Academic literature on the topic 'Laser-based ion acceleration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laser-based ion acceleration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Laser-based ion acceleration"
Sommer, P., J. Metzkes-Ng, F.-E. Brack, T. E. Cowan, S. D. Kraft, L. Obst, M. Rehwald, H.-P. Schlenvoigt, U. Schramm, and K. Zeil. "Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration." Plasma Physics and Controlled Fusion 60, no. 5 (March 16, 2018): 054002. http://dx.doi.org/10.1088/1361-6587/aab21e.
Full textTayyab, M., S. Bagchi, J. A. Chakera, D. K. Avasthi, R. Ramis, A. Upadhyay, B. Ramakrishna, T. Mandal, and P. A. Naik. "Mono-energetic heavy ion acceleration from laser plasma based composite nano-accelerator." Physics of Plasmas 25, no. 12 (December 2018): 123102. http://dx.doi.org/10.1063/1.5053640.
Full textUesaka, Mitsuru, and Kazuyoshi Koyama. "Advanced Accelerators for Medical Applications." Reviews of Accelerator Science and Technology 09 (January 2016): 235–60. http://dx.doi.org/10.1142/s1793626816300115.
Full textTorrisi, Lorenzo, Lucia Calcagno, Mariapompea Cutroneo, Jan Badziak, Marcin Rosinski, Agnieszka Zaras-Szydlowska, and Alfio Torrisi. "Nanostructured targets for TNSA laser ion acceleration." Nukleonika 61, no. 2 (June 1, 2016): 103–8. http://dx.doi.org/10.1515/nuka-2016-0018.
Full textWeichman, K., A. P. L. Robinson, M. Murakami, J. J. Santos, S. Fujioka, T. Toncian, J. P. Palastro, and A. V. Arefiev. "Progress in relativistic laser–plasma interaction with kilotesla-level applied magnetic fields." Physics of Plasmas 29, no. 5 (May 2022): 053104. http://dx.doi.org/10.1063/5.0089781.
Full textSchumacher, D. W., P. L. Poole, C. Willis, G. E. Cochran, R. Daskalova, J. Purcell, and R. Heery. "Liquid Crystal Targets and Plasma Mirrors For Laser Based Ion Acceleration." Journal of Instrumentation 12, no. 04 (April 27, 2017): C04023. http://dx.doi.org/10.1088/1748-0221/12/04/c04023.
Full textCutroneo, Mariapompea, Lorenzo Torrisi, Jan Badziak, Marcin Rosinski, Vladimir Havranek, Anna Mackova, Petr Malinsky, et al. "Graphite oxide based targets applied in laser matter interaction." EPJ Web of Conferences 167 (2018): 02004. http://dx.doi.org/10.1051/epjconf/201816702004.
Full textChagovets, Timofej, Stanislav Stanček, Lorenzo Giuffrida, Andriy Velyhan, Maksym Tryus, Filip Grepl, Valeriia Istokskaia, et al. "Automation of Target Delivery and Diagnostic Systems for High Repetition Rate Laser-Plasma Acceleration." Applied Sciences 11, no. 4 (February 13, 2021): 1680. http://dx.doi.org/10.3390/app11041680.
Full textTorrisi, Lorenzo, Mariapompea Cutroneo, and Jiri Ullschmied. "HYDROGENATED TARGETS FOR HIGH ENERGY PROTON GENERATION FROM LASER IRRADIATING IN TNSA REGIME." Acta Polytechnica 55, no. 3 (June 30, 2015): 199–202. http://dx.doi.org/10.14311/ap.2015.55.0199.
Full textLi, Dongyu, Tang Yang, Minjian Wu, Zhusong Mei, Kedong Wang, Chunyang Lu, Yanying Zhao, et al. "Introduction of Research Work on Laser Proton Acceleration and Its Application Carried out on Compact Laser–Plasma Accelerator at Peking University." Photonics 10, no. 2 (January 28, 2023): 132. http://dx.doi.org/10.3390/photonics10020132.
Full textDissertations / Theses on the topic "Laser-based ion acceleration"
PEREGO, CLAUDIO. "Target normal sheath acceleration for laser-driven ion generation: advances in theoretical modeling." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/41758.
Full textGangolf, Thomas. "Intense laser-plasma interactions with gaseous targets for energy transfer and particle acceleration." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX110.
Full textLaser-matter interaction is studied mostly with near-infrared (NIR) lasers as they can generate the most intense pulses. For these lasers, targets between 0.05 to 2.5 times the critical density are challenging to create but offer interesting prospects. In this thesis, novel high-density Hydrogen gas jet targets with densities in this range are used in view of two applications:First, ions are accelerated by collisionless shock acceleration (CSA). Upon interaction of a NIR laser with a slightly overcritical gas jet target, a collimated, quasi-monoenergetic proton beam is generated in forward direction. Simulations indicate the formation of a collisionless shock and acceleration of protons both by the shock and target normal sheath acceleration (TNSA) on the target rear surface under these conditions. These directed, monoenergetic particle bunches are more suitable for many applications than the broadband particle beams already generated routinely.Second, at densities between 0.05 and 0.2 times the critical density, energy is transferred from one laser pulse (pump) to a counterpropagating pulse (seed), via Stimulated Brillouin Backscattering in the strongly-coupled regime (sc-SBS). For the case of broad- band (60 nanometers) pulses, the role of the preionization for pulse propagation and both spontaneous and stimulated Brillouin backscattering are studied, including the influence of the chirp. It is shown that for narrower bandwidths, the seed pulse is ampli- fied by tens of millijoules, and signatures of efficient amplification and pump depletion are found. This concept aims at amplifying laser pulses to powers above the damage thresholds of solid state amplifiers
Kiefer, Thomas [Verfasser], Malte C. [Akademischer Betreuer] Kaluza, Stefan [Akademischer Betreuer] Skupin, Patrick [Akademischer Betreuer] Mora, and Vladimir T. [Akademischer Betreuer] Tikhonchuk. "Investigation of the laser-based Target Normal Sheath Acceleration (TNSA) process for high-energy ions : an analytical and numerical study / Thomas Kiefer. Gutachter: Malte C. Kaluza ; Stefan Skupin ; Patrick Mora ; Vladimir T. Tikhonchuk." Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2014. http://d-nb.info/1050977742/34.
Full textPopov, Konstantin. "Laser based acceleration of charged particles." Phd thesis, 2009. http://hdl.handle.net/10048/791.
Full textTitle from pdf file main screen (viewed on Jan. 5, 2010). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics, Department of Physics, University of Alberta." Includes bibliographical references.
Book chapters on the topic "Laser-based ion acceleration"
Ji, Liangliang. "Extreme Light Field Generation I: Quasi-Single-Cycle Relativistic Laser Pulse." In Ion acceleration and extreme light field generation based on ultra-short and ultra–intense lasers, 57–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54007-3_4.
Full textJi, Liangliang. "Extreme Light Field Generation II: Short-Wavelength Single-Cycle Ultra-Intense Laser Pulse." In Ion acceleration and extreme light field generation based on ultra-short and ultra–intense lasers, 65–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54007-3_5.
Full textSchlenvoigt, Hans-Peter, Oliver Jckel, Sebastian M., and Malte C. "Laser-based Particle Acceleration." In Advances in Solid State Lasers Development and Applications. InTech, 2010. http://dx.doi.org/10.5772/7965.
Full textLiu, Yi. "Urban Land Subsidence Analysis Based on Oblique Photogrammetry 3D Models and InSAR Technology." In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220881.
Full textMohamed, Zulkifli, and Genci Capi. "Assistive Intelligent Humanoid Robot in Human Environment." In Rapid Automation, 887–915. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8060-7.ch040.
Full textKnabe, Annike, Manuel Schilling, Hu Wu, Alireza HosseiniArani, Jürgen Müller, Quentin Beaufils, and Franck Pereira dos Santos. "The Benefit of Accelerometers Based on Cold Atom Interferometry for Future Satellite Gravity Missions." In International Association of Geodesy Symposia. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/1345_2022_151.
Full textKumar Mitra, Rajib, and Dipak Kumar Palit. "Probing Biological Water Using Terahertz Absorption Spectroscopy." In Terahertz Technology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97603.
Full textConference papers on the topic "Laser-based ion acceleration"
Thirolf, P. G., D. Habs, M. Gross, K. Allinger, J. Bin, A. Henig, D. Kiefer, et al. "Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration." In FRONTIERS IN NUCLEAR STRUCTURE, ASTROPHYSICS, AND REACTIONS: FINUSTAR 3. AIP, 2011. http://dx.doi.org/10.1063/1.3628362.
Full textKnaak, K. M., K. Wendt, and H. J. Kluge. "A Laser Operated Precision DC HV Voltmeter." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cwc6.
Full textSeimetz, M., P. Bellido, F. Sanchez, R. Lera, A. Ruiz-de la Cruz, S. Torres-Peiro, L. Roso, et al. "Detailed requirements for a laser-based proton/ion accelerator for radioisotope production." In 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2015. http://dx.doi.org/10.1109/nssmic.2015.7582187.
Full textPomerantz, Ishay, Itay Kishon, Annika Kleinschmidt, Victor A. Schanz, Alexandra Tebartz, Juan Carlos Fernández, Donald C. Gautier, et al. "Laser-based fast-neutron spectroscopy (Conference Presentation)." In Laser Acceleration of Electrons, Protons, and Ions, edited by Eric Esarey, Carl B. Schroeder, and Florian J. Grüner. SPIE, 2017. http://dx.doi.org/10.1117/12.2264955.
Full textLaBerge, Maxwell, Omid Zarini, Alex H. Lumpkin, Alexander Debus, Andrea Hannasch, Jurjen Couperus Cabadağ, Brant Bowers, et al. "Coherent-transition-radiation-based reconstruction of laser plasma accelerated electron bunches." In Laser Acceleration of Electrons, Protons, and Ions VI, edited by Stepan S. Bulanov, Carl B. Schroeder, and Jörg Schreiber. SPIE, 2021. http://dx.doi.org/10.1117/12.2592306.
Full textSpielmann, Christian. "Laser-Plasma-Based Secondary Sources: Accelerating Particles and Light." In Frontiers in Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/fio.2015.fm2a.1.
Full textGhebregziabher, I., S. Chen, N. D. Powers, C. M. Maharjan, C. Liu, G. Golovin, S. Banerjee, et al. "Bright γ-Ray Beam Source Based on Laser Wakefield Accelerator and Laser Undulator." In Frontiers in Optics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/fio.2012.fth1b.3.
Full textBarry, Michael. "Design of Apparatus for Studying Aerodynamics of Voice Production." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61822.
Full textZhou, Minchuan, Zifan Zhou, Mohammad Fouda, Jacob Scheuer, and Selim M. Shahriar. "Fast-light Enhanced Brillouin Laser Based Active Fiber Optics Sensor for Simultaneous Measurement of Rotation and Acceleration." In Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.ff1b.2.
Full textLin, Bin, Harry H. Cheng, Benjamin D. Shaw, Bo Chen, and Joe Palen. "Optical and Mechanical Design of a Laser-Based Non-Intrusive Vehicle Delineation Detection System." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/cie-21668.
Full textReports on the topic "Laser-based ion acceleration"
Baral, Aniruddha, Jeffery Roesler, and Junryu Fu. Early-age Properties of High-volume Fly Ash Concrete Mixes for Pavement: Volume 2. Illinois Center for Transportation, September 2021. http://dx.doi.org/10.36501/0197-9191/21-031.
Full text