Academic literature on the topic 'Laser à Ultra Haute Intensité'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laser à Ultra Haute Intensité.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Laser à Ultra Haute Intensité"
Druon, Frédéric, Marc Sentis, François Salin, Catherine Le Blanc, Pascal Salières, Fabien Quéré, and Philippe Zeitoun. "Générer des impulsions laser ultra-brèves de très haute intensité : la technique du CPA." Reflets de la physique, no. 61 (March 2019): 13–25. http://dx.doi.org/10.1051/refdp/201961013.
Full textQuéré, Fabien, and Philippe Martin. "Vers l’optique à ultra-haute intensité : l'exemple des miroirs plasmas." Reflets de la physique, no. 19 (May 2010): 14–18. http://dx.doi.org/10.1051/refdp/2010008.
Full textLe Blanc, Catherine. "Principes et réalisation d'une chaîne laser femtoseconde haute intensité basée sur le saphir dopé au titane." Annales de Physique 19, no. 1 (1994): 1–157. http://dx.doi.org/10.1051/anphys:019940019010100.
Full textMerdji, Hamed, and Willem Boutu. "Optique attoseconde et électronique pétahertz dans les semiconducteurs." Photoniques, no. 109 (July 2021): 52–56. http://dx.doi.org/10.1051/photon/202110952.
Full textDissertations / Theses on the topic "Laser à Ultra Haute Intensité"
Tatomirescu, Emilian-Dragos. "Accélération laser-plasma à ultra haute intensité - modélisation numérique." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0013/document.
Full textWith the latest increases in maximum laser intensity achievable through short pulses at high power (femtosecond range) an interest has arisen in potential laser plasma sources. Lasers are used in proton radiography, rapid ignition, hadrontherapy, production of radioisotopes and astrophysical laboratory. During the laser-target interaction, the ions are accelerated by different physical processes, depending on the area of the target. All these mechanisms have one thing in common: the ions are accelerated by intense electric fields, which occur due to the separation of high charge induced by the interaction of the laser pulse with the target, directly or indirectly. Two main distinct sources for charge displacement can be identified. The first is the charge gradient caused by the direct action of the laser ponderomotive force on the electrons in the front surface of the target, which is the premise for the pressure ramping acceleration (RPA) process. A second source can be identified as coming from the laser radiation which is transformed into kinetic energy of a hot relativistic electron population (~ a few MeV). The hot electrons move and recirculate through the target and form a cloud of relativistic electrons at the exit of the target in a vacuum. This cloud, which extends for several lengths of Debye, creates an extremely intense longitudinal electric field, mostly directed along the normal surface, which is therefore the cause of effective ion acceleration, which leads to the normal target sheath acceleration (TNSA) process. The TNSA mechanism makes it possible to use different target geometries in order to obtain a better focusing of the beams of particles on the order of several tens of microns, with high energy densities. Hot electrons are produced by irradiating a solid sheet with an intense laser pulse; these electrons are transported through the target, forming a strong electrostatic field, normal to the target surface. Protons and positively charged ions from the back surface of the target are accelerated by this domain until the charge of the electron is compensated. The density of hot electrons and the temperature in the back vacuum depend on the target geometric and compositional properties such as target curvature, pulse and microstructure tuning structures for enhanced proton acceleration. In my first year I studied the effects of target geometry on the proton and energy ion and angular distribution in order to optimize the accelerated laser particle beams by means of two-dimensional (2D) particle -in-cell (PIC) simulations of the interaction of ultra-short laser pulses with several microstructured targets. Also during this year, I studied the theory behind the models used
Carrié, Michaël. "Accélération de protons par laser à ultra-haute intensité : étude et application au chauffage isochore." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00608050.
Full textDervieux, Vincent Nicolas Marie. "Caractérisation des plasmas chauds et denses produits par intéraction laser à ultra-haute intensité d'une cible solide." Palaiseau, Ecole polytechnique, 2015. http://www.theses.fr/2015EPXX0041.
Full textMoulanier, Ioaquin. "Modélisation réaliste de l'accélération laser-plasma." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP173.
Full textThe interaction of a short laser pulse with an underdense plasma generates strong electric field gradients in the laser beam wake, trapping electrons of the plasma and accelerating them to ultra-relativistic energies. For laser peak intensities above 10 to the power 18 Watt per squared centimeter, the process is non-linear, and the spatiotemporal laser characteristics evolve during its propagation in the plasma.The modeling of the laser transverse distribution measured in experiment, together with its spectral phase,is used to describe the imperfections of the laser and improve the accuracy of the description of the mechanisms during interaction and the resulting electron bunch properties. Numerical tools were developped for the reconstruction of the laser distribution and its integration in particle-in-cell simulations, allowing us to achieve a better agreement between numerical diagnostics and experimental measurements of the electron spectra.The reconstruction algorithm of the laser distribution is introduced, as well as its integration in a quasi-3D particle-in-cell code. Specific examples show the impact of the laser distribution transverse asymmetry in the non-linear interaction regime through simulations that reproduce accurately laser-plasma acceleration experiments performed in the long-focal area of the APOLLON laser facility and at the Lund Laser Centre
Maclossi, Mauro. "Transport dans la matière sous dense et sur dense d'un faisceau d'électrons relativistes, produit par l'interaction d'une impulsion laser à ultra haute intensité." Palaiseau, Ecole polytechnique, 2006. http://www.theses.fr/2006EPXX0063.
Full textRamirez, Lourdes Patricia. "Few-cycle OPCPA laser chain." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00806245.
Full textMalvache, Arnaud. "Optique non-linéaire à haute intensité : Compression d'impulsions laser Interaction laser-plasma." Phd thesis, Palaiseau, Ecole polytechnique, 2011. https://theses.hal.science/index.php?halsid=uofsba7dj5fa0catc3i9mh00v0&view_this_doc=pastel-00677295&version=1.
Full textThis mainly theoretical PhD thesis has been done in the framework of high-order harmonics generation on solid targets using 1mJ ultrashort laser pulses (2 optical cycles) at high repetition rate (1kHz), CEP-stabilized. On the one hand, in order to fully use the laser source, I developed a simulation code of hollow-core fiber propagation. The results of this code, associated with an experimental study, allowed to push the energy limitation of this compression technique. On the other hand, I used PIC simulation and I developed a simulation model of CWE in order to quantify its dependence to the laser and plasma parameters. This work first helped to explain the CWE spectrum changes with pulse CEP. Second, by comparing theoretical results with an experimental parametric study, it provided information about the plasma conditions such as density gradient and electronic temperature
Malvache, Arnaud. "Optique non-linéaire à haute intensité : Compression d'impulsions laser Interaction laser-plasma." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00677295.
Full textPariente, Gustave. "Caractérisation spatio-temporelle d’impulsions laser de haute puissance." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS003/document.
Full textHigh power laser make it possible to reach very high intensities (up to 10²²W.cm⁻²). In order to get to this level of intensity, a moderate quantity of energy (on the order of the Joule) is concentrated in a very short time (on the order of tens of femtoseconds) onto a small surface (on the order of 1 μm²). These beams are therefore ultra-short and focused with a high aperture optic. These features mean that their diameter prior to focus is large and their spectral width is big. As a result, these beams are subject to spatio-spectral distorsions (of spatio-temporal couplings). After focus, these distorsions induce a dramatic reduction of the peak intensity. This situation is all the more true when the laser is more intense and its diameter and spectral width are therefore bigger. Despite their detrimental effects, spatio-temporal couplings can be of great interest when controlled. One can indeed introduce weak spatio-temporal couplings for experimental purposes. In the 1990s and 2000s, a big effort was put in order to characterize dans optimize the temporal profile of femtosecond lasers. Meanwhile, adaptative optics solutions were developed to control the spatial profil of ultra intense laser beams and provide the best focal spot achievable. By nature, this approach is blind to spatio-temporal couplings. Measuring these distorsions requires a spatio-temporal characterization. Before the start of this Phd thesis, spatio-temporal characterization methods already existed. Although none of these devices were ever adapted to the measurement of ultra-intense laser beams. During this Phd Thesis, we developped a new spatio-temporal characterization technique which we called TERMITES. This technique is based on a self-referenced Fourier transform spectroscopy scheme. TERMITES made it possible for us to perform the first total spatio-temporal characterization of a 100 TW laser (UHI-100 at CEA Saclay, France). The detection of spatio-temporal distorsions with the help of these measurements confirmed the need for a generalization of spatio-temporal characterization of ultra-high power lasers
Alessandra, Bigongiari. "Interaction laser-réseau plasma à haute intensité: excitation d'une onde de surface et accélération de particules." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00758355.
Full textBook chapters on the topic "Laser à Ultra Haute Intensité"
"Liste des abbréviations." In Additive manufacturing in orthognathic surgery: A case study. Université Paris Cité, 2024. http://dx.doi.org/10.53480/imp3d.221019.
Full textConference papers on the topic "Laser à Ultra Haute Intensité"
Megie, G., and J. Pelon. "Active Monitoring of Ozone Vertical Distribution and Related Parameters in the Troposphere and Stratosphere." In Optical Remote Sensing. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/ors.1985.wa4.
Full text