Journal articles on the topic 'Laser cooling and trapping'

To see the other types of publications on this topic, follow the link: Laser cooling and trapping.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Laser cooling and trapping.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Stenholm, S. "Laser cooling and trapping." European Journal of Physics 9, no. 4 (October 1, 1988): 242–49. http://dx.doi.org/10.1088/0143-0807/9/4/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vredenbregt, E. J. D., and K. A. H. van Leeuwen. "Laser cooling and trapping visualized." American Journal of Physics 71, no. 8 (August 2003): 760–65. http://dx.doi.org/10.1119/1.1578063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McCarron, Daniel. "Laser cooling and trapping molecules." Journal of Physics B: Atomic, Molecular and Optical Physics 51, no. 21 (October 18, 2018): 212001. http://dx.doi.org/10.1088/1361-6455/aadfba.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Georgescu, Iulia. "From trapping to laser-cooling antihydrogen." Nature Reviews Physics 3, no. 4 (April 2021): 237. http://dx.doi.org/10.1038/s42254-021-00308-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kenfack, S. C., C. M. Ekengoue, A. J. Fotué, F. C. Fobasso, G. N. Bawe, and L. C. Fai. "Laser cooling and trapping of polariton." Computational Condensed Matter 11 (June 2017): 47–54. http://dx.doi.org/10.1016/j.cocom.2017.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

BJORKHOLM, J., S. CHU, A. CABLE, and A. ASHKIN. "Laser cooling and trapping of atoms." Optics News 12, no. 12 (December 1, 1986): 18. http://dx.doi.org/10.1364/on.12.12.000018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, Zhong, Kazuko Shimizu, Mingsheng Zhan, Fujio Shimizu, and Hiroshi Takuma. "Laser Cooling and Trapping of Li." Japanese Journal of Applied Physics 30, Part 2, No. 7B (July 15, 1991): L1324—L1326. http://dx.doi.org/10.1143/jjap.30.l1324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Foot, C. J. "Laser cooling and trapping of atoms." Contemporary Physics 32, no. 6 (November 1991): 369–81. http://dx.doi.org/10.1080/00107519108223712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Phillips, W. D. "Laser-cooling and trapping neutral atoms." Annales de Physique 10, no. 6 (1985): 717–32. http://dx.doi.org/10.1051/anphys:01985001006071700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Metcalf, H. J., and P. van der Straten. "Laser cooling and trapping of atoms." Journal of the Optical Society of America B 20, no. 5 (May 1, 2003): 887. http://dx.doi.org/10.1364/josab.20.000887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

SHIMIZU, Kazuko. "Laser Cooling and Trapping of Neutral Atoms." SHINKU 38, no. 10 (1995): 847–53. http://dx.doi.org/10.3131/jvsj.38.847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chen, Tao, and Bo Yan. "Laser cooling and trapping of polar molecules." Acta Physica Sinica 68, no. 4 (2019): 043701. http://dx.doi.org/10.7498/aps.68.20181655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

GILBERT, SARAH L., and CARL E. WIEMAN. "LASER COOLING AND TRAPPING FOR THE MASSES." Optics and Photonics News 4, no. 7 (July 1, 1993): 8. http://dx.doi.org/10.1364/opn.4.7.000008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Shimizu, Yukiko, and Hiroyuki Sasada. "Mechanical force in laser cooling and trapping." American Journal of Physics 66, no. 11 (November 1998): 960–67. http://dx.doi.org/10.1119/1.19006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Adams, C. S., and E. Riis. "Laser cooling and trapping of neutral atoms." Progress in Quantum Electronics 21, no. 1 (January 1997): 1–79. http://dx.doi.org/10.1016/s0079-6727(96)00006-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Metcalf, Harold. "Laser cooling and electromagnetic trapping of atoms." Optics News 13, no. 3 (March 1, 1987): 6. http://dx.doi.org/10.1364/on.13.3.000006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shimizu, Fujio. "Laser cooling and trapping of neutral atoms." Hyperfine Interactions 74, no. 1-4 (October 1992): 259–67. http://dx.doi.org/10.1007/bf02398635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xu, Xin-ye, Wen-li Wang, Qing-hong Zhou, Guo-hui Li, Hai-ling Jiang, Lin-fang Chen, Jie Ye, et al. "Laser cooling and trapping of ytterbium atoms." Frontiers of Physics in China 4, no. 2 (June 2009): 160–64. http://dx.doi.org/10.1007/s11467-009-0033-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Knothe, Christian, and Ulrich Oechsner. "Fiber optics for laser cooling and trapping." Optik & Photonik 6, no. 2 (May 2011): 49–51. http://dx.doi.org/10.1002/opph.201190332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nemova, Galina. "Laser Cooling and Trapping of Rare-Earth-Doped Particles." Applied Sciences 12, no. 8 (April 8, 2022): 3777. http://dx.doi.org/10.3390/app12083777.

Full text
Abstract:
This review focuses on optical refrigeration with the anti-Stokes fluorescence of rare-earth (RE)-doped low-phonon micro- and nanocrystals. Contrary to bulk samples, where the thermal energy is contained in internal vibrational modes (phonons), the thermal energy of nanoparticles is contained in both the translational motion and internal vibrational (phonons) modes of the sample. Much theoretical and experimental research is currently devoted to the laser cooling of nanoparticles. In the majority of the related work, only the translational energy of the particles has been suppressed. In this review, the latest achievements in hybrid optical refrigeration of RE-doped low-phonon micro- and nanoparticles are presented. Hybrid cooling permits the suppression of not only the translational energy of the RE-doped particles, but also their internal vibrational phonon thermal energy. Laser cooling of nanoparticles is not a simple task. Mie resonances can be used to enhance laser cooling with the anti-Stokes fluorescence of nanoparticles made of low-phonon RE-doped solids. Laser-cooled nanoparticles is a promising tool for fundamental quantum-mechanical studies, nonequilibrium thermodynamics, and precision measurements of forces.
APA, Harvard, Vancouver, ISO, and other styles
21

Kurosu, Takayuki, and Fujio Shimizu. "Laser Cooling and Trapping of Calcium and Strontium." Japanese Journal of Applied Physics 29, Part 2, No. 11 (November 20, 1990): L2127—L2129. http://dx.doi.org/10.1143/jjap.29.l2127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Shimizu, Fujio, Kazuko Shimizu, and Hiroshi Takuma. "Laser cooling and trapping of Ne metastable atoms." Physical Review A 39, no. 5 (March 1, 1989): 2758–60. http://dx.doi.org/10.1103/physreva.39.2758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cohen-Tannoudji, C. "Laser cooling and trapping of neutral atoms: theory." Physics Reports 219, no. 3-6 (October 1992): 153–64. http://dx.doi.org/10.1016/0370-1573(92)90133-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kurosu, Takayuki, and Fujio Shimizu. "Laser Cooling and Trapping of Alkaline Earth Atoms." Japanese Journal of Applied Physics 31, Part 1, No. 3 (March 15, 1992): 908–12. http://dx.doi.org/10.1143/jjap.31.908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Phillips, William D., John V. Prodan, and Harold J. Metcalf. "Laser cooling and electromagnetic trapping of neutral atoms." Journal of the Optical Society of America B 2, no. 11 (November 1, 1985): 1751. http://dx.doi.org/10.1364/josab.2.001751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Katori, Hidetoshi, and Fujio Shimizu. "Laser Cooling and Trapping of Argon and Krypton Using Diode Lasers." Japanese Journal of Applied Physics 29, Part 2, No. 11 (November 20, 1990): L2124—L2126. http://dx.doi.org/10.1143/jjap.29.l2124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sun, Hong-Bo, Hironobu Inouye, Yasushi Inouye, Kenji Okamoto, and Satoshi Kawata. "Laser-Diode-Tuned Sequential Laser Atom Cooling and Trapping for Nanofabrications." Japanese Journal of Applied Physics 40, Part 2, No. 7A (July 1, 2001): L711—L714. http://dx.doi.org/10.1143/jjap.40.l711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Khabarova, K., S. Strelkin, A. Galyshev, O. Berdasov, A. Gribov, N. Kolachevsky, and S. Sluysarev. "Deep Laser Cooling and Trapping of Sr at VNIIFTRI." EPJ Web of Conferences 103 (2015): 06004. http://dx.doi.org/10.1051/epjconf/201510306004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Phillips, William D. "Nobel Lecture: Laser cooling and trapping of neutral atoms." Reviews of Modern Physics 70, no. 3 (July 1, 1998): 721–41. http://dx.doi.org/10.1103/revmodphys.70.721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wieman, Carl, Gwenn Flowers, and Sarah Gilbert. "Inexpensive laser cooling and trapping experiment for undergraduate laboratories." American Journal of Physics 63, no. 4 (April 1995): 317–30. http://dx.doi.org/10.1119/1.18072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ruan, X. L., and M. Kaviany. "Advances in Laser Cooling of Solids." Journal of Heat Transfer 129, no. 1 (June 18, 2006): 3–10. http://dx.doi.org/10.1115/1.2360596.

Full text
Abstract:
We review the progress on laser cooling of solids. Laser cooling of ion-doped solids and semiconductors is based on the anti-Stokes fluorescence, where the emitted photons have a mean energy higher than that of the absorbed photons. The thermodynamic analysis shows that this cooling process does not violate the second law, and that the achieved efficiency is much lower than the theoretical limit. Laser cooling has experienced rapid progress in rare-earth-ion doped solids in the last decade, with the temperature difference increasing from 0.3to92K. Further improvements can be explored from the perspectives of materials and structures. Also, theories need to be developed, to provide guidance for searching enhanced cooling performance. Theoretical predictions show that semiconductors may be cooled more than ion-doped solids, but no success in bulk cooling has been achieved yet after a few attempts (due to the fluorescence trapping and nonradiative recombination). Possible solutions are discussed, and net cooling is expected to be realized in the near future.
APA, Harvard, Vancouver, ISO, and other styles
32

Helmerson, Kristian, and William D. Phillips. "Cooling, Trapping and Manipulation of Neutral Atoms and Bose-Einstein Condensates by Electromagnetic Fields." Modern Physics Letters B 14, supp01 (September 2000): 231–80. http://dx.doi.org/10.1142/s0217984900001567.

Full text
Abstract:
We give a general discussion of the mechanical effects of light, and of laser cooling and trapping techniques. This is followed by a description of experiments in the manipulation of Bose-Einstein condensates with optical laser pulses.
APA, Harvard, Vancouver, ISO, and other styles
33

Wieman, Carl E. "Bose–Einstein Condensation in an Ultracold Gas." International Journal of Modern Physics B 11, no. 28 (November 10, 1997): 3281–96. http://dx.doi.org/10.1142/s0217979297001581.

Full text
Abstract:
Bose–Einstein condensation in a gas has now been achieved. Atoms are cooled to the point of condensation using laser cooling and trapping, followed by magnetic trapping and evaporative cooling. These techniques are explained, as well as the techniques by which we observe the cold atom samples. Three different signatures of Bose–Einstein condensation are described. A number of properties of the condensate, including collective excitations, distortions of the wave function by interactions, and the fraction of atoms in the condensate versus temperature, have also been measured.
APA, Harvard, Vancouver, ISO, and other styles
34

Vishnyakova, G. A., E. S. Kalganova, D. D. Sukachev, S. A. Fedorov, A. V. Sokolov, A. V. Akimov, N. N. Kolachevsky, and V. N. Sorokin. "Two-stage laser cooling and optical trapping of thulium atoms." Laser Physics 24, no. 7 (June 13, 2014): 074018. http://dx.doi.org/10.1088/1054-660x/24/7/074018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Toader, Ovidiu, Sajeev John, and Kurt Busch. "Optical trapping, Field enhancement and Laser cooling in photonic crystals." Optics Express 8, no. 3 (January 29, 2001): 217. http://dx.doi.org/10.1364/oe.8.000217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mellish, Angela S., and Andrew C. Wilson. "A simple laser cooling and trapping apparatus for undergraduate laboratories." American Journal of Physics 70, no. 9 (September 2002): 965–71. http://dx.doi.org/10.1119/1.1477435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Vilshanskaya, E. V., S. A. Saakyan, V. A. Sautenkov, and B. B. Zelener. "The setup for laser cooling and trapping of calcium atoms." Journal of Physics: Conference Series 1147 (January 2019): 012097. http://dx.doi.org/10.1088/1742-6596/1147/1/012097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shao-Kai, Wang, Wang Qiang, Lin Yi-Ge, Wang Min-Ming, Lin Bai-Ke, Zang Er-Jun, Li Tian-Chu, and Fang Zhan-Jun. "Cooling and Trapping 88 Sr Atoms with 461 nm Laser." Chinese Physics Letters 26, no. 9 (September 2009): 093202. http://dx.doi.org/10.1088/0256-307x/26/9/093202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Morigi, G., B. Zambon, N. Leinfellner, and E. Arimondo. "Scaling laws in velocity-selective coherent-population-trapping laser cooling." Physical Review A 53, no. 4 (April 1, 1996): 2616–26. http://dx.doi.org/10.1103/physreva.53.2616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Rapol, U. D., A. Krishna, A. Wasan, and V. Natarajan. "Laser cooling and trapping of Yb from a thermal source." European Physical Journal D - Atomic, Molecular and Optical Physics 29, no. 3 (June 1, 2004): 409–14. http://dx.doi.org/10.1140/epjd/e2004-00041-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wang, Hui Bo. "Experiment and Analysis System without Modulation Locked Fiber Grating System." Applied Mechanics and Materials 513-517 (February 2014): 3886–89. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.3886.

Full text
Abstract:
High stability of semiconductor lasers have been shown useful in many applications areas,[such as optical communication, high-resolution spectroscopy quantum metrology, laser cooling and trapping[. With the rapid development of fiber optic dense wavelength division multiplexing system, we require laser source with high frequency stability in 1.5μm band. In this paper It is clear that temperature, cavity length and injection current have effects on frequency stability of FBG external cavity semiconductor laser by simulation experiments. Besides that, the frequency stabilization system is adjusted. Therefore, the frequency jitter spectra before and after locking are given and the experimental results are analyzed. The results show that after locking laser the typical frequency jitter is significantly improved comparing with frequency fluctuation in the condition of free running.
APA, Harvard, Vancouver, ISO, and other styles
42

Guo, J., E. Korsunsky, and E. Arimondo. "Laser cooling of Rydberg atoms by velocity-selective coherent population trapping." Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, no. 3 (June 1996): 557–69. http://dx.doi.org/10.1088/1355-5111/8/3/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Korsunsky, E., D. Kosachiov, B. Matisov, Yu Rozhdestvensky, L. Windholz, and C. Neureiter. "Quasiclassical analysis of laser cooling by velocity-selective coherent population trapping." Physical Review A 48, no. 2 (August 1, 1993): 1419–27. http://dx.doi.org/10.1103/physreva.48.1419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

KWONG, V. H. S. "COOLING AND TRAPPING OF LASER INDUCED MULTIPLY CHARGED IONS OF MOLYBDENUM." Le Journal de Physique Colloques 50, no. C1 (January 1989): C1–413—C1–417. http://dx.doi.org/10.1051/jphyscol:1989149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Vassen, Wim. "Laser cooling and trapping of metastable helium: towards Bose–Einstein condensation." Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, no. 4 (June 2001): 613–18. http://dx.doi.org/10.1016/s1296-2147(01)01204-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Liu, Xiaochi, Ning Ru, Junyi Duan, Peter Yun, Minghao Yao, and Jifeng Qu. "High-performance coherent population trapping clock based on laser-cooled atoms." Chinese Physics B 31, no. 4 (March 1, 2022): 043201. http://dx.doi.org/10.1088/1674-1056/ac2d21.

Full text
Abstract:
We present a coherent population trapping clock system based on laser-cooled 87Rb atoms. The clock consists of a frequency-stabilized CPT interrogation laser and a cooling laser as well as a compact magneto-optical trap, a high-performance microwave synthesizer, and a signal detection system. The resonance signal in the continuous wave regime exhibits an absorption contrast of ∼ 50%. In the Ramsey interrogation method, the linewidth of the central fringe is 31.25 Hz. The system achieves fractional frequency stability of 2.4 × 10 − 11 / τ , which goes down to 1.8 × 10−13 at 20000 s. The results validate that cold atom interrogation can improve the long-term frequency stability of coherent population trapping clocks and holds the potential for developing compact/miniature cold atoms clocks.
APA, Harvard, Vancouver, ISO, and other styles
47

Matisov, B. G., and I. E. Mazets. "Limit of laser cooling of atoms by velocity selective coherent population trapping." Journal of Physics B: Atomic, Molecular and Optical Physics 26, no. 21 (November 14, 1993): 3795–802. http://dx.doi.org/10.1088/0953-4075/26/21/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Xu, Liang, Bin Wei, Yong Xia, Lian-Zhong Deng, and Jian-Ping Yin. "BaF radical: A promising candidate for laser cooling and magneto-optical trapping." Chinese Physics B 26, no. 3 (March 2017): 033702. http://dx.doi.org/10.1088/1674-1056/26/3/033702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bigelow, N. P. "Low temperature physics without a cryostat: laser cooling and trapping of atoms." Low Temperature Physics 24, no. 2 (February 1998): 106–13. http://dx.doi.org/10.1063/1.593551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, Kong, Jun He, and Junmin Wang. "Single-Pass Laser Frequency Conversion to 780.2 nm and 852.3 nm Based on PPMgO:LN Bulk Crystals and Diode-Laser-Seeded Fiber Amplifiers." Applied Sciences 9, no. 22 (November 17, 2019): 4942. http://dx.doi.org/10.3390/app9224942.

Full text
Abstract:
We report the preparation of a 780.2 nm and 852.3 nm laser device based on single-pass periodically poled magnesium-oxide-doped lithium niobate (PPMgO:LN) bulk crystals and diode-laser-seeded fiber amplifiers. First, a single-frequency continuously tunable 780.2 nm laser of more than 600 mW from second-harmonic generation (SHG) by a 1560.5 nm laser can be achieved. Then, a 250 mW light at 852.3 nm is generated and achieves an overall conversion efficiency of 4.1% from sum-frequency generation (SFG) by mixing the 1560.5 nm and 1878.0 nm lasers. The continuously tunable range of 780.2 nm and 852.3 nm are at least 6.8 GHz and 9.2 GHz. By employing this laser system, we can conveniently perform laser cooling, trapping and manipulating both rubidium (Rb) and cesium (Cs) atoms simultaneously. This system has promising applications in a cold atoms Rb-Cs two-component interferemeter and in the formation of the RbCs dimer by the photoassociation of cold Rb and Cs atoms confined in a magneto-optical trap.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography