To see the other types of publications on this topic, follow the link: Large spin.

Journal articles on the topic 'Large spin'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Large spin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wang, Wei L., Sheng Meng, and Efthimios Kaxiras. "Graphene NanoFlakes with Large Spin." Nano Letters 8, no. 1 (January 2008): 241–45. http://dx.doi.org/10.1021/nl072548a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Loewy, Amit, and Yaron Oz. "Large spin strings in AdS3." Physics Letters B 557, no. 3-4 (April 2003): 253–62. http://dx.doi.org/10.1016/s0370-2693(03)00196-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cammarota, C. "The large block spin interaction." Il Nuovo Cimento B Series 11 96, no. 1 (November 1986): 1–16. http://dx.doi.org/10.1007/bf02725573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

DiIorio, Gino, Jeffrey J. Brown, Joseph A. Borrello, William H. Perman, and Hui Hua Shu. "Large angle spin-echo imaging." Magnetic Resonance Imaging 13, no. 1 (January 1995): 39–44. http://dx.doi.org/10.1016/0730-725x(94)00082-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baykal, Altan, and Ali Alpar. "Expectancy of large pulsar glitches." International Astronomical Union Colloquium 160 (1996): 105–6. http://dx.doi.org/10.1017/s0252921100041154.

Full text
Abstract:
AbstractWe study the expectancy of large glitches (ΔΩ/Ω > 10−7) from a sample of 472 pulsars other than the Vela pulsar. The pulsars in this sample have exhibited 20 large glitches. In the sample the total observation span is larger than 2000 pulsar years. We assume that all pulsars experience such glitches, with rates that depend on the pulsars’ rotation rate and spin-down rate, and on the glitch model. The superfluid vortex unpinning model gives good agreement with the observed distribution of glitches and with the parameter values deduced for the Vela pulsar glitches.
APA, Harvard, Vancouver, ISO, and other styles
6

Tareyeva, E. E., and T. I. Schelkacheva. "Spin-One p-Spin Glass: Exact Solution for Large p." Theoretical and Mathematical Physics 194, no. 2 (February 2018): 252–59. http://dx.doi.org/10.1134/s0040577918020058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Doncheski, M. A., R. W. Robinett, and L. Weinkauf. "Spin-spin asymmetries in large transverse momentum Higgs-boson production." Physical Review D 47, no. 3 (February 1, 1993): 1243–46. http://dx.doi.org/10.1103/physrevd.47.1243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nakajima, Takashi. "Ultrafast nuclear spin polarization for isotopes with large nuclear spin." Journal of the Optical Society of America B 26, no. 4 (March 3, 2009): 572. http://dx.doi.org/10.1364/josab.26.000572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, Junjun, Tongtong Feng, and Qiang Gu. "Spin dynamics of large-spin fermions in a harmonic trap." Annals of Physics 379 (April 2017): 175–86. http://dx.doi.org/10.1016/j.aop.2017.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Peeters, Kasper, Jacob Sonnenschein, and Marija Zamaklar. "Holographic decays of large-spin mesons." Journal of High Energy Physics 2006, no. 02 (February 2, 2006): 009. http://dx.doi.org/10.1088/1126-6708/2006/02/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Alday, Luis F., and Juan Maldacena. "Comments on operators with large spin." Journal of High Energy Physics 2007, no. 11 (November 9, 2007): 019. http://dx.doi.org/10.1088/1126-6708/2007/11/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bernard, D., N. Regnault, and D. Serban. "Large N spin quantum Hall effect." Nuclear Physics B 612, no. 3 (October 2001): 291–312. http://dx.doi.org/10.1016/s0550-3213(01)00352-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Magnusson, Per. "Spin vectors of 22 large asteroids." Icarus 85, no. 1 (May 1990): 229–40. http://dx.doi.org/10.1016/0019-1035(90)90113-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Netočný, K., and F. Redig. "Large Deviations for Quantum Spin Systems." Journal of Statistical Physics 117, no. 3-4 (November 2004): 521–47. http://dx.doi.org/10.1007/s10955-004-3452-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ogata, Yoshiko. "Large Deviations in Quantum Spin Chains." Communications in Mathematical Physics 296, no. 1 (February 3, 2010): 35–68. http://dx.doi.org/10.1007/s00220-010-0986-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tchernyshyov, Oleg. "Quantum spin liquids: a large-Sroute." Journal of Physics: Condensed Matter 16, no. 11 (March 4, 2004): S709—S714. http://dx.doi.org/10.1088/0953-8984/16/11/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Preparata, G. "SPIN AND FLAVOR AT LARGE ANGLES." Le Journal de Physique Colloques 46, no. C2 (February 1985): C2–13—C2–21. http://dx.doi.org/10.1051/jphyscol:1985202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Garanin, D. A., K. Kladko, and P. Fulde. "Quasiclassical Hamiltonians for large-spin systems." European Physical Journal B 14, no. 2 (March 2000): 293–300. http://dx.doi.org/10.1007/s100510050132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

HJELM, ANDERS, JOAKIM TRYGG, OLLE ERIKSSON, BÖRJE JOHANSSON, and JOHN M. WILLS. "ORBITAL PARAMAGNETISM IN METALLIC SYSTEMS WITH LARGE ANGULAR MOMENTA." International Journal of Modern Physics B 09, no. 21 (September 30, 1995): 2735–51. http://dx.doi.org/10.1142/s0217979295001026.

Full text
Abstract:
We demonstrate that the field induced spin and orbital moments in paramagnetic metals in general are parallel, since the Zeeman energy overcomes the spin-orbit energy that is in favor of an antiparallel arrangement when the electronic shell is less than half-filled. In the early actinides, however, the spin-orbit energy becomes sufficiently strong to approach the border where the moments can couple antiparallel. This results in peculiar magnetic states for α-Pu and some uranium compounds, where the spin moments are antiparallel to the applied field and the magnetic response dominated by the orbital character, and consequently these systems display unusual spin densities and magnetic form factors.
APA, Harvard, Vancouver, ISO, and other styles
20

Sachdev, Subir, and N. Read. "LARGE N EXPANSION FOR FRUSTRATED AND DOPED QUANTUM ANTIFERROMAGNETS." International Journal of Modern Physics B 05, no. 01n02 (January 1991): 219–49. http://dx.doi.org/10.1142/s0217979291000158.

Full text
Abstract:
A large N expansion technique, based on symplectic (Sp(N)) symmetry, for frustrated magnetic systems is studied. The phase diagram of a square lattice, spin S, quantum antiferromagnet with first, second and third neighbor antiferromagnetic coupling (the J1-J2-J3 model) is determined in the large-N limit and consequences of fluctuations at finite N for the quantum disordered phases are discussed. In addition to phases with long range magnetic order, two classes of disordered phases are found: (i) states similar to those in unfrustrated systems with commensurate, collinear spin correlations, confinement of spinons, and spin-Peierls or valence-bond-solid order controlled by the value of 2S (mod 4) or 2S (mod 2) ; (ii) states with incommensurate, coplanar spin correlations, and unconfined bosonic spin-1/2 spinon excitations. The occurrence of “order from disorder” at large S is discussed. Neither chirally ordered nor spin nematic states are found. Initial results on superconductivity in the t—J model at N=∞ and zero temperature are also presented.
APA, Harvard, Vancouver, ISO, and other styles
21

Gardner, Daniel M., Hsiao-Fan Chen, Matthew D. Krzyaniak, Mark A. Ratner, and Michael R. Wasielewski. "Large Dipolar Spin–Spin Interaction in a Photogenerated U-Shaped Triradical." Journal of Physical Chemistry A 119, no. 29 (July 2, 2015): 8040–48. http://dx.doi.org/10.1021/acs.jpca.5b03048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kuprov, Ilya. "Diagonalization-free implementation of spin relaxation theory for large spin systems." Journal of Magnetic Resonance 209, no. 1 (March 2011): 31–38. http://dx.doi.org/10.1016/j.jmr.2010.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Anselmino, M., and E. Predazzi. "Proton spin-spin asymmetries for large angle electron-proton elastic scattering." Zeitschrift für Physik C Particles and Fields 28, no. 2 (July 1985): 303–8. http://dx.doi.org/10.1007/bf01575739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Anselmino, M. "PROTON SPIN-SPIN ASYMMETRIES FOR LARGE ANGLE ELECTRON-PROTON ELASTIC SCATTERING." Le Journal de Physique Colloques 46, no. C2 (February 1985): C2–195—C2–200. http://dx.doi.org/10.1051/jphyscol:1985218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Shumilin A. V. and Smirnov D. S. "Nuclear spin dynamics and noise in anisotropic large box model-=SUP=-*-=/SUP=-." Physics of the Solid State 64, no. 2 (2022): 194. http://dx.doi.org/10.21883/pss.2022.02.52967.223.

Full text
Abstract:
We consider the central spin model in the box approximation taking into account external magnetic field and anisotropy of the hyperfine interaction. From the exact Hamiltonian diagonalization we obtain analytical expressions for the nuclear spin dynamics in the limit of many nuclear spins. We predict the nuclear spin precession in zero magnetic field for the case of anisotropic interaction between electron and nuclear spins. We calculate and describe the nuclear spin noise spectra in the thermodynamic equilibrium. The obtained results can be used for the analysis of the nuclear spin induced current fluctuations in organic semiconductors. Keywords: central spin model, box model, nuclear spin dynamics.
APA, Harvard, Vancouver, ISO, and other styles
26

Wakamura, Taro, Kohei Ohnishi, Yasuhiro Niimi, and YoshiChika Otani. "Large Spin Accumulation with Long Spin Diffusion Length in Cu/MgO/Permalloy Lateral Spin Valves." Applied Physics Express 4, no. 6 (May 17, 2011): 063002. http://dx.doi.org/10.1143/apex.4.063002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chen, Xin, Linyang Li, and Mingwen Zhao. "Dumbbell stanane: a large-gap quantum spin hall insulator." Physical Chemistry Chemical Physics 17, no. 25 (2015): 16624–29. http://dx.doi.org/10.1039/c5cp00046g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Eichele, Klaus, Roderick E. Wasylishen, Robert W. Schurko, Neil Burford, and W. Alex Whitla. "An unusually large value of 1J(31P,31P) for a solid triphenylphosphine phosphadiazonium cationic complex: determination of the sign of J from 2D spin-echo experiments." Canadian Journal of Chemistry 74, no. 11 (November 1, 1996): 2372–77. http://dx.doi.org/10.1139/v96-264.

Full text
Abstract:
Phosphorus-31 NMR spectra of a solid triphenylphosphine phosphadiazonium salt, [Mes*NP-PPh3][SO3CF3], have been acquired at 4.7 and 9.4 T. Analysis of the spectra obtained with magic-angle spinning indicates that the two phosphorus nuclei are strongly spin–spin coupled, [Formula: see text], despite the unusually long P—P separation, rP,P = 2.625 Å. Two-dimensional spin-echo spectra provide convincing evidence that 1J(31P,31P) is negative. Semi-empirical molecular orbital calculations at the INDO level support the negative sign for 1J(31P,31P). A large span, 576 ppm, is observed for the chemical shift tensor of the two-coordinate phosphorus centre (δ11 = 307 ppm, δ22 = 174 ppm, δ33 = −269 ppm), which is very similar to the value previously reported for the non-coordinated phosphorus centre in the free Lewis acid, [Mes*NP][AlCl4]. The principal components and orientations of the phosphorus shielding tensors of these compounds are compared with those calculated for [HNP]+ and its phosphine adduct using the ab initio Gauge-Including Atomic Orbitals method. The phosphorus chemical shift tensor of the triphenylphosphine moiety has a relatively small span of 33 ppm. Key words: spin–spin coupling constants, solid-state NMR, 31P NMR, MO calculations, phosphadiazonium cation, P—P bonds.
APA, Harvard, Vancouver, ISO, and other styles
29

Abdelwahab, Ibrahim, Dushyant Kumar, Tieyuan Bian, Haining Zheng, Heng Gao, Fanrui Hu, Arthur McClelland, et al. "Two-dimensional chiral perovskites with large spin Hall angle and collinear spin Hall conductivity." Science 385, no. 6706 (July 19, 2024): 311–17. http://dx.doi.org/10.1126/science.adq0967.

Full text
Abstract:
Two-dimensional hybrid organic-inorganic perovskites with chiral spin texture are emergent spin-optoelectronic materials. Despite the wealth of chiro-optical studies on these materials, their charge-to-spin conversion efficiency is unknown. We demonstrate highly efficient electrically driven charge-to-spin conversion in enantiopure chiral perovskites (R/S-MB) 2 (MA) 3 Pb 4 I 13 (〈 n 〉 = 4), where MB is 2-methylbutylamine, MA is methylamine, Pb is lead, and I is iodine. Using scanning photovoltage microscopy, we measured a spin Hall angle θ sh of 5% and a spin lifetime of ~75 picoseconds at room temperature in 〈 n 〉 = 4 chiral perovskites, which is much larger than its racemic counterpart as well as the lower 〈 n 〉 homologs. In addition to current-induced transverse spin current, the presence of a coexisting out-of-plane spin current confirms that both conventional and collinear spin Hall conductivities exist in these low-dimensional crystals.
APA, Harvard, Vancouver, ISO, and other styles
30

Yamaguchi, Naoya, and Fumiyuki Ishii. "Strain-induced large spin splitting and persistent spin helix at LaAlO3/SrTiO3interface." Applied Physics Express 10, no. 12 (November 8, 2017): 123003. http://dx.doi.org/10.7567/apex.10.123003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chen, Shuhan, Han Zou, Siu-Tat Chui, and Yi Ji. "Large spin accumulation near a resistive interface due to spin-charge coupling." Journal of Applied Physics 114, no. 22 (December 14, 2013): 223906. http://dx.doi.org/10.1063/1.4845915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Deng, Yuan-Xiang, Shi-Zhang Chen, Yun Zeng, Wu-Xing Zhou, and Ke-Qiu Chen. "Large spin rectifying and high-efficiency spin-filtering in superior molecular junction." Organic Electronics 50 (November 2017): 184–90. http://dx.doi.org/10.1016/j.orgel.2017.07.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nakano, T., M. Nakamura, H. Sakaguchi, M. Yosoi, M. Ieiri, H. Togawa, S. Hirata, et al. "Depolarization in p-15N elastic scattering and large tensor spin-spin interaction." Physics Letters B 240, no. 3-4 (April 1990): 301–5. http://dx.doi.org/10.1016/0370-2693(90)91102-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Koike, Takeo, Mikihiko Oogane, Masakiyo Tsunoda, and Yasuo Ando. "Large spin signals in n+-Si/MgO/Co2Fe0.4Mn0.6Si lateral spin-valve devices." Journal of Applied Physics 127, no. 8 (February 24, 2020): 085306. http://dx.doi.org/10.1063/1.5132701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Watson, Mark A., Pawe? Sa?ek, Peter Macak, Micha? Jaszu?ski, and Trygve Helgaker. "The Calculation of Indirect Nuclear Spin-Spin Coupling Constants in Large Molecules." Chemistry - A European Journal 10, no. 18 (September 20, 2004): 4627–39. http://dx.doi.org/10.1002/chem.200306065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Teki, Yoshio, Takamasa Kinoshita, Shinji Ichikawa, Hideyuki Murachi, Takeji Takui, and Koichi Itoh. "Spin Alignment and Large Negative Spin Polarization Induced by π-Topology in Organic High-Spin Molecules." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 272, no. 1 (September 1995): 31–40. http://dx.doi.org/10.1080/10587259508055271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Abouie, J., and A. Langari. "Thermodynamic properties of ferrimagnetic large spin systems." Journal of Physics: Condensed Matter 17, no. 14 (March 25, 2005): S1293—S1297. http://dx.doi.org/10.1088/0953-8984/17/14/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

LeClair, P., J. K. Ha, H. J. M. Swagten, J. T. Kohlhepp, C. H. van de Vin, and W. J. M. de Jonge. "Large magnetoresistance using hybrid spin filter devices." Applied Physics Letters 80, no. 4 (January 28, 2002): 625–27. http://dx.doi.org/10.1063/1.1436284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Affleck, Ian. "Large-nLimit ofSU(n)Quantum "Spin" Chains." Physical Review Letters 54, no. 10 (March 11, 1985): 966–69. http://dx.doi.org/10.1103/physrevlett.54.966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Albrecht, Marc, and Frédéric Mila. "Spin gap in CaV4O9: A large-Sapproach." Physical Review B 53, no. 6 (February 1, 1996): R2945—R2947. http://dx.doi.org/10.1103/physrevb.53.r2945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

McQueeney, R. J., M. Yethiraj, W. Montfrooij, J. S. Gardner, P. Metcalf, and J. M. Honig. "Possible large spin–phonon coupling in magnetite." Physica B: Condensed Matter 385-386 (November 2006): 75–78. http://dx.doi.org/10.1016/j.physb.2006.05.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Burin, A. L., and S. F. Fischer. "Nonadiabatic spin transitions in large magnetic fields." Czechoslovak Journal of Physics 46, S4 (April 1996): 1917–18. http://dx.doi.org/10.1007/bf02570950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pire, B., and O. V. Teryaev. "Single spin asymmetries in at large Q2." Physics Letters B 496, no. 1-2 (December 2000): 76–82. http://dx.doi.org/10.1016/s0370-2693(00)01279-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wei, X., A. Honig, A. Lewis, M. Lowry, A. Sandorfi, S. Whisnant, and J. P. Didelez. "Large, mobile frozen-spin polarized solid HD." Physica B: Condensed Matter 284-288 (July 2000): 2051–52. http://dx.doi.org/10.1016/s0921-4526(99)02855-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ramsey, Gordon P., and Dennis Sivers. "Spin observables forNN→NNat large momentum transfer." Physical Review D 45, no. 1 (January 1, 1992): 79–91. http://dx.doi.org/10.1103/physrevd.45.79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Han, Muxin. "On spinfoam models in large spin regime." Classical and Quantum Gravity 31, no. 1 (November 14, 2013): 015004. http://dx.doi.org/10.1088/0264-9381/31/1/015004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Arous, G. Ben, and A. Guionnet. "Large deviations for Langevin spin glass dynamics." Probability Theory and Related Fields 103, no. 3 (September 1995): 431. http://dx.doi.org/10.1007/bf01195482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Arous, G. B., and A. Guionnet. "Large deviations for Langevin spin glass dynamics." Probability Theory and Related Fields 102, no. 4 (December 1995): 455–509. http://dx.doi.org/10.1007/bf01198846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Carone, Chris, Howard Georgi, and Sam Osofsky. "On spin independence in large Nc baryons." Physics Letters B 322, no. 3 (February 1994): 227–32. http://dx.doi.org/10.1016/0370-2693(94)91112-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Brechet, Sylvain D., and Jean-Philippe Ansermet. "Heat-driven spin currents on large scales." physica status solidi (RRL) - Rapid Research Letters 5, no. 12 (June 20, 2011): 423–25. http://dx.doi.org/10.1002/pssr.201105180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography