Academic literature on the topic 'Lanthanum Cobalt Oxide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lanthanum Cobalt Oxide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lanthanum Cobalt Oxide"

1

Benedetto Mas, Alice, Silvia Fiore, Sonia Fiorilli, Federico Smeacetto, Massimo Santarelli, and Ilaria Schiavi. "Analysis of Lanthanum and Cobalt Leaching Aimed at Effective Recycling Strategies of Solid Oxide Cells." Sustainability 14, no. 6 (March 12, 2022): 3335. http://dx.doi.org/10.3390/su14063335.

Full text
Abstract:
Lanthanum and cobalt are Critical Raw Materials and components of Solid Oxide Cells—SOCs electrodes. This review analyses lanthanum and cobalt leaching from waste materials (e-waste, batteries, spent catalysts), aiming to provide a starting point for SOC recycling, not yet investigated. The literature was surveyed with a specific interest for leaching, the first phase of hydrometallurgy recycling. Most references (86%) were published after 2012, with an interest higher (85%) for cobalt. Inorganic acids were the prevailing (>80%) leaching agents, particularly for lanthanum, while leaching processes using organic acids mostly involved cobalt. The experimental conditions adopted more diluted organic acids (median 0.55 M for lanthanum and 1.4 M for cobalt) compared to inorganic acids (median value 2 M for both metals). Organic acids required a higher solid to liquid ratio (200 g/L), compared to inorganic ones (100 g/L) to solubilize lanthanum, while the opposite happened for cobalt (20 vs. 50 g/L). The process temperature didn’t change considerably with the solvent (45–75 °C for lanthanum, and 75–88 °C for cobalt). The contact time was higher for lanthanum than for cobalt (median 3–4 h vs. 75–85 min). Specific recycling processes are crucial to support SOCs value chain in Europe, and this review can help define the existing challenges and future perspectives.
APA, Harvard, Vancouver, ISO, and other styles
2

Jia, X. L., Y. Wang, R. S. Xin, Quan Li Jia, and Hai Jun Zhang. "Preparation of Rare-Earth Element Doped Titanium Oxide Thin Films and Photocatalysis Properties." Key Engineering Materials 336-338 (April 2007): 1946–48. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.1946.

Full text
Abstract:
Rare-earth doped porous nanocrystalline TiO2 films were prepared via sol-gel method. The effect of preparation conditions on the properties of the resulting thin films, such as structure, surface topography and photocatalysis properties was analyzed. It indicated that appropriate doping of rare-earth element improves the photocatalysis ability of the thin titanium oxide films. The thin titanium oxide films have good photocatalysis properties in visible light region because of the red shift of energy level. It also revealed that uni-doped of cobalt is better than that of cobalt and lanthanum, while co-doping of cerium, cobalt and lanthanum may cause the best photocatalysis properties.
APA, Harvard, Vancouver, ISO, and other styles
3

Zybert, Magdalena, Magdalena Karasińska, Elżbieta Truszkiewicz, Bogusław Mierzwa, and Wioletta Raróg-Pilecka. "Properties and activity of the cobalt catalysts for NH3 synthesis obtained by co-precipitation – the effect of lanthanum addition." Polish Journal of Chemical Technology 17, no. 1 (March 1, 2015): 138–43. http://dx.doi.org/10.1515/pjct-2015-0020.

Full text
Abstract:
Abstract In modern research on catalysts for NH3 synthesis a lot of attention is paid to cobalt. In this work the new catalytic systems based on cobalt are presented. Unsupported cobalt catalysts singly promoted (La or Ba) and doubly promoted (La and Ba) were prepared and tested in NH3 synthesis reaction under commercial synthesis conditions. Characterization studies revealed that lanthanum plays a role of a structural promoter, which improves the surface of catalyst precursors and prevents from sintering during calcination. However, lanthanum has a negative effect on the reduction of cobalt oxide, but the addition of barium promoter (Co/La/Ba catalyst) diminishes the negative impact of La. The co-promotion of cobalt with lanthanum and barium results in the increasing of the active phase surface and improvement of its activity in NH3 synthesis.
APA, Harvard, Vancouver, ISO, and other styles
4

Ronduda, Hubert, Magdalena Zybert, Wojciech Patkowski, Andrzej Ostrowski, Przemysław Jodłowski, Damian Szymański, Leszek Kępiński, and Wioletta Raróg-Pilecka. "A high performance barium-promoted cobalt catalyst supported on magnesium–lanthanum mixed oxide for ammonia synthesis." RSC Advances 11, no. 23 (2021): 14218–28. http://dx.doi.org/10.1039/d1ra01584b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Olivo, Alberto, Berceste Beyribey, Hwan Kim, and Joshua Persky. "Cobalt oxide enhanced lanthanum strontium cobalt ferrite electrode for solid oxide fuel cells." Main Group Chemistry 21, no. 1 (April 8, 2022): 195–207. http://dx.doi.org/10.3233/mgc-210114.

Full text
Abstract:
A Co3O4 enhanced La0.8Sr0.2Co0.5Fe0.5O3 - δ (LSCF) electrode is developed for use in air electrodes with proton conducting solid oxide fuel cell (SOFC). The incipient wetness impregnation method enables Co3O4 nanoparticles on the LSCF surface without altering the bulk porosity of the LSCF electrode. The polarization resistance of LSCF electrodes is significantly reduced by Co3O4 doping, and both charge transfer and diffusion/conversion resistances were positively affected. The highest reduction in charge transfer resistance is obtained at 700 °C, which is increased from 21 % to 32 % through reduction of po2. Conversely, the highest reduction in diffusion/conversion resistance is achieved at 550 °C. By increasing po2, the reduction is increased from 57 % to 66 % and its activation energy is reduced up to 33 % compared to pure LSCF. The lowest total area specific resistances obtained under air are 1.45 Ω·cm2, 2.95 Ω·cm2, 6.75 Ω·cm2 and 16.45 Ω·cm2 at 700 °C, 650 °C, 600 °C and 550 °C, respectively.
APA, Harvard, Vancouver, ISO, and other styles
6

Yamagata, Chieko, and Sonia Regina Homem de Mello-Castanho. "Synthesis Characterization and Sintering of Cobalt-Doped Lanthanum Chromite Powders for Use in SOFCs." Materials Science Forum 660-661 (October 2010): 971–76. http://dx.doi.org/10.4028/www.scientific.net/msf.660-661.971.

Full text
Abstract:
Doped lanthanum chromite is a promising as interconnect material because of its good conductivity at high temperatures and its stability in oxidizing and reducing atmospheres. Perovskite oxide powders of Co-doped lanthanum chromite were synthesized by dispersing precursor metal salt solutions in a polymer matrix followed by a thermal treatment. XRD patterns showed that a highly crystalline cobalt-doped lanthanum chromite was obtained. Fine perovskite powder with a surface area of 6.15 m2 g-1 calcined at 700oC for 1 h, were obtained. After the sample sintered at 1450oC for 3h, the powder reached high densities exceeding 97% of the theoretical density. The proposed here has proved to be a very promising technique for the synthesis of lanthanum chromite powders.
APA, Harvard, Vancouver, ISO, and other styles
7

Nemudry, A. "Room temperature topotactic oxidation of lanthanum cobalt oxide La2CoO4.0." Solid State Ionics 109, no. 3-4 (June 2, 1998): 213–22. http://dx.doi.org/10.1016/s0167-2738(98)00105-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Setz, L. F. G., H. P. S. Corrêa, Carlos de Oliveira Paiva-Santos, and Sonia Regina Homem de Mello-Castanho. "Sintering of Cobalt and Strontium Doped Lanthanum Chromite Obtained by Combustion Synthesis." Materials Science Forum 530-531 (November 2006): 671–76. http://dx.doi.org/10.4028/www.scientific.net/msf.530-531.671.

Full text
Abstract:
Lanthanum chromite (LaCrO3) is one of the most adequate materials for use as interconnector in solid oxide fuel cell (SOFC) applications, due to its intrinsic properties, namely its good electrical conductivity and resistance to environment conditions in fuel cell operations. Due to difficulties in sintering, additives are usually added to help in the densification process. In this work, the influence of added cobalt and strontium, in the sintering of LaCrO3 obtained by combustion synthesis was studied. The starting materials were respectively nitrates of chromium, lanthanum, cobalt and strontium, and urea was used as fuel. The results show that by increasing the strontium and cobalt concentrations it is possible to reduce the temperature of sintering. Using both additives, the sintering processes took place in lesser times than normally used for this material, as well as greater values of density were attained.
APA, Harvard, Vancouver, ISO, and other styles
9

Bishop, Sean R., Keith L. Duncan, and Eric D. Wachsman. "Thermo-Chemical Expansion in Strontium-Doped Lanthanum Cobalt Iron Oxide." Journal of the American Ceramic Society 93, no. 12 (September 3, 2010): 4115–21. http://dx.doi.org/10.1111/j.1551-2916.2010.03991.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

BARNARD, K. "Lanthanum cobalt oxide oxidation catalysts derived from mixed hydroxide precursors." Journal of Catalysis 125, no. 2 (October 1990): 265–75. http://dx.doi.org/10.1016/0021-9517(90)90302-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Lanthanum Cobalt Oxide"

1

Klettlinger, Jennifer Lindsey Suder. "Fischer-Tropsch Cobalt Catalyst Improvements with the Presence of TiO2, La2O3, and ZrO2 on an Alumina Support." University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1333981467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, Yunxiang. "Study of electrochemical performance of strontium doped lanthanum cobalt oxides using electrochemical impedance spectroscopy and microelectrode array cell design /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

FLORIO, DANIEL Z. de. "Analise de eletrolitos de ZrO sub(2):Y sub(2) O sub(3) + B sub(2) O sub(3) e de eletrodos de La sub(0,8) Sr sub(0,2) Co sub (0,8) Fe sub (0,2) O sub (3-delta) por espectroscopia de impedancia." reponame:Repositório Institucional do IPEN, 2003. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11130.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:48:42Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T13:59:46Z (GMT). No. of bitstreams: 1 09305.pdf: 5404217 bytes, checksum: 19eda8ad49f8cd247304fef0fb69c1bc (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
APA, Harvard, Vancouver, ISO, and other styles
4

SETZ, LUIZ F. G. "Processamento coloidal de cromito de lantanio." reponame:Repositório Institucional do IPEN, 2009. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11522.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:52:50Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:02:02Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
APA, Harvard, Vancouver, ISO, and other styles
5

Shaw, Cynthia Kit Man. "Mass transport in mixed conducting perovskite related oxides." Thesis, Imperial College London, 2001. http://hdl.handle.net/10044/1/8380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wattiaux, Alain. "Étude du comportement électrocatalytique relatif au dégagement de l'oxygène des perovskites non-stœchiométriques La₁-ₓSrₓFe₁-zCozO₃-y." Bordeaux 1, 1985. http://www.theses.fr/1985BOR10638.

Full text
Abstract:
La mise au point d'une méthodologie de mesures électrochimiques sur céramiques a été réalisée dans le but d'étudier, de façon qualitative ou quantitative, le comportement électrocatalytique des perovskites non-stœchiométriques de type La₁-xSrxFe₁-zCOzO₃-y, vis-à-vis de la réaction de dégagement de l'oxygène. Un mécanisme réactionnel à cinq étapes élémentaires a été proposé, et les étapes limitantes ont été discutées sur la base de calculs cinétiques et thermodynamiques. On en a déduit des critères d'amélioration des performances électrocatalytiques de ce type de matériaux.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Yu-Jen, and 陳佑任. "Investigation in Lanthanum Strontium Cobalt Zinc Iron Oxide of Solid oxide Fuel Cells cathode materials." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/16666073466547846840.

Full text
Abstract:
碩士
國立臺灣科技大學
機械工程系
96
This research was focused on the Cathode material, La0.6Sr0.4(Co1-x Znx)0.2Fe0.8O3-d(x=0.0、0.2、0.4、0.6、0.8、1.0), to go through the half-cell test with excellent electrical conductivity of the electrolyte Ce0.78Gd0.2Sr0.02O1.9-x(GDC+Sr) developed by our laboratory. The cathode porosity of test chip/fragment was controlled to be approximately 31.25±3% for evaluating the effect on polarization loss of cathode oxygen reduction reaction and electrical chemical reaction with electrochemical impedance spectroscopy (EIS). A combination of analytical techniques were applied X-ray diffraction for interpreting the crystal structure, scanning electron microscope (SEM) for examining micro-structures, thermo mechanical analyzer (TMA) for finding thermal expansion coefficient (TEC) and (DTA/TGA) thermal analyzers for analyzing the presence of Phase & Change. The variation in component of La0.6Sr0.4(Co1-x Znx)0.2Fe0.8O3-d analyzed by XRD was single-based Rhombohedral Perovskite, a=b=c. The lattice constant and volume were expanded when Zinc ionic substitutes for Cobalt ionic due to the radius of Zinc was 22% being wider than that of Cobalt. According to the statistics from (DTA/TGA) thermal analysis, there was no Phase & Change when x was 0.0~1.0 at 500~800℃ which meant the interface between cathode and electrolyte was stable. In addition, based on the statistics from thermo mechanical analysis, the thermal expansion coefficient of the bulk grew as the temperature increases. Moreover, the thermal expansion coefficient decreased from 16.8 to 13.31 10-6k-1 if Zinc substituted for Cobalt. On the basis of electrical chemical alternating electrical impedance atlas method (x = 0.4, 0.6, 0.8) when Cobalt was replaced by Zinc, the cathode electrical impedance of B-site in La0.6Sr0.4(Co1-x Znx)0.2Fe0.8O3-d series was low (0.273、0.240 & 0.15 Ωcm2,800℃). The difference of cathode electrical impedance (Co -> Zn) in the high frequency region was not obvious. However, among middle and low frequency regions, the imbalance of electric charge caused by adopting the valence two Zinc to B-site instead of Cobalt with floating valence created a lot of oxygen vacancies, accelerating the circulation. Electrons were provided by cobalt switching from valence two, three, to four as well, and therefore the electrical impedance of oxygen reduction reaction was low when coexistence of B-site Zinc and Cobalt. The trend of the testing result statistics was the same as that of electrochemical analysis; such as electric current-switched density of Tafel Curve, Polarization Curve, and Cyclic Voltammetry Curve. Among the components of LSCZF, La0.6Sr0.4(Co0.2 Zn0.8)0.2Fe0.8O3-d�� �nperformed the best because the cathode electrical impedance was quite low �v(0.15 Ωcm2,800℃) and the thermal expansion coefficient (13.95 10-6k-1) is lower than LSCZF0.0(16.8 10-6k-1). Additionally the catalysis was significantly imporoved, due to the higher electric current-switched density. The overall performance of La0.6Sr0.4(Co0.2 Zn0.8)0.2Fe0.8O3-d was found to be better than that of the precursor of La0.6Sr0.4Co0.2 Fe0.8O3-�����nand La0.6Sr0.4Zn0.2 Fe0.8O3-���n,and was proposed as an innovative solid oxide Cathode material with good compatibility and catalysis.
APA, Harvard, Vancouver, ISO, and other styles
8

Kan, Shih-hsuan, and 甘世暄. "Investigation of Lanthanum Praseodymium Strontium Cobalt Iron Oxide as Cathode Materials for Solid Oxide Fuel Cells." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/v4nun8.

Full text
Abstