fact that the photon lifetime inside the cavity is shorter than the population inversion lifetime, leading to the existence of relaxation oscillations. In this thesis, we figure out how the laser dynamics, in addition to the nonlinear coupling between the two laser modes, governs different noise phenomena in dual-frequency lasers. In particular, we demonstrate, both experimentally and theoretically, the influence of the laser dynamics and the nonlinear coupling between the two modes on the laser noise, by analyzing the spectral properties of the different noises (intensity, phase) and their correlation in a class-A dual-frequency VECSEL (vertical-external-cavity surface emitting laser) and a class-B dual-frequency Nd:YAG laser. Moreover, the noise correlation results are interpreted in terms of the linear response of two coupled damped oscillators
APA, Harvard, Vancouver, ISO, and other styles
2

Saxena, Bhavaye. "Noise Characteristics for Random Fiber Lasers with Rayleigh Distributed Feedback." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31766.

Full text
Abstract:
Frequency and intensity noise are characterized for Erbium-Doped Fiber and Brillouin random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of an Er-doped fiber random lasers using the property of random phase modulations from multiple scattering points in ultra-long fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. A similar model, which also includes additional acoustic fluctuations and a distributed gain profile in the fiber, has been speculated for the Brillouin random laser. These random laser exhibits a frequency noise level of < 6 Hz^2/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and Nonplanar Ring Laser oscillators (NPRO) by a factor of 166 and 2 respectively.
APA, Harvard, Vancouver, ISO, and other styles
3

Kolbl, Josef Karl. "Low-noise frequency synthesis and picosecond timing for satellite laser ranging systems." Thesis, University of Central Lancashire, 2001. http://clok.uclan.ac.uk/20201/.

Full text
Abstract:
The main aims of the research are to develop various high-speed hardware circuits based on the latest electronic devices and integrated circuit technologies to provide time measurement with one picosecond accuracy, thereby enabling the development of a satellite laser ranging (SLR) system with submillimeter precision. Different types of oscillators and frequency multipliers have been developed (RF and microwave) in order to provide a synchronous and low phase noise clock signal to the SLR timing system, which is phase-locked to the Universal Time Clock (UTC). A technique to quantify phase noise in signal sources is presented and verified. The development of the ranging system encompasses the analog timing verniers, the digital timing system, acquisition and processing of the ranging data, and the controlling of the peripherals, like the laser. The mixed analog/digital timing system architecture provides a time interval determination of two events with picosecond accuracy. Optical calibration techniques and an electronic timing calibration technique were developed to provide calibration of the timing system down to one picosecond accuracy and femtoseconds of resolution, traceable to the International Standard (speed of light, metric standard). The work done has led to several electronic modules for measuring precisely laser runtimes to artificial satellites and to the Moon which are now in successful and permanent operation in five SLR stations around Tokyo, one SLR station in Australia, and one SLR station in Germany. Furthermore, the work has produced three papers and two patents and won the First Prize of Innovation Awards from Deggendorf Government. The research and development work pushed the picosecond timing technology to an extent where the SLR stations in Australia, Tokyo and Germany now have a significant improvement in their ranging data accuracy in comparison to their previous timing equipment, thereby achieving more precise environmental monitoring.
APA, Harvard, Vancouver, ISO, and other styles
4

Sebastian, Ananthu. "Noise dynamics in multi-Stokes Brillouin laser." Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S068.

Full text
Abstract:
La diffusion Brillouin stimulée (SBS) est un processus d'interaction cohérent, pour lequel la lumière est diffusée à partir des ondes acoustiques générées optiquement. Les lasers Brillouin suscitent un très grand intérêt pour leur capacité à produire des largeurs de raie ultra cohérentes. Cette thèse est consacrée à la compréhension des propriétés de bruit des lasers à fibre Brillouin en anneau, fonctionnant avec de multiples ordres de Stokes. Tout d'abord, nous présentons une technique basée sur la méthode de ringdown de la cavité, qui permet de caractériser le coefficient de gain Brillouin directement à partir du sondage de la cavité laser. Ses avantages sont d'obtenir des paramètres à partir d'une seule expérience avec de faibles puissances optiques (quelques 10 milliwatts) pour des cavités courtes (quelques mètres de long, ou cavités intégrées). Deuxièmement, il est démontré qu'une largeur de raie intrinsèque de quelques dizaines de mHz peut être facilement obtenue en cascadant deux lasers Brillouin non résonants (pour lesquels la pompe effectue un seul passage à l'intérieur de la cavité). Afin d'obtenir ces résultats, la stabilité à long terme a été améliorée en utilisant une boucle d'asservissement de type Pound Drever Hall, ce qui nous permet de comparer nos résultats analytiques et expérimentaux. Malheureusement, nous n'avons pas exploré les limites fondamentales de la réduction du bruit en raison du plancher de bruit de notre banc de mesure. Troisièmement, un des travaux majeurs de cette thèse est l'étude analytique et expérimentale des propriétés du bruit, y compris le bruit de fréquence et le bruit relatif d'intensité, d'un laser Brillouin résonant (pour lequel, les ondes de pompe et de Stokes sont résonantes à l'intérieur de la cavité). En particulier, les impacts du facteur de qualité de la cavité fibrée en anneau, le désaccord de gain Brillouin ont été évalués très précisément sur les caractéristiques du RIN du laser telles que la réduction de l'amplitude du bruit et la fréquence de relaxation. Nous soulignons le fait que de nombreuses caractéristiques du bruit de fréquence sont liées aux propriétés du RIN par un couplage entre l'intensité et la phase. Nous montrons que le processus en cascade modifie la dynamique du laser Brillouin par rapport à celle d'un laser Brillouin monomode avec une seule composante de Stokes de premier ordre. Nos résultats expérimentaux sont en excellent accord avec nos simulations, obtenues grâce à notre système non linéaire décrivant le fonctionnement d'un laser Brillouin multi-Stokes. Cette bonne concordance est principalement due à notre capacité : à obtenir des valeurs très précises des paramètres de la cavité et du coefficient de gain Brillouin en utilisant la technique CRDM ; à atteindre une stabilité à long terme (plusieurs dizaines d'heures) ; à contrôler finement le désaccord entre la résonance de Stokes du laser et la fréquence du maximum de gain Brillouin. Nous démontrons expérimentalement pour la première fois que le bruit de fréquence est dégradé en présence d'une diffusion Brillouin anti-Stokes. Nous montrons également qu'un désaccord de gain de l'ordre de quelques centaines de kHz peut dégrader la réduction du bruit d'intensité ou également augmenter la largeur de raie par un couplage amplitude-phase. Toutes ces observations très fines nous permettent donc de fixer les limites fondamentales de tels systèmes laser comme : l'augmentation du bruit due aux ordres anti-Stokes ; le rôle du bruit de pompe et son interrelation possible avec la finesse de la cavité ; l'effet du désaccord inhérent aux ordres de Stokes plus élevés. Toutes ces conclusions sont les clés de la conception et de l'ingénierie de ces lasers à fibre Brillouin, qui suscitent actuellement beaucoup d'intérêt comme en témoignent les travaux en cours dans la communauté scientifique. Cette thèse de doctorat contribue à une meilleure compréhension des lasers Brillouin multi-Stokes
Stimulated Brillouin Scattering (SBS) is a coherent interaction process in which light is scattered from optically generated acoustic waves. It is a powerful tool for microwave and optical signal processing, distributed sensing and spectroscopy. Brillouin lasers are attracting a lot of interest for their ability to produce ultra coherent linewidths. This thesis is devoted to the understanding of noise properties of Brillouin fiber ring lasers, operating with multiple Stokes orders. First, we present a technique based on the cavity ring-down method, which allows to characterize the Brillouin gain coefficient directly from probing the laser cavity. Its advantages are to obtain parameters from a single experiment with low optical powers (some 10 milliwatts) for short cavities (a few meters long, or integrated cavities). Secondly, it is shown that an intrinsic linewidth of a few tens of mHz can be easily obtained by cascading two non-resonant Brillouin lasers (for which the pump performs a single pass inside the cavity). In order to obtain these results, the long-term stability has been improved by using a Pound-Drever-Hall servo loop, which allows us to compare our analytical and experimental results. Unfortunately, we were unable to explore the fundamental limits of noise reduction due to the noise floor of our bench. Thirdly, one of the major works of this thesis is the theoretical and experimental study of the noise properties, including frequency noise and relative intensity noise, of a resonant Brillouin laser (for which pump and Stokes waves are resonant inside the cavity). In particular, the impacts of the fiber-ring-cavity quality factor, Brillouin gain detuning, are evaluated very precisely on the laser RIN features such as amplitude noise reduction and relaxation frequency. We emphasize the fact that many characteristics of the frequency noise are related to the RIN properties by a coupling between intensity and phase. We show that the cascade process modifies the dynamics of the Brillouin laser when compared to those of a single-mode Brillouin laser with a single first-order Stokes component. Our experimental results are in excellent agreement with our numerical simulations, obtained thanks to our non-linear system describing the operation of a multi-Stokes Brillouin laser. This good match is mainly due to our ability: to obtain very precise values of the cavity parameters and the Brillouin gain coefficient using the CRDM technique ; to achieve long-term stability (hours); to finely control the detuning between the laser Stokes resonance and the frequency of the Brillouin gain maximum. We demonstrate experimentally for the first time that frequency noise is degraded in the presence of anti-Stokes Brillouin scattering. We also show that a gain detuning of the order of a few hundred kHz can degrade the intensity noise reduction or also increase the linewidth by amplitude-phase coupling. All these very fine observations thus allow us to set the fundamental limits of such laser systems such as: the increase in noise due to anti-Stokes orders; the role of pump noise and its possible interrelation with cavity finesse; the effect of the detuning inherent to higher Stokes orders. All these conclusions are key to the design and engineering of these Brillouin fiber lasers, which are currently attracting a great deal of interest as evidenced by the work in progress in the scientific community. This PhD thesis contributes to a better understanding of multi-Stokes Brillouin lasers
APA, Harvard, Vancouver, ISO, and other styles
5

Slagmolen, Bram Johannes Jozef, and BRAM SLAGMOLEN@ANU EDU AU. "Direct Measurement of the Spectral Distribution of Thermal Noise." The Australian National University. Faculty of Science, 2005. http://thesis.anu.edu.au./public/adt-ANU20051128.104552.

Full text
Abstract:
This thesis investigates the direct measurement of the thermal noise spectral distribution. Long base line gravitational wave detectors, being commissioned around the world, are limited in sensitivity in the intermediate frequencies by the thermal noise. These detectors are utilising suspended test mirrors for the detection of gravitational waves by measuring their relative displacement. One of the fundamental noise sources in these detectors is the thermally induced displacement of the suspension onto and within the mirrors. This thermally induced motion of the test mirrors limits the displacement sensitivity of the gravitational wave detectors. Knowledge of the spectral behavior of thermal noise over a wide frequency range will improve predictions and understanding of the behavior of the suspension and test mirrors.¶ In this thesis the direct measurement of the thermal noise spectral distribution of a mechanical flexure resonator is described. The mechanical flexure resonator is an unidirectional ’wobbly table’ made from copper-beryllium, which hinges around four thin flexures 15 mm wide, 1 mm high and ~116 µm thick. The mechanical flexure resonator has a resonant frequency of 192 Hz, with a quality factor of ~3000.¶ The thermal noise induced displacement of the mechanical flexure resonator was measured using an optical cavity. The end mirror of a two mirror optical cavity was mounted on the mechanical flexure resonator. A laser was made resonant with the test cavity by use of a locking control system. Thermal noise induced displacement moved the test cavity away from resonance. By measuring the error-signal in the control system, the equivalent thermal noise displacement was obtained.¶ The thermal noise induced displacement of the mechanical flexure resonator was predicted to be in the order of 10^(−12) to 10^(−17) m/sqrtHz over a frequency range of 10 Hz to 10 kHz. All other external noise sources needed to be suppressed to below this level. A major noise source was the laser frequency fluctuations. When the test cavity was locked to the laser, the laser frequency fluctuations dominated the read out signal. To suppress the frequency fluctuations, the laser was locked to a rigid long optical reference cavity. This allowed the frequency fluctuations to be suppressed to below the equivalent thermal noise displacement of the test cavity over the frequency range of interest.¶ Acoustic noise was suppressed by placing the whole experiment inside a vacuum chamber, and evacuating the air inside the chamber down to a pressure level of 10^(−4) mbar. A seismic vibration isolation system was used to suppress the seismic noise in the laboratory to below 10^(−14) m/sqrtHz at frequencies above 4 Hz.¶ With the experimental set up, the thermal noise displacement of the mechanical flexure resonator has been measured. Due to the degradation of the isolator performance, measurement of the thermal noise behavior over a wide frequency range of the mechanical flexure resonator was unsuccessful. By using an analytical curve fitting routine around the fundamental and first order resonant modes of the resonator, a loss factor of (3.5 ± 1.5 − 3.7 ± 1.5) × 10^(−4) for the copper-beryllium mechanical flexure resonator was obtained and structural damping was inferred.
APA, Harvard, Vancouver, ISO, and other styles
6

Quinlan, Franklyn. "LOW NOISE, HIGH REPETITION RATE SEMICONDUCTOR-BASED MODE-LOCKED LASERS FOR SIGNAL PROCESSING AND COHERENT COMMUNICATIONS." Doctoral diss., University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3393.

Full text
Abstract:
This dissertation details work on high repetition rate semiconductor mode-locked lasers. The qualities of stable pulse trains and stable optical frequency content are the focus of the work performed. First, applications of such lasers are reviewed with particular attention to applications only realizable with laser performance such as presented in this dissertation. Sources of timing jitter are also reviewed, as are techniques by which the timing jitter of a 10 GHz optical pulse train may be measured. Experimental results begin with an exploration of the consequences on the timing and amplitude jitter of the phase noise of an RF source used for mode-locking. These results lead to an ultralow timing jitter source, with 30 fs of timing jitter (1 Hz to 5 GHz, extrapolated). The focus of the work then shifts to generating a stabilized optical frequency comb. The first technique to generating the frequency comb is through optical injection. It is shown that not only can injection locking stabilize a mode-locked laser to the injection seed, but linewidth narrowing, timing jitter reduction and suppression of superfluous optical supermodes of a harmonically mode-locked laser also result. A scheme by which optical injection locking can be maintained long term is also proposed. Results on using an intracavity etalon for supermode suppression and optical frequency stabilization then follow. An etalon-based actively mode-locked laser is shown to have a timing jitter of only 20 fs (1Hz-5 GHz, extrapolated), optical linewidths below 10 kHz and optical frequency instabilities less than 400 kHz. By adding dispersion compensating fiber, the optical spectrum was broadened to 2 THz and 800 fs duration pulses were obtained. By using the etalon-based actively mode-locked laser as a basis, a completely self-contained frequency stabilized coupled optoelectronic oscillator was built and characterized. By simultaneously stabilizing the optical frequencies and the pulse repetition rate to the etalon, a 10 GHz comb source centered at 1550 nm was realized. This system maintains the high quality performance of the actively mode-locked laser while significantly reducing the size weight and power consumption of the system. This system also has the potential for outperforming the actively mode-locked laser by increasing the finesse and stability of the intracavity etalon. The final chapter of this dissertation outlines the future work on the etalon-based coupled optoelectronic oscillator, including the incorporation of a higher finesse, more stable etalon and active phase noise suppression of the RF signal. Two appendices give details on phase noise measurements that incorporate carrier suppression and the noise model for the coupled optoelectronic oscillator.
Ph.D.
Optics and Photonics
Optics and Photonics
Optics PhD
APA, Harvard, Vancouver, ISO, and other styles
7

Foltynowicz, Aleksandra. "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry." Doctoral thesis, Umeå universitet, Institutionen för fysik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-22269.

Full text
Abstract:
Noise-immune cavity-enhanced optical heterodyne molecular spectro-metry (NICE-OHMS) is one of the most sensitive laser-based absorption techniques. The high sensitivity of NICE-OHMS is obtained by a unique combination of cavity enhancement (for increased interaction length with a sample) with frequency modulation spectrometry (for reduction of noise). Moreover, sub-Doppler detection is possible due to the presence of high intensity counter-propagating waves inside an external resonator, which provides an excellent spectral selectivity. The high sensitivity and selectivity make NICE-OHMS particularly suitable for trace gas detection. Despite this, the technique has so far not been often used for practical applications due to its technical complexity, originating primarily from the requirement of an active stabilization of the laser frequency to a cavity mode. The main aim of the work presented in this thesis has been to develop a simpler and more robust NICE-OHMS instrumentation without compro-mising the high sensitivity and selectivity of the technique. A compact NICE-OHMS setup based on a fiber laser and a fiber-coupled electro-optic modulator has been constructed. The main advantage of the fiber laser is its narrow free-running linewidth, which significantly simplifies the frequency stabilization procedure. It has been demonstrated, using acetylene and carbon dioxide as pilot species, that the system is capable of detecting relative absorption down to 3 × 10-9 on a Doppler-broadened transition, and sub-Doppler optical phase shift down to 1.6 × 10-10, the latter corresponding to a detection limit of 1 × 10-12 atm of C2H2. Moreover, the potential of dual frequency modulation dispersion spectrometry (DFM-DS), an integral part of NICE-OHMS, for concentration measurements has been assessed. This thesis contributes also to the theoretical description of Doppler-broadened and sub-Doppler NICE-OHMS signals, as well as DFM-DS signals. It has been shown that the concentration of an analyte can be deduced from a Doppler-broadened NICE-OHMS signal detected at an arbitrary and unknown detection phase, provided that a fit of the theoretical lineshape to the experimental data is performed. The influence of optical saturation on Doppler-broadened NICE-OHMS signals has been described theoretically and demonstrated experimentally. In particular, it has been shown that the Doppler-broadened dispersion signal is unaffected by optical saturation in the Doppler limit. An expression for the sub-Doppler optical phase shift, valid for high degrees of saturation, has been derived and verified experimentally up to degrees of saturation of 100.
APA, Harvard, Vancouver, ISO, and other styles
8

Hofmann, Peter. "Monolithic Soft Glass Single Frequency Fiber Lasers." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/268515.

Full text
Abstract:
Envisioning novel fully monolithic fiber-optical devices, this dissertation investigates four fiber optical devices both, active and passive, that contribute to the goal of further integrating and miniaturizing fiber optics. An all phosphate glass fiber laser was designed in an effort to reduce laser intensity noise by reducing cavity losses and low mechanical strength that arise from intra-cavity fusion splices between silica fiber Bragg gratings (FBG) and phosphate active fiber in state of the art phosphate single frequency fiber lasers. Novel phosphate glass based FBGs have been fabricated utilizing high intensity laser pulses at 193 nm and a phase-mask. Net reflectivities of up to 70 % and a bandwidth of 50 pm have been achieved in the FBGs. The laser design comprised two of the novel FBGs and a short section of Er³⁺Yb³⁺ phosphate fiber to form a distributed Bragg reflector (DBR) laser. The performance of the new laser has been compared to a conventional phosphate fiber laser. Particular focus was put on the laser intensity noise due to its dependence on intra-cavity losses. Relative intensity noise (RIN) amplitudes of -80 dB/Hz have been measured for both lasers when operating at comparable output powers. For similar levels of absorbed pump power the relaxation oscillation frequencies (ROF) were shifted towards lower frequencies in the new laser. ExcessFBG scattering losses and mode-field miss-match between the active and passive fiber limited the output power of the new laser to 16 mW compared to 140 mW in the conventional laser. A monolithic all-phosphate glass fiber laser with up to 550 mW output power that is operating at a single longitudinal mode and exhibiting narrow linewidth is presented. The laser cavity has been formed by inscribing FBGs directly into heavily Er³⁺Yb³⁺ doped phosphate glass fiber using femtosecond laser pulses and a phase mask, completely eliminating the need for intra-cavity fusion splices. A linewidth of less than 60 kHz and relaxation oscillation peak amplitudes below -100 dB/Hz without active suppression of RIN have been measured. The compact form factor and higher output power combined with the low noise and narrow linewidth characteristic make this laser an ideal candidate for ranging, interferometry and sensing applications. Strong and robust Bragg gratings in optical fiber fabricated from highly photosensitive photo-thermo-refractive (PTR) glass are demonstrated. The fibers were drawn at 900 °C from a machined PTR-glass preform. A low power two beam interference pattern from a continuous wave (cw) He-Cd laser with a wavelength of 325 nm was used to write gratings into the fibers, achieving peak grating strengths of 20 dB and a spectral width of 45 pm. The gratings showed no sign of degradation when exposed to a high temperature environment of 425 °C for several hours. This is significantly higher when compared to standard Telecom FBGs which are rated for operation temperatures below 200 °C. A detailed study of novel mode-field adapters (MFA) based on multi-mode interference in graded index multi-mode fibers (GIMF) is presented. MFAs are often used in cases when low coupling losses between single mode fibers with very different mode-field diameters are needed. Here a new type of MFAs has been fabricated and characterized from a selection of commercially available single mode and graded index fibers. Compared to existing techniques the presented MFAs can be fabricated very quickly and are not limited to certain fiber types. Insertion losses of 0:5 dB over a spectral range of several hundred nm have been obtained with an ultra compact MFA with a length of 275 μm.
APA, Harvard, Vancouver, ISO, and other styles
9

Audo, Kevin. "Étude théorique et expérimentale des lasers solides bi-fréquences auto-régulés en bruit d'intensité via des non-linéarités intracavité." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S002/document.

Full text
Abstract:
Les lasers à état solide bi-fréquences constituent des sources de choix pour de nombreux domaines (métrologie, photonique micro-onde, Lidar-Radar, horloges atomiques). Cependant, de tels lasers souffrent d'excès de bruit d'intensité difficiles à supprimer avec les méthodes habituelles. Dans ce contexte, nous développons une nouvelle approche baptisée « buffer reservoir » pour la réduction de l'excès de bruit d'intensité des lasers à état solide. Cette méthode repose sur le changement du comportement dynamique du laser par insertion d'un mécanisme d'absorption non-linéaire faiblement efficace dans la cavité. Tout d'abord, nous étudions cette approche dans des lasers solides mono-fréquence en exploitant deux types d'absorption non-linéaire : l'absorption à deux photons (TPA) et l'absorption par génération de seconde harmonique (SHGA). Nous montrons qu'il est possible de réduire de 50 dB le bruit d'intensité à la fréquence des oscillations de relaxation d'un laser Er,Yb:verre sans en dégrader la puissance de sortie ni le bruit de phase. Nous explorons les mécanismes physiques sous-jacents en développant un modèle analytique décrivant le comportement dynamique du laser. L'effet de l'absorbant non-linéaire sur les pics de bruit à haute fréquence à l'intervalle spectrale libre de la cavité est également étudié. Nous démontrons l'intérêt de telles sources lasers auto-régulées en intensité pour la distribution d'oscillateurs locaux sur porteuse optique. Nous mettons ensuite en application l'approche « buffer reservoir » dans des lasers bi fréquences. En développant un modèle analytique prédictif, nous montrons expérimentalement que l'utilisation de TPA engendre, sous certaines conditions, une réduction de 40 dB de l'amplitude des pics de bruit en-phase et en anti-phase. Nous vérifions en outre les propriétés de couplage des modes dans le milieu actif lorsque les pertes non-linéaires sont présentes. Enfin, nous abordons l'utilisation de SHGA comme ''buffer reservoir'' dans les lasers bi-fréquences. Plus particulièrement, nous explorons expérimentalement et théoriquement le comportement du laser lorsque les pertes non-linéaires ne sont introduites que sur un seul mode propre du laser. Dans cette configuration, nous montrons qu'il est possible d'obtenir pour les deux modes à la fois une forte diminution des pics de bruit d'intensité résonants
Dual-frequency solid-state lasers are attractive for numerous domains (metrology, microwave photonics, Lidar-Radar, optical clocks). However, such lasers suffer from excess intensity noise which is difficult to cancel with usual methods. In this context, we develop a new approach called “buffer reservoir” for reducing the excess intensity noise. This method relies on the change of the laser’s dynamical behavior by inserting a low efficient nonlinear absorption mechanism in the cavity. First, this approach is studied on single frequency solid-state lasers by using two types of non-linear absorption: two-photon absorption (TPA) and second harmonic generation absorption (SHGA). We show a possible reduction of the intensity noise at the relaxation oscillations frequency of an Er,Yb:glass laser up to 50 dB without degrading neither its power nor its phase noise. We explore the underlying physics by developing an analytical model describing the laser dynamical behavior. The effect of the nonlinear absorber on the noise peaks lying at high frequency at the free spectral range of the cavity is also studied. We demonstrate the relevance of such self-regulated lasers for the distribution of optically carried local oscillators. We then extend the “buffer reservoir” approach to dual-frequency lasers. By developing a predictive analytical model, we show experimentally that the use of TPA enables 40 dB reduction of both in-phase and anti-phase noise under certain conditions. The mode coupling in the active medium is analyzed when the nonlinear losses are present. Finally, we address the use of SHGA as a ''buffer reservoir'' in dual-frequency lasers. In particular, we experimentally and theoretically explore the laser behavior when the nonlinear losses are inserted on one eigen-mode of the laser only. This configuration enables a strong reduction of resonant noise peaks for both modes
APA, Harvard, Vancouver, ISO, and other styles
10

Lally, Evan M. "A Narrow-Linewidth Laser at 1550 nm Using the Pound-Drever-Hall Stabilization Technique." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/34739.

Full text
Abstract:
Linewidth is a measure of the frequency stability of any kind of oscillator, and it is a defining characteristic of coherent lasers. Narrow linewidth laser technology, particularly in the field of fiber-based infrared lasers, has progressed to the point where highly stable sources are commercially available with linewidths on the order of 1-100 kHz. In order to achieve a higher level of stability, the laser must be augmented by an external frequency stabilization system. This paper presents the design and operation of a frequency locking system for infrared fiber lasers. Using the Pound-Drever-Hall technique, the system significantly reduces the linewidth of an input laser with an un-stabilized linewidth of 2 kHz. It uses a high-finesse Fabry-Perot cavity, which is mechanically and thermally isolated, as a frequency reference to measure the time-varying frequency of the input laser. An electronic feedback loop works to correct the frequency error and maintain constant optical power. Testing has proven the Pound-Drever-Hall system to be highly stable and capable of operating continuously for several seconds at a time.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Laser frequency noise"

1

T, Logan Ronald, and United States. National Aeronautics and Space Administration., eds. Semiconductor laser low frequency noise characterization: Final technical report. Rome, N.Y: Rome Laboratory, Air Force Materiel Command, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1934-, Hall J. L., Ye Jun 1967-, and Society of Photo-optical Instrumentation Engineers., eds. Laser frequency stabilization, standards, measurement, and applications: 24-26 January, 2001, San Jose, USA. Bellingham, Wash: SPIE, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yaakov, Shevy, and Society of Photo-optical Instrumentation Engineers., eds. Laser frequency stabilization and noise reduction: 9-10 February 1995, San Jose, California. Bellingham, Wash: SPIE, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Laser frequency noise"

1

Petermann, K. "Frequency-Modulation Characteristics of Laser Diodes." In Laser Diode Modulation and Noise, 119–44. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2907-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dämbkes, H. "New Semiconductor Components for Low Noise High Frequency Communication." In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 904–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48372-1_188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Telle, H. R., and B. Lipphardt. "Efficient Frequency Noise Reduction of GaAIAs Laser Diodes by Negative Electronic Feedback." In Frequency Standards and Metrology, 436–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fittinghoff, David N., and Michael Munroe. "Noise: Its Effects and Suppression." In Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, 179–201. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-1181-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cabrera, B. "The Laser Switch in SQUID Measurements: Fundamental Experiments and Low Frequency Noise Reduction." In Superconducting Devices and Their Applications, 326–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77457-7_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khan, Abid Hossain, Muhammed Mahbubur Razzaque, and Md Shafiqul Islam. "Performance Evaluation of Multi-layer Barriers for Machine-Induced Low-Frequency Noise Attenuation." In Intelligent Manufacturing and Energy Sustainability, 1–10. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1616-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pralgauskaitee, Sandra, Vilius Palenskis, and Jonas Matukas. "Low Frequency Noise Characteristics of Multimode and Singlemode Laser Diodes." In Semiconductor Laser Diode Technology and Applications. InTech, 2012. http://dx.doi.org/10.5772/35431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Medhi, Mrinmay, and Hirakjyoti Goswami. "Design and Development of a LF Receiver for Detection of Atmospheric Lightning." In Advances in IT Standards and Standardization Research, 29–40. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9795-8.ch003.

Full text
Abstract:
A low-frequency receiver is designed and operated to capture the LF spectrum associated with the atmospheric lighting with an ultimate aim to detect such events. Lightning releases frequencies over a wide band of the electromagnetic spectrum, but the reception of those frequencies are always limited by the prevailing EM noise at the receiving station. Therefore, the EM noise characteristics in the study environment are analyzed through a rigorous noise survey over the band 10kHz-2MHz. Based on the survey, 30-300kHz is selected as the operating frequency of the receiver, and the design and simulations are done accordingly. The receiver was calibrated using a known local AM radio signal of 730 kHz, which was later demodulated to validate the quality and accuracy of reception. The detector is then tested for three real lightning cases. It is seen from the observations that the frequencies 46.6 kHz and 90.13 kHz appeared during the lightning strikes with a maximum gain of 8.7 dB above the noise level.
APA, Harvard, Vancouver, ISO, and other styles
9

Datta, Mallika, Srijan Das, and Devarun Nath. "Textiles for Noise Control." In Textiles for Functional Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99274.

Full text
Abstract:
This chapter includes the mechanism of sound absorption and the classes of sound absorbing material to control the noise. The basic phenomena related to the reduction of sound by allowing it to soak in and dissipate also were introduced first, which, can be realised by viscous effects, heat conduction effects, and internal molecular energy interchanges. Porous absorbers are materials where sound propagates through an interconnected pore network resulting in sound energy dissipation. They are only effective at the mid-to-high frequency range, which is most sensitive to the human ear. The applications of different textile fibres and their various forms were identified later in the chapter. Finally, specific discussions are given to sound parameters, noise absorption coefficient, and its measurement technique. The chapter also deals with various factors influencing sound absorption.
APA, Harvard, Vancouver, ISO, and other styles
10

Chatterjee, Ayan, and Nikhilesh Barik. "A New Data Hiding Scheme Combining Genetic Algorithm and Artificial Neural Network." In Research Anthology on Artificial Neural Network Applications, 1522–31. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-2408-7.ch075.

Full text
Abstract:
Today, in the time of internet based communication, steganography is an important approach. In this approach, secret information is embedded in a cover medium with minimum distortion of it. Here, a video steganography scheme is developed in frequency domain category. Frequency domain is more effective than spatial domain due to variation data insertion domain. To change actual domain of entropy pixels of the video frames, uniform crossover of Genetic Algorithm (GA) is used. Then for data insertion in video frames, single layer perceptron of Artificial Neural Network is used. This particular concept of information security is attractive due to its high security during wireless communication. The effectiveness of the proposed technique is analyzed with the parameters PSNR (Peak Signal to Noise Ratio), IF and Payload (bpb).
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Laser frequency noise"

1

Perin, Georges, Dominique Mammez, Antoine Congar, Pascal Besnard, Karim Manamanni, Vincent Roncin, Frédéric Du Burck, and Stéphane Trebaol. "Low frequency noise blue external cavity diode laser." In Semiconductor Lasers and Laser Dynamics X, edited by Krassimir Panajotov, Marc Sciamanna, and Sven Höfling. SPIE, 2022. http://dx.doi.org/10.1117/12.2621961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jin, Warren, Bohan Li, Lue Wu, Lin Chang, Heming Wang, Boqiang Shen, Zhiquan Yuan, et al. "Ultra-low frequency noise spiral-cavity hybrid-integrated laser." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sth4k.1.

Full text
Abstract:
A semiconductor laser is self-injection-locked to a spiral, ultra-high-Q silicon-nitride resonator. The laser attains record-low frequency noise noise floor (0.006 Hz2/Hz or 40 mHz white-noise-linewidth) with stability at low-offset frequencies comparable to high-performance fiber lasers.
APA, Harvard, Vancouver, ISO, and other styles
3

Afiatouni, Firooz, Behrooz Abiri, Angad Rekhi, Hooman Abediasl, Hossein Hashemi, and Ali Hajimiri. "Electronic laser phase noise reduction." In 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 2013. http://dx.doi.org/10.1109/rfic.2013.6569578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kolotushkin, Yu V., and Vladimir I. Ustugov. "Quantum frequency noise of a tunable single-frequency solid state laser." In Laser Optics '95, edited by Artur A. Mak and Vladimir I. Ustugov. SPIE, 1996. http://dx.doi.org/10.1117/12.238085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ivanov, E. N., and L. Hollberg. "Wide-Band Suppression of Laser Intensity Noise." In 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE, 2007. http://dx.doi.org/10.1109/freq.2007.4319246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Haboucha, A., H. Jiang, P. Lemonde, A. Clairon, G. Santarelli, and F. Kefelian. "An ultra-low frequency noise agile laser." In 2010 IEEE International Frequency Control Symposium (FCS). IEEE, 2010. http://dx.doi.org/10.1109/freq.2010.5556251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haboucha, A., H. Jiang, F. Kefelian, P. Lemonde, A. Clairon, and G. Santarelli. "An ultra-low frequency noise agile laser." In EFTF-2010 24th European Frequency and Time Forum. IEEE, 2010. http://dx.doi.org/10.1109/eftf.2010.6533663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Camparo, James, Michael Huang, and John Coffer. "Laser Polarization Noise & CPT Atomic Clock Signals." In 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE, 2007. http://dx.doi.org/10.1109/freq.2007.4319240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rubiola, Enrico, Kirill Volyanskiy, and Laurent Larger. "Measurement of the laser relative intensity noise." In 2009 Joint Meeting of the European Frequency and Time Forum (EFTF) and the IEEE International Frequency Control Symposium (FCS). IEEE, 2009. http://dx.doi.org/10.1109/freq.2009.5168140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zagorulko, K. A., and A. O. Gordeev. "Low-noise Er-fiber femtosecond frequency comb." In 2018 International Conference Laser Optics (ICLO). IEEE, 2018. http://dx.doi.org/10.1109/lo.2018.8435267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography