Academic literature on the topic 'Large deformation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Large deformation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Large deformation"
Speich, Marco, Wolfgang Rimkus, Markus Merkel, and Andreas Öchsner. "Large Deformation of Metallic Hollow Spheres." Materials Science Forum 623 (May 2009): 105–17. http://dx.doi.org/10.4028/www.scientific.net/msf.623.105.
Full textSekhon, G. S. "Large Deformation II." Defence Science Journal 53, no. 2 (April 1, 2003): 25–26. http://dx.doi.org/10.14429/dsj.53.2262.
Full textSekhon, G. S. "Large Deformation -I." Defence Science Journal 53, no. 1 (January 1, 2003): 3–4. http://dx.doi.org/10.14429/dsj.53.2270.
Full textBruhns, Otto T. "Large deformation plasticity." Acta Mechanica Sinica 36, no. 2 (February 12, 2020): 472–92. http://dx.doi.org/10.1007/s10409-020-00926-7.
Full textFan, Jinyan, Zhibiao Guo, Xiaobing Qiao, Zhigang Tao, Fengnian Wang, and Chunshun Zhang. "Constant Resistance and Yielding Support Technology for Large Deformations of Surrounding Rocks in the Minxian Tunnel." Advances in Civil Engineering 2020 (September 28, 2020): 1–13. http://dx.doi.org/10.1155/2020/8850686.
Full textZhao, Gang, Liuyu Wang, Kazhong Deng, Maomei Wang, Yi Xu, Meinan Zheng, and Qing Luo. "An Adaptive Offset-Tracking Method Based on Deformation Gradients and Image Noises for Mining Deformation Monitoring." Remote Sensing 13, no. 15 (July 27, 2021): 2958. http://dx.doi.org/10.3390/rs13152958.
Full textLIU, S. J., H. WANG, and H. ZHANG. "SMOOTHED FINITE ELEMENTS LARGE DEFORMATION ANALYSIS." International Journal of Computational Methods 07, no. 03 (September 2010): 513–24. http://dx.doi.org/10.1142/s0219876210002246.
Full textWang, Ren Zuo, Shih Hung Chen, Chao Hsun Huang, Bing Chang Lin, and Chung Yue Wang. "Large Deformation Analysis of Buried Pipeline." Applied Mechanics and Materials 405-408 (September 2013): 759–62. http://dx.doi.org/10.4028/www.scientific.net/amm.405-408.759.
Full textOstertag, Oskar, Eva Ostertagová, and Ladislav Novotný. "Analytical and Numerical Solution of Large Actuator Deformation." Applied Mechanics and Materials 816 (November 2015): 96–102. http://dx.doi.org/10.4028/www.scientific.net/amm.816.96.
Full textSolomon, Sean C. "Earth deformation, writ large." Nature Geoscience 2, no. 10 (October 2009): 679. http://dx.doi.org/10.1038/ngeo650.
Full textDissertations / Theses on the topic "Large deformation"
Rückert, Jens, and Arnd Meyer. "Kirchhoff Plates and Large Deformation." Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-96896.
Full textCrabbé, Blandine. "Gradient damage models in large deformation." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX085/document.
Full textGradient damage models, also known as phase-field models, are now widely used to model brittle and ductile fracture, from the onset of damage to the propagation of a crack in various materials. Yet, they have been mainly studied in the framework of small deformation, and very few studies aims at proving their relevance in a finite deformation framework. This would be more helpful for the tyre industry that deals with very large deformation problems, and has to gain insight into the prediction of the initiation of damage in its structures.The first part of this work places emphasis on finding analytical solutions to unidimensional problems of damaging viscous materials in small and large deformation.In all the cases, the evolution of damage is studied, both in the homogeneous and localised cases. Having such solutions gives a suitable basis to implement these models and validate the numerical results.A numerical part naturally follows the first one, that details the specificities of the numerical implementation of these non local models in large deformation. In order to solve the displacement and damage problems, the strategy of alternate minimisation (or staggered algorithm) is used. When solved on the reference configuration, the damage problem is the same as in small deformation, and consists in a bound constraint minimisation. The displacement problem is non linear, and a mixed finite element method is used to solve a displacement-pressure problem. A quasi-incompressible Mooney-Rivlin law is used to model the behaviour of the hyperelastic material. Various tests in 2D and 3D are performed to show that gradient damage models are perfectly able to initiate damage in sound, quasi-incompressible structures, in large deformation.In the simulations depicted above, it should be noted that the damage laws combined to the hyperelastic potential results in an initiation of damage that takes place in zones of high deformation, or in other words, in zones of high deviatoric stress. However, in some polymer materials, that are known to be quasi-incompressible, it has been shown that the initiation of damage can take place in zones of high hydrostatic pressure. This is why an important aspect of the work consists in establishing a damage law such that the material be incompressible when there is no damage, and the pressure play a role in the damage criterion. Such a model is exposed in the third part.Finally, the last part focuses on the cavitation phenomenon, that can be understood as the sudden growth of a cavity. We first study it as a purely hyperelastic bifurcation, in order to get the analytical value of the critical elongation for which cavitation occurs, in the case of a compressible isotropic neo-hookean material submitted to a radial displacement. We show that there is a competition between the cavitation phenomenon and the damage, and that depending on the ratio of the critical elongation for damage and the critical elongation for cavitation, different rupture patterns can appear
Boyce, Mary Cunningham. "Large inelastic deformation of glassy polymers." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/14909.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING
Bibliography: leaves 126-130.
by Mary Cunningham Boyce.
Ph.D.
Paradinas, Salsón Teresa. "Simplification, approximation and deformation of large models." Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/51293.
Full textL’elevat nivell de realisme i d’interacció requerit en múltiples aplicacions gràfiques fa que siguin necessàries tècniques pel processament de models geomètrics complexes. En primer lloc, presentem un mètode de simplificació que proporciona una aproximació precisa de baixa resolució d'un model texturat que garanteix fidelitat geomètrica i una correcta preservació de l’aparença. A continuació, introduïm el Compact Model, una nova estructura de dades que permet aproximar malles triangulars denses preservant els trets més distintius del model, permetent reconstruccions adaptatives i suportant models texturats. Seguidament, hem dissenyat *Cages, un esquema de deformació basat en un sistema de caixes multi-nivell que conserva la suavitat de la malla entre caixes veïnes i és extremadament versàtil, permetent l'ús de conjunts heterogenis de coordenades i diferents nivells de deformació. Finalment, proposem un mètode híbrid que permet aplicar qualsevol tècnica de deformació sobre models complexes obtenint resultats d’alta qualitat amb una memòria reduïda i un alt rendiment.
Tuzun, Aydin. "Large Deformation Analysis Of Flexible Multibody Systems." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614821/index.pdf.
Full textANCF with Virtual Element Mapping Method&rdquo
has been proposed to overcome the boundary problems of the current formulations. The proposed method has been implemented to plane stress, plane strain, plate/shell and 3D solid finite elements. Verification of the proposed method has been performed by using the patch test problems available in the literature. Besides, it has been verified by various flexible multibody problems with large deformations. Additionally, shape function polynomials for thin plate assumption have been derived. It is observed that developed formulations and methods can be useful not only for flexible multibody systems but also for structural mechanics problems subjected to large deformations and/or rotations. The proposed methods and formulations are more efficient than the current formulations in the literature due to extended shape limits of finite elements.
Derian, Edward J. "Large deformation dynamic bending of composite beams." Thesis, Virginia Tech, 1985. http://hdl.handle.net/10919/45678.
Full textMaster of Science
Weise, Martina. "Elastic Incompressibility and Large Deformations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-140113.
Full textEvcim, Mehmet. "Large Deformation Analysis Of Shells Under Impulsive Loading." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/2/12611647/index.pdf.
Full textMa, Jianfeng. "Meshless method for modeling large deformation with elastoplasticity." Diss., Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/402.
Full textRIOS, GABRIEL EMILIANO BARRIENTOS. "NONLINEAR DYNAMICS OF FLEXIBLE STRUCTURES WITH LARGE DEFORMATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1997. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19770@1.
Full textÉ apresentado o modelo não-linear de barras proposto por Simo para o estudo do comportamento dinâmico de estruturas espaciais. A formulação das equações do movimento é feita em um sistema inercial de modo a simplificar o operador de inércia e o material é considerado como elástico linear. Carregamos não – conservativos são considerados de modo que a integração das equações é feita na forma fraca. As partes flexíveis, que são necessariamente estruturas unidimensionais, são descritas por um modelo de barras que generaliza os modelos clássicos de Euler-Bernouilli e de Timoshenko. Implementa-se um programa computacional baseado nesta teoria na linguagem Matlab. O modelo de barras discretiza-se espacialmente usando elementos finitos e integra-se o sistema de equações resultante linearizado usando o método de Newton-Raphson, associado ao esquema de integração de Newmark. Incorpora-se os efeitos de amortecimento interno e cargas seguidoras, assim como elementos lineares quadráticos. Se incorpora à programação o tratamento de juntas esféricas através do método de multiplicadores de Lagrange, que permitem estudar alguns tipos de sistemas de multicorpos flexíveis. O programa é testadopor uma série de exemplos e comparações com resultados clássicos para mostrar a sua versatilidade e também as limitações dos modelos clássicos. Também se apresenta o modelo usado no programa computacional SAMCEF, e mostra-se a potencialidade deste programa em base a uma série de exemplos que incluem problemas de flexibilidade e choque em sistemas multicorpos.
It is presented a theory to treat multibody problems with rigid or flexible parts that treats the overall motion and the deformations in the same way using na inertial reference frame. The essential part of the model is the treatment of nonlinear rods that are flexible parts of the multibody systems. A code was construcetd in the platform MATBLAB and it was widely tested thorough comparisons with results found in the literature that acted as benchmark problems. The results are very good.
Books on the topic "Large deformation"
Teodosiu, C., ed. Large Plastic Deformation of Crystalline Aggregates. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2672-1.
Full textCristian, Teodosiu, ed. Large plastic deformation of crystalline aggregates. Wien: Springer, 1997.
Find full textCristian, Teodosiu, ed. Large plastic deformation of crystalline aggregates. Wien: Springer, 1997.
Find full textMolenkamp, F. Dynamics of large deformation elasto-visco plasticity. Manchester: UMIST, 1998.
Find full textW, Hyer M., and United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., eds. Large deformation dynamic bending of composite beams. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Find full textCarper, Douglas M. Large deformation behavior of long shallow cylindrical composite panels. Hampton, Va: Langley Research Center, 1991.
Find full textAl-Bermani, F. G. A. Elasto-plastic large deformation analysis f thin-walled structures. St. Lucia: University of Queensland, Dept. of Civil Engineering, 1989.
Find full textLee, J. W. Boundary integral methods for thermally coupled large deformation problems. Manchester: UMIST, 1993.
Find full textDufva, Kari. Development of finite elements for large deformation analysis of multibody systems. Lappeenranta: Lappeenranta University of Technology, 2006.
Find full textIkonen, Kari. Large inelastic deformation analysis of steel pressure vessels at high temperature. Espoo [Finland]: Technical Research Centre of Finland, 2001.
Find full textBook chapters on the topic "Large deformation"
Gambin, W. "Phenomenological model of deformation textures development." In Large Plastic Deformations, 117–20. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203749173-12.
Full textAnand, L. "Elasto-viscoplasticity: Constitutive modeling and deformation processing." In Large Plastic Deformations, 3–18. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203749173-2.
Full textLeffers, Torben. "Microstructures, textures and deformation patterns at large strains." In Large Plastic Deformations, 73–86. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203749173-7.
Full textBesseling, J. F., and E. Van Der Giessen. "Large strain inelasticity." In Mathematical Modelling of Inelastic Deformation, 241–309. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-7186-9_7.
Full textBacroix, B., G. Canova, and H. Mecking. "The prediction of deformation textures in α-β titanium." In Large Plastic Deformations, 101–8. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203749173-10.
Full textRittel, D. "Surface macro-localization of the plastic deformation of polycrystals." In Large Plastic Deformations, 255–60. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203749173-28.
Full textMcGlaun, J. M., and P. Yarrington. "Large Deformation Wave Codes." In High-Pressure Shock Compression of Solids, 323–53. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0911-9_9.
Full textWriggers, Peter. "Discretization, Large Deformation Contact." In Computational Contact Mechanics, 225–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-32609-0_9.
Full textTeodosiu, C., J. L. Raphanel, and L. Tabourot. "Finite element simulation of the large elastoplastic deformation of multicrystals." In Large Plastic Deformations, 153–68. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203749173-16.
Full textVoyiadjis, George Z., and Peter I. Kattan. "Coupling of damage and viscoplasticity for large deformation of metals." In Large Plastic Deformations, 345–52. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203749173-41.
Full textConference papers on the topic "Large deformation"
Sauthoff, Anni, Paul Köchert, Günther Prellinger, Tobias Meyer, Frank Pilarski, Stephanie Weinrich, Frank Schmaljohann, et al. "Two multi-wavelength interferometers for large-scale surveying." In 5th Joint International Symposium on Deformation Monitoring. Valencia: Editorial de la Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/jisdm2022.2022.13635.
Full textBarbič, Jernej, and Yili Zhao. "Real-time large-deformation substructuring." In ACM SIGGRAPH 2011 papers. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1964921.1964986.
Full textTenjimbayashi, Koji. "Large deformation measurement using ESPI." In Photonics China '96, edited by Shu-Sen Deng and S. C. Wang. SPIE, 1996. http://dx.doi.org/10.1117/12.253106.
Full textSun, Lijun, Libo Li, Siyuan Li, Jian Sun, Junqiang Wu, Qiang Zhao, and Bingliang Hu. "Curing shrinkage stress and deformation analysis of adhesive bonding large aperture mirror." In Large Mirrors and Telescopes, edited by Xiaoliang Ma, Bin Fan, Xiangang Luo, Adrian Russell, and Yongjian Wan. SPIE, 2019. http://dx.doi.org/10.1117/12.2505710.
Full textJoo, Jinyong, Sridhar Kota, and Noboru Kikuchi. "Large Deformation Behavior of Compliant Mechanisms." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/dac-21084.
Full textBenson, David J. "Large Deformation Simulations of Nanocrystalline Materials." In MATERIALS PROCESSING AND DESIGN: Modeling, Simulation and Applications - NUMIFORM 2004 - Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2004. http://dx.doi.org/10.1063/1.1766749.
Full textBerroir, J. P., I. Merlin, and I. Cohen. "A numerical model for large deformation." In Proceedings of 13th International Conference on Pattern Recognition. IEEE, 1996. http://dx.doi.org/10.1109/icpr.1996.546071.
Full text"LOG-UNBIASED LARGE-DEFORMATION IMAGE REGISTRATION." In International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2007. http://dx.doi.org/10.5220/0002048202720279.
Full textTian, Ye, Yutao Li, Qian Wang, He Tian, Xiangshun Geng, Yao Zhi, Yuhong Wei, Yi Yang, and Tianling Ren. "A Soft Electrothermal Actuator with Large Deformation and High Periodic Deformation Speed." In 2020 21st International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2020. http://dx.doi.org/10.1109/icept50128.2020.9202476.
Full textNaghdabadi, Reza, and Mohsen Shahi. "Large Elastic-Plastic Deformation Analysis of Rectangular Plates." In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1203.
Full textReports on the topic "Large deformation"
Anand, Lallit. Large Deformation Plasticity of Polycrystalline Tantalum. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada391221.
Full textHorgan, Cornelius O. Large Deformation Failure Mechanisms in Nonlinear Solids. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada293010.
Full textPlohr, Bradley J., and Jeeyeon N. Plohr. Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1047120.
Full textMikkola, Aki M., and Ahmed A. Shabana. A Large Deformation Plate Element for Multibody Applications. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada384568.
Full textSchunk, Peter Randall, David R. Noble, Thomas A. Baer, Rekha Ranjana Rao, Patrick K. Notz, and Edward Dean Wilkes. Large deformation solid-fluid interaction via a level set approach. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/918218.
Full textBeckwith, Frank. Verification and large deformation analysis using the reproducing kernel particle method. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1222659.
Full textBrown, Judith Alice, and Kevin Nicholas Long. Exemplar for simulation challenges: Large-deformation micromechanics of Sylgard 184/glass microballoon syntactic foams. Office of Scientific and Technical Information (OSTI), May 2018. http://dx.doi.org/10.2172/1436920.
Full textAn, Yonghao, B. C. Wood, M. Tang, and H. Jiang. Phase-field Model for Stress-dependent Ginsburg-Landau Kinetics for Large Deformation of Silicon Anodes. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1172293.
Full textStone, C. M. SANTOS - a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/508138.
Full textReal Fernández, Elena. ¿PUEDE HABER 5 FASES DE DEFORMACIÓN HERCÍNICA EN LA ZONA DE VALDEMORILLO (MADRID)? Ilustre Colegio Oficial de Geólogos, October 2020. http://dx.doi.org/10.21028/erf.2020.10.27.
Full text