Journal articles on the topic 'Large sets'

To see the other types of publications on this topic, follow the link: Large sets.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Large sets.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Halmos, Paul R. "Large Intersections of Large Sets." American Mathematical Monthly 99, no. 4 (April 1992): 307. http://dx.doi.org/10.2307/2324896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Halmos, Paul R. "Large Intersections of Large Sets." American Mathematical Monthly 99, no. 4 (April 1992): 307–12. http://dx.doi.org/10.1080/00029890.1992.11995853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Komjáth, Péter. "Large small sets." Colloquium Mathematicum 56, no. 2 (1988): 231–33. http://dx.doi.org/10.4064/cm-56-2-231-233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jervell, Herman Ruge. "Large Finite Sets." Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 31, no. 35-36 (1985): 545–49. http://dx.doi.org/10.1002/malq.19850313502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jasinski. "LARGE SETS CONTAINING COPIES OF SMALL SETS." Real Analysis Exchange 21, no. 2 (1995): 758. http://dx.doi.org/10.2307/44152689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Etzion, Tuvi, and Junling Zhou. "Large sets with multiplicity." Designs, Codes and Cryptography 89, no. 7 (May 20, 2021): 1661–90. http://dx.doi.org/10.1007/s10623-021-00878-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fraser, Robert, and Malabika Pramanik. "Large sets avoiding patterns." Analysis & PDE 11, no. 5 (April 11, 2018): 1083–111. http://dx.doi.org/10.2140/apde.2018.11.1083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miller, DR, and DJ Quammen. "Exploiting large register sets." Microprocessors and Microsystems 14, no. 6 (July 1990): 333–40. http://dx.doi.org/10.1016/0141-9331(90)90105-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Teirlinck, Luc. "Large sets with holes." Journal of Combinatorial Designs 1, no. 1 (1993): 69–94. http://dx.doi.org/10.1002/jcd.3180010108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Etzion, Tuvi. "Large sets of coverings." Journal of Combinatorial Designs 2, no. 5 (1994): 359–74. http://dx.doi.org/10.1002/jcd.3180020509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

QingDe, KANG, and YUAN LanDang. "Large sets and overlarge sets of triple systems." SCIENTIA SINICA Mathematica 47, no. 11 (March 29, 2017): 1409–22. http://dx.doi.org/10.1360/n012016-00144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tian, Zi-hong, and Qing-de Kang. "Large Sets and Overlarge Sets of Triangle-Decomposition." Acta Mathematicae Applicatae Sinica, English Series 23, no. 1 (January 2007): 123–32. http://dx.doi.org/10.1007/s10255-006-0356-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shkredov, I. D., and Sergey Yekhanin. "Sets with large additive energy and symmetric sets." Journal of Combinatorial Theory, Series A 118, no. 3 (April 2011): 1086–93. http://dx.doi.org/10.1016/j.jcta.2010.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Alsallakh, Bilal, Wolfgang Aigner, Silvia Miksch, and Helwig Hauser. "Radial Sets: Interactive Visual Analysis of Large Overlapping Sets." IEEE Transactions on Visualization and Computer Graphics 19, no. 12 (December 2013): 2496–505. http://dx.doi.org/10.1109/tvcg.2013.184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Magyar, Ákos. "On distance sets of large sets of integer points." Israel Journal of Mathematics 164, no. 1 (March 2008): 251–63. http://dx.doi.org/10.1007/s11856-008-0028-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Shelah, Saharon. "Borel sets with large squares." Fundamenta Mathematicae 159, no. 1 (1999): 1–50. http://dx.doi.org/10.4064/fm-159-1-1-50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Falconer, K. J. "Sets with Large Intersection Properties." Journal of the London Mathematical Society 49, no. 2 (April 1994): 267–80. http://dx.doi.org/10.1112/jlms/49.2.267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pandiani, John A., and Steven M. Banks. "Large Data Sets Are Powerful." Psychiatric Services 54, no. 5 (May 2003): 745. http://dx.doi.org/10.1176/appi.ps.54.5.745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Segal, Steven P. "Large Data Sets Are Powerful." Psychiatric Services 54, no. 5 (May 2003): 745—a—746. http://dx.doi.org/10.1176/appi.ps.54.5.745-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Drake, Robert E., and Gregory J. McHugo. "Large Data Sets Are Powerful." Psychiatric Services 54, no. 5 (May 2003): 746. http://dx.doi.org/10.1176/appi.ps.54.5.746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Landwehr, James M. "Clustering of Large Data Sets." Technometrics 29, no. 4 (November 1987): 497–98. http://dx.doi.org/10.1080/00401706.1987.10488298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lauri, Josef. "Large sets of pseudosimilar vertices." Discrete Mathematics 155, no. 1-3 (August 1996): 157–60. http://dx.doi.org/10.1016/0012-365x(95)00379-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Judah, Haim, and Otmar Spinas. "Large cardinals and projective sets." Archive for Mathematical Logic 36, no. 2 (February 1, 1997): 137–55. http://dx.doi.org/10.1007/s001530050059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sadek, Mohammad, and Nermine El-Sissi. "On large F-Diophantine sets." Monatshefte für Mathematik 186, no. 4 (October 9, 2017): 703–10. http://dx.doi.org/10.1007/s00605-017-1106-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Alvarado, José D., Simone Dantas, and Dieter Rautenbach. "Dominating sets inducing large components." Discrete Mathematics 339, no. 11 (November 2016): 2715–20. http://dx.doi.org/10.1016/j.disc.2016.05.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

STONE, A. H. "Covering Dimension from Large Sets." Annals of the New York Academy of Sciences 806, no. 1 Papers on Gen (December 1996): 438–43. http://dx.doi.org/10.1111/j.1749-6632.1996.tb49186.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Koutsofios, E. E., S. C. North, and D. A. Keim. "Visualizing large telecommunication data sets." IEEE Computer Graphics and Applications 19, no. 3 (1999): 16–19. http://dx.doi.org/10.1109/38.761543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ajoodani-Namini, S. "Extending Large Sets oft-Designs." Journal of Combinatorial Theory, Series A 76, no. 1 (October 1996): 139–44. http://dx.doi.org/10.1006/jcta.1996.0093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Braun, Michael, Michael Kiermaier, Axel Kohnert, and Reinhard Laue. "Large sets of subspace designs." Journal of Combinatorial Theory, Series A 147 (April 2017): 155–85. http://dx.doi.org/10.1016/j.jcta.2016.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Graefe, John F., and Ronald W. Wood. "Dealing with large data sets." Neurotoxicology and Teratology 12, no. 5 (September 1990): 449–54. http://dx.doi.org/10.1016/0892-0362(90)90006-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Toth, Gabor. "Convex Sets with Large Distortion." Journal of Geometry 92, no. 1-2 (February 17, 2009): 174–92. http://dx.doi.org/10.1007/s00022-009-1901-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Laue, Reinhard, Spyros S. Magliveras, and Alfred Wassermann. "New large sets oft-designs." Journal of Combinatorial Designs 9, no. 1 (2001): 40–59. http://dx.doi.org/10.1002/1520-6610(2001)9:1<40::aid-jcd4>3.0.co;2-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zhang, Yanfang. "On large sets ofPk-decompositions." Journal of Combinatorial Designs 13, no. 6 (2005): 462–65. http://dx.doi.org/10.1002/jcd.20056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Khosrovshahi, G. B., and B. Tayfeh-Rezaie. "Large sets of t-designs through partitionable sets: A survey." Discrete Mathematics 306, no. 23 (December 2006): 2993–3004. http://dx.doi.org/10.1016/j.disc.2004.07.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Goldring, Noa. "Measures: Back and Forth Between Point sets and Large sets." Bulletin of Symbolic Logic 1, no. 2 (June 1995): 170–88. http://dx.doi.org/10.2307/421039.

Full text
Abstract:
It was questions about points on the real line that initiated the study of set theory. Points paved the way to point sets and these to ever more abstract sets. And there was more: Reflection on structural properties of point sets not only initiated the study of ordinary sets; it also supplied blueprints for defining extra-ordinary, “large” sets, transcending those provided by standard set theory. In return, the existence of such large sets turned out critical to settling open conjectures about point sets.How to explain such action at a distance between the very large and the rather small? Rather than having an air of magic, could these results rest on deep structural similarities between the two superficially distant species of sets?In this essay I dissect one group of such two-way results. Their linchpin is the notion of measure.§1. Vitali's impossibility result. Our starting point is a problem in measure theory regarding the notion of “Lebesgue measure.” Before presenting the problem, I would like to review the notion of Lebesgue measure. Rather than listing its main properties, I would like to show how Lebesgue measure is born out of an attempt to generalize the notion of the length of an interval to arbitrary sets of reals. One tries to approximate arbitrary sets of reals by intervals, in the hope that the lengths of the intervals will induce a measure on these sets.
APA, Harvard, Vancouver, ISO, and other styles
36

Lauer, Joseph, and Nicholas Wormald. "Large independent sets in regular graphs of large girth." Journal of Combinatorial Theory, Series B 97, no. 6 (November 2007): 999–1009. http://dx.doi.org/10.1016/j.jctb.2007.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Alves, Thiago R., and Daniel Carando. "Holomorphic functions with large cluster sets." Mathematische Nachrichten 294, no. 7 (May 3, 2021): 1250–61. http://dx.doi.org/10.1002/mana.201900238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

MURAI, Tetsuya. "Large Rough Sets and Modal Logics." Journal of Japan Society for Fuzzy Theory and Systems 13, no. 6 (2001): 571–80. http://dx.doi.org/10.3156/jfuzzy.13.6_571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

ÇETİNKAYA, Zeynep, and Fahrettin HORASAN. "Decision Trees in Large Data Sets." Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi 13, no. 1 (January 18, 2021): 140–51. http://dx.doi.org/10.29137/umagd.763490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

De Boeck, Maarten, and Geertrui Van de Voorde. "A note on large Kakeya sets." Advances in Geometry 21, no. 3 (July 1, 2021): 401–5. http://dx.doi.org/10.1515/advgeom-2021-0018.

Full text
Abstract:
Abstract A Kakeya set 𝓚 in an affine plane of order q is the point set covered by a set 𝓛 of q + 1 pairwise non-parallel lines. By Dover and Mellinger [6], Kakeya sets with size at least q 2 – 3q + 9 contain a large knot, i.e. a point of 𝓚 lying on many lines of 𝓛. We improve on this result by showing that Kakeya set of size at least ≈ q 2 – q + q contain a large knot, and we obtain a sharp result for planes containing a Baer subplane.
APA, Harvard, Vancouver, ISO, and other styles
41

Alon, Noga, and Mario Szegedy. "Large Sets of Nearly Orthogonal Vectors." Graphs and Combinatorics 15, no. 1 (March 1999): 1–4. http://dx.doi.org/10.1007/pl00021187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Yang, Robert (Xu). "Existence of large independent-like sets." Colloquium Mathematicum 159, no. 1 (2020): 107–18. http://dx.doi.org/10.4064/cm7649-11-2018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Coen, Frank, Nate Gillman, Tamás Keleti, Dylan King, and Jennifer Zhu. "Large sets with small injective projections." Annales Fennici Mathematici 46, no. 2 (2021): 683–702. http://dx.doi.org/10.5186/aasfm.2021.4622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chen, Changhao. "Discretized sum-product for large sets." Moscow Journal of Combinatorics and Number Theory 9, no. 1 (January 8, 2020): 17–27. http://dx.doi.org/10.2140/moscow.2020.9.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Park, Hongrak, Hyungtae Hwang, and Byungju Kim. "LS-SVM for large data sets." Journal of the Korean Data and Information Science Society 27, no. 2 (March 31, 2016): 549–57. http://dx.doi.org/10.7465/jkdi.2016.27.2.549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hida, Clayton Suguio, and Piotr Koszmider. "Large Irredundant Sets in Operator Algebras." Canadian Journal of Mathematics 72, no. 4 (March 7, 2019): 988–1023. http://dx.doi.org/10.4153/s0008414x19000142.

Full text
Abstract:
AbstractA subset ${\mathcal{X}}$ of a C*-algebra ${\mathcal{A}}$ is called irredundant if no $A\in {\mathcal{X}}$ belongs to the C*-subalgebra of ${\mathcal{A}}$ generated by ${\mathcal{X}}\setminus \{A\}$. Separable C*-algebras cannot have uncountable irredundant sets and all members of many classes of nonseparable C*-algebras, e.g., infinite dimensional von Neumann algebras have irredundant sets of cardinality continuum.There exists a considerable literature showing that the question whether every AF commutative nonseparable C*-algebra has an uncountable irredundant set is sensitive to additional set-theoretic axioms, and we investigate here the noncommutative case.Assuming $\diamondsuit$ (an additional axiom stronger than the continuum hypothesis), we prove that there is an AF C*-subalgebra of ${\mathcal{B}}(\ell _{2})$ of density $2^{\unicode[STIX]{x1D714}}=\unicode[STIX]{x1D714}_{1}$ with no nonseparable commutative C*-subalgebra and with no uncountable irredundant set. On the other hand we also prove that it is consistent that every discrete collection of operators in ${\mathcal{B}}(\ell _{2})$ of cardinality continuum contains an irredundant subcollection of cardinality continuum.Other partial results and more open problems are presented.
APA, Harvard, Vancouver, ISO, and other styles
47

Bigorajska, Teresa, and Henryk Kotlarski. "Some combinatorics involving ξ-large sets." Fundamenta Mathematicae 175, no. 2 (2002): 119–25. http://dx.doi.org/10.4064/fm175-2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Falconer, K. J. "Classes of sets with large intersection." Mathematika 32, no. 2 (December 1985): 191–205. http://dx.doi.org/10.1112/s0025579300010986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Carbery, Anthony. "Large sets with limited tube occupancy." Journal of the London Mathematical Society 79, no. 2 (March 16, 2009): 529–43. http://dx.doi.org/10.1112/jlms/jdn086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Garnett, John, and Stan Yoshinobu. "Large sets of zero analytic capacity." Proceedings of the American Mathematical Society 129, no. 12 (June 13, 2001): 3543–48. http://dx.doi.org/10.1090/s0002-9939-01-06261-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography