Academic literature on the topic 'Large Scale Systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Large Scale Systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Large Scale Systems"

1

K., Ferents Koni. "MCMC based SOR Detector for Large Scale MIMO Systems." Journal of Advanced Research in Dynamical and Control Systems 51, SP3 (February 28, 2020): 538–43. http://dx.doi.org/10.5373/jardcs/v12sp3/20201290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nikitin, D. A. "Large Scale Systems Control." Automation and Remote Control 80, no. 9 (September 2019): 1717–33. http://dx.doi.org/10.1134/s0005117919090121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Haimes, Y. Y., and I. Lefkowitz. "Large-scale control systems." Automatica 23, no. 2 (March 1987): 265–66. http://dx.doi.org/10.1016/0005-1098(87)90107-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abu-aished, Akram A., and Shafin Mahmud. "Designing Large scale Photovoltaic Systems." Renewable Energy and Power Quality Journal 18 (June 2020): 369–74. http://dx.doi.org/10.24084/repqj18.332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sommerville, Ian, Dave Cliff, Radu Calinescu, Justin Keen, Tim Kelly, Marta Kwiatkowska, John Mcdermid, and Richard Paige. "Large-scale complex IT systems." Communications of the ACM 55, no. 7 (July 2012): 71–77. http://dx.doi.org/10.1145/2209249.2209268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kosztyán, Zsolt T. "Serviceability of large-Scale systems." Simulation Modelling Practice and Theory 84 (May 2018): 222–31. http://dx.doi.org/10.1016/j.simpat.2018.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Furber, Steve. "Large-scale neuromorphic computing systems." Journal of Neural Engineering 13, no. 5 (August 16, 2016): 051001. http://dx.doi.org/10.1088/1741-2560/13/5/051001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

INOUE, Koichi, and Takehisa KOHDA. "Improving Large-Scale Systems Reliability." Journal of the Society of Mechanical Engineers 94, no. 877 (1991): 1015–18. http://dx.doi.org/10.1299/jsmemag.94.877_1015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jürgensen, H. "Large-scale MOVPE production systems." Microelectronic Engineering 18, no. 1-2 (May 1992): 119–48. http://dx.doi.org/10.1016/0167-9317(92)90125-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Siegel, Howard Jay, Thomas Schwederski, David G. Meyer, and William Tsun-yuk Hsu. "Large-scale parallel processing systems." Microprocessors and Microsystems 11, no. 1 (January 1987): 3–20. http://dx.doi.org/10.1016/0141-9331(87)90325-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Large Scale Systems"

1

Nandy, Sagnik. "Large scale autonomous computing systems." Diss., Connected to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2005. http://wwwlib.umi.com/cr/ucsd/fullcit?p3190006.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2005.
Title from first page of PDF file (viewed March 7, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 120-128).
APA, Harvard, Vancouver, ISO, and other styles
2

Aga, Svein. "System Recovery in Large-Scale Distributed Storage Systems." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9724.

Full text
Abstract:

This report aims to describe and improve a system recovery process in large-scale storage systems. Inevitable, a recovery process results in the system being loaded with internal replication of data, and will extensively utilize several storage nodes. Such internal load can be categorized and generalized into a maintenance workload class. Obviously, a storage system will have external clients which also introduce load into the system. This can be users altering their data, uploading new content, etc. Load generated by clients can be generalized into a production workload class. When both workload classes are actively present in a system, i.e. the system is recovering while users are simultaneously accessing their data, there will be a competition of system resources between the different workload classes. The storage must ensure Quality of Service (QoS) for each workload class so that both are guaranteed system resources. We have created Dynamic Tree with Observed Metrics (DTOM), an algorithm designed to gracefully throttle resources between multiple different workload classes. DTOM can be used to enforce and ensure QoS for the variety of workloads in a system. Experimental results demonstrate that DTOM outperforms another well-known scheduling algorithm. In addition, we have designed a recovery model which aims to improve handling of critical maintenance workload. Although the model is intentionally intended for system recovery, it can also be applied to many other contexts.

APA, Harvard, Vancouver, ISO, and other styles
3

El-Makadema, Ahmed Talal. "Large scale broadband antenna array systems." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/large-scale-broadband-antenna-array-systems(d2586bcf-4d2f-4046-98bf-90860b52565b).html.

Full text
Abstract:
Broadband antenna arrays have become increasingly popular for various imaging applications, such as radio telescopes and radar, where high sensitivity and resolution are required. High sensitivity requires the development of large scale broadband arrays capable of imaging distant sources at many different wavelengths, in addition to overcoming noise and jamming signals. The design of large scale broadband antenna arrays requires large number antennas, increasing the cost and complexity of the overall system. Moreover, noise sources often vary, depending on their wavelengths and angular locations. This increases the overall design complexity particularly for broadband applications where the performance depends not only on the required bandwidth, but also on the frequency band.This thesis provides a study of broadband antenna array systems for large scale applications. The study investigates different tradeoffs associated with designing such systems and drives a novel design approach to optimize both their cost and performance for a wide range of applications. In addition, the thesis includes measurements of a suitable array to validate the computational predictions. Moreover, the thesis also demonstrates how this study can be utilized to optimize a broadband antenna array system suitable for a low frequency radio telescope.
APA, Harvard, Vancouver, ISO, and other styles
4

Sales, Pardo Marta. "Large Scale Excitations in Disordered Systems." Doctoral thesis, Universitat de Barcelona, 2002. http://hdl.handle.net/10803/1786.

Full text
Abstract:
Disorder is present in many systems in nature and in many different versions. For instance, the dislocations of a crystal lattice, or the randomness of the interaction between magnetic moments. One of the most studied examples is that of spin glasses because they are simple to model but keep most of the very complex features that many disordered systems have. The frustration of the ground state configuration is responsible for the existence of a gap less spectrum of excitations and a rugged and complex free-energy landscape which bring about a very slow relaxation towards the equilibrium state. The main concern of the thesis has been to study what the properties of the typical excitation, i.e. those excitations that are large and contribute dominantly to the physics in the frozen phase.
The existence of these large excitations brings about large fluctuations of the order parameter, and we have shown in these theses that this feature can be exploited to study the transition of any spin glass model. Moreover, we have shown that the information about these excitations can be extracted from the statistics of the lowest lying excitations. This is because due to the random nature of spin glasses, the physics obtained from averaging over the whole spectrum of excitations of an infinite sample is equivalent to averaging over many finite systems where only the ground state and the first excitation are considered. The novelty of this approach is that we do not need to make any assumption on what are typical excitations like because we can compute them exactly using numerical methods. Finally, we have investigated the dynamics and more specifically the link between the problem of chaos and the rejuvenation phenomena observed experimentally. Rejuvenation means that when lowering the temperature the aging process restarts again from scratch. This is potentially linked with the chaos assumption which states that equilibrium configurations at two different properties are not correlated. Chaos is a large scale phenomenon possible if entropy fluctuations are large. However, in this thesis we have shown that the response to temperature changes can be large in the absence of chaos close to a localization transition where the Boltzmann weight condenses in a few states. This has been observed in simulation of the Sinai model in which this localization is realized dynamically. In this model, since at low temperatures the system gets trapped in the very deep states, the dynamics is only local, so that only small excitations contribute to the rejuvenation signal that we have been able to observe. Thus, in agreement with the hierarchical picture, rejuvenation is possible even in the absence of chaos and reflects the start of the aging process of small length scales.
APA, Harvard, Vancouver, ISO, and other styles
5

Djurfeldt, Mikael. "Large-scale simulation of neuronal systems." Doctoral thesis, KTH, Beräkningsbiologi, CB, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10616.

Full text
Abstract:
Biologically detailed computational models of large-scale neuronal networks have now become feasible due to the development of increasingly powerful massively parallel supercomputers. We report here about the methodology involved in simulation of very large neuronal networks. Using conductance-based multicompartmental model neurons based on Hodgkin-Huxley formalism, we simulate a neuronal network model of layers II/III of the neocortex. These simulations, the largest of this type ever performed, were made on the Blue Gene/L supercomputer and comprised up to 8 million neurons and 4 billion synapses. Such model sizes correspond to the cortex of a small mammal. After a series of optimization steps, performance measurements show linear scaling behavior both on the Blue Gene/L supercomputer and on a more conventional cluster computer. Results from the simulation of a model based on more abstract formalism, and of considerably larger size, also shows linear scaling behavior on both computer architectures.

QC 20100722

APA, Harvard, Vancouver, ISO, and other styles
6

D'Arcy, Francis Gerard. "State estimation for large-scale systems." Thesis, Queen's University Belfast, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Largillier, Thomas. "Probabilistic algorithms for large scale systems." Paris 11, 2010. http://www.theses.fr/2010PA112348.

Full text
Abstract:
De nos jours, les systèmes informatiques ont une taille sans cesse croissante pour répondre aux besoins des utilisateurs. Que ce soit dans le domaine du calcul scientifique où de plus en plus d’ordinateurs sont reliés pour répondre à des problèmes sans cesse plus complexes ou dans le domaine du loisir avec un internet grandissant pour satisfaire toujours plus la curiosité des utilisateurs. Les défis qui concernent les réseaux à grande échelle sont nombreux : pouvoir garantir aux utilisateurs d’un cluster que leur calcul arrivera à terme et sans erreur dans un temps raisonnable, distribuer des données entre petites entités intelligentes efficacement ou encore protéger le web contre les tricheurs. Au cours de cette thèse, j'ai participé à l'élaboration de mécanismes de lutte contre le webspam et le spam social reposant sur l'identification de communautés dans un graphe. J'ai également participé au développement d'une plateforme de test pour applications massivement parallèles ainsi qu'à l'élaboration d'un protocole de dissémination de messages dans les réseaux de capteurs mobiles
Nowadays, information systems are getting bigger and bigger to remain able to manage users requirements. In scientific computing, networks are compound of more and more computers to solve more complex and bigger instances of problems, the internet is also increasing to satisfy the curiosity of all users and cover and increasing number of topics. The challenges regarding large-scale systems are numerous: guaranteeing clusters' users that their computation will finish in a reasonable time without errors, efficiently distributing data between small intelligent entities or protecting the web against malicious users. During this thesis, I participated in the design of mechanisms fighting webspam and social spam based on the identification of communities in large graphs. I also participated in the development of a testbed for massively parallel applications and in the design of a data dissemination protocol in wireless sensor networks
APA, Harvard, Vancouver, ISO, and other styles
8

Ali, Asim. "Robustness in large scale distributed systems." Paris 11, 2010. http://www.theses.fr/2010PA112097.

Full text
Abstract:
Au cours de la dernière décennie, l'informatique et les technologies de la communication ont effectué une croissance exponentielle tant au niveau matériel que logiciel. La conséquence directe de cette croissance est l'émergence à l'échelle mondiale des systèmes distribués tels que, les systèmes de diffusion de l'information, les réseaux cellulaires, l'informatique distante, etc. L'intégration des dispositifs de détection (ou capteurs) avec les réseaux a contribué au développement de systèmes intelligents qui sont plus interactifs, plus dynamiques et adaptables à l’environnement d’exécution. Les applications futures qui sont envisagées sont entièrement décentralisées et auto-gérées. Ces systèmes à grande échelle sont difficiles à concevoir, développer et maintenir en raison de nombreuses contraintes comme l'hétérogénéité des ressources, la diversité des environnements de travail, les communications peu fiables, etc. Réseaux de capteurs sans fil (WSN) et grilles de calcul sont deux exemples importants de ces systèmes à grande échelle. Les propriétés essentielles des protocoles s’exécutant sur ces réseaux sont le passage à l’échelle, l’auto-gestion et la tolérance aux pannes. Ces trois aspects sont au centre de cette thèse. Dans cette thèse, nous contribuons à ce domaine de trois manières. D'abord, nous proposons et évaluons un protocole évolutif de gestion d’annuaire pour des systèmes distribués généraux où le temps de latence des mises à jour est indépendante de la taille du système. Dans notre deuxième contribution, nous concevons et mettons en œuvre une version évolutive et distribuée d'un simulateur de réseau sans fil existant: WSNet. Nous proposons un simulateur parallèle, XS-WSNet, et l’évaluons sur Grid5000 pour un passage à l’échelle extrême en simulation de réseaux de capteurs. Notre troisième contribution est l'élaboration d'un mécanisme d'étalonnage des performances de fiabilité des protocoles pour les WSN en présence de pannes ou d’environnements hostiles. Notre outil permet à l'utilisateur de simuler des milieux naturels dangereux pour les WSN, comme les conditions climatiques difficiles ainsi que de simuler des attaques dynamiques sur le réseau sans fil
During the last decade, computing and communication technologies observed exponential growth both in hardware and software. The direct result of this growth is the emergence of global scale distributed systems like, information diffusion systems, cellular networks, remote computing, etc. Integration of sensor devices with networks helped to develop smart systems that are more interactive, dynamic and adaptable to the running environment. Future applications are envisioned as completely decentralized self-managing massive distributed systems running in smart environments on top of Internet or grid infrastructure. Such large-scale systems are difficult to design, develop and maintain due to many constraints like heterogeneity of resources, diverse working environments, unreliable communications, etc. Wireless sensor networks and computational grids are two important examples of such large-scale systems. Most desirable properties of the protocols for these networks include scalability, self-management, and fault tolerance. These are the three main areas this thesis focuses on. In this thesis we contribute to this domain in three ways. First we propose and evaluate a scalable directory management protocol for general distributed systems where update latency time is independent of the system size. In our second contribution we design and implement a scalable distributed version of an existing wireless network simulator: WSNet. We run our parallel simulator, XS-WSNet, on Grid5000 and achieve extreme simulation scalability. Our third contribution is the development of a dependability benchmarking mechanism for testing WSN protocols against fault and adversarial environments. Our tool allows the user to simulate natural faulty environments for WSN, like harsh weather conditions as well as to simulate dynamic attacks to the wireless network
APA, Harvard, Vancouver, ISO, and other styles
9

Martin, Philippe J. F. "Large scale C3 systems : experiment design and system improvement." Thesis, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/15061.

Full text
Abstract:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1986.
Includes bibliographical references (p. 105-106).
Research supported by the Joint Directors of Laboratories through the Office of Naval Research. N00014-85-K-0782
Philippe J. F. Martin.
M.S.
APA, Harvard, Vancouver, ISO, and other styles
10

Westfelt, Vidar, and Arturas Aleksandrauskas. "Automated migration of large-scale build systems." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157770.

Full text
Abstract:
Upgrading or migrating a build system can be a daunting task. Complete build system migration requires significant effort. To make the process more effective, we automated the first steps of migration, and attempted to analyze the new build results to find anomalies. Our findings show promise for automation as a first step of migration, and we see that automated evaluation could have some potential.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Large Scale Systems"

1

Gans, Werner, Alexander Blumen, and Anton Amann, eds. Large-Scale Molecular Systems. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5940-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1939-, Tzafestas S. G., and Watanabe Keigo 1952-, eds. Stochastic large-scale engineering systems. New York: M. Dekker, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Qing-Hua, Jiehui Zheng, Zhaoxia Jing, and Xiaoxin Zhou. Large-Scale Integrated Energy Systems. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6943-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jamshidi, Mohammad. Large-scale systems: Modeling, control, and fuzzy logic. Upper Saddle River, NJ: Prentice Hall, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Scerri, Paul, Régis Vincent, and Roger Mailler, eds. Coordination of Large-Scale Multiagent Systems. New York: Springer-Verlag, 2006. http://dx.doi.org/10.1007/0-387-27972-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sarbazi-Azad, Hamid, and Albert Y. Zomaya, eds. Large Scale Network-Centric Distributed Systems. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118640708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

State, Radu, Sven van der Meer, Declan O’Sullivan, and Tom Pfeifer, eds. Large Scale Management of Distributed Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11907466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grötschel, Martin, Sven O. Krumke, and Jörg Rambau, eds. Online Optimization of Large Scale Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04331-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Davison, Edward J., Amir G. Aghdam, and Daniel E. Miller. Decentralized Control of Large-Scale Systems. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-4419-6014-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Benner, Peter, Danny C. Sorensen, and Volker Mehrmann, eds. Dimension Reduction of Large-Scale Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27909-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Large Scale Systems"

1

Ho, James K. "Large-Scale Systems." In Encyclopedia of Operations Research and Management Science, 864–67. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4419-1153-7_518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kabanov, Yuri, and Sergei Pergamenshchikov. "Large Deviations." In Two-Scale Stochastic Systems, 87–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-13242-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Germain, C., G. Fedak, V. Néri, and F. Cappello. "Global Computing Systems." In Large-Scale Scientific Computing, 218–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45346-6_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gunzburger, Max, and Janet Peterson. "Reduced-Order Modeling of Complex Systems with Multiple System Parameters." In Large-Scale Scientific Computing, 15–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11666806_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Koziol, Leonard F. "Large Scale Brain Systems." In The Myth of Executive Functioning, 15. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04477-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, John Miles. "Large-Scale Knowledge Systems." In Wissensbasierte Systeme, 294–313. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70840-4_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nielsen-Gammon, John W. "Large-Scale Atmospheric Systems." In Handbook of Weather, Climate, and Water, 509–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471721603.ch26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, John Miles. "Large-Scale Knowledge Systems." In Topics in Information Systems, 259–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83397-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mzyk, Grzegorz. "Large-Scale Interconnected Systems." In Lecture Notes in Control and Information Sciences, 137–47. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03596-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Filip, Florin-Gheorghe, and Kauko Leiviskä. "Large-Scale Complex Systems." In Springer Handbook of Automation, 619–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-78831-7_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Large Scale Systems"

1

tembine, hamidou. "Large-scale games in large-scale systems." In 5th International ICST Conference on Performance Evaluation Methodologies and Tools. ACM, 2011. http://dx.doi.org/10.4108/icst.valuetools.2011.245809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ozarin, Nathaniel. "Lessons Learned on Five Large-Scale System Developments." In 2007 1st Annual IEEE Systems Conference. IEEE, 2007. http://dx.doi.org/10.1109/systems.2007.374666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boxer, Philip J. "Building organizational agility into large-scale software-reliant environments." In 2009 3rd Annual IEEE Systems Conference. IEEE, 2009. http://dx.doi.org/10.1109/systems.2009.4815830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gabriel, Richard P., Linda Northrop, Douglas C. Schmidt, and Kevin Sullivan. "Ultra-large-scale systems." In Companion to the 21st ACM SIGPLAN conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1176617.1176645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Saltzer, Jerome. "Large-scale distributed systems." In the 1st workshop. New York, New York, USA: ACM Press, 1985. http://dx.doi.org/10.1145/503828.503831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Foustok, Mohamad. "Experiences in Large-Scale, Component Based, Model-Driven Software Development." In 2007 1st Annual IEEE Systems Conference. IEEE, 2007. http://dx.doi.org/10.1109/systems.2007.374657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Strasdat, H., J. M. M. Montiel, and A. Davison. "Scale Drift-Aware Large Scale Monocular SLAM." In Robotics: Science and Systems 2010. Robotics: Science and Systems Foundation, 2010. http://dx.doi.org/10.15607/rss.2010.vi.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Toure, Mahamadou, Patricia Stolf, Daniel Hagimont, and Laurent Broto. "Large Scale Deployment." In 2010 Sixth International Conference on Autonomic and Autonomous Systems (ICAS). IEEE, 2010. http://dx.doi.org/10.1109/icas.2010.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dalsgaard, Peter, and Eva Eriksson. "Large-scale participation." In CHI '13: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2470654.2470713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boutayeb, M. "A decentralized software sensor based approach for large-scale dynamical systems." In 2010 4th Annual IEEE Systems Conference. IEEE, 2010. http://dx.doi.org/10.1109/systems.2010.5482344.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Large Scale Systems"

1

D. M. Nicol, H. R. Ammerlahn, M. E. Goldsby, M. M. Johnson, D. E. Rhodes, and A. S. Yoshimura. Large-Scale Information Systems. Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/769324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moura, Jose M. Global Behavior in Large Scale Systems. Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada595017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meyer, Robert R. Large-Scale Optimization Via Distributed Systems. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada215136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parekh, Ojas, Jean-Paul Watson, Cynthia Ann Phillips, John Siirola, Laura Painton Swiler, Patricia Diane Hough, Herbert K. H. Lee, William Eugene Hart, Genetha Anne Gray, and David L. Woodruff. Optimization of large-scale heterogeneous system-of-systems models. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1034869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rajamony, Ram. Performance Health Monitoring of Large-Scale Systems. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1164888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fennell, Robert, and J. A. Reneke. Control Coordination of Large Scale Hereditary Systems. Fort Belvoir, VA: Defense Technical Information Center, July 1985. http://dx.doi.org/10.21236/ada172736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Popek, Gerald J., and Wesley W. Chu. Very Large Scale Distributed Information Processing Systems. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada243983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Penfield, Jr, Agarwal Paul, Dally Anant, Devadas William J., Knight Srinivas, Thomas F. Jr, F. T. Leighton, et al. Critical Problems in Very Large Scale Computer Systems. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada202129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Agha, Gul, and Koushik Sen. A Parametric Model for Large Scale Agent Systems. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada434354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Packard, Andrew, and John C. Doyle. Robust Control of Multivariable and Large Scale Systems. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada194250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography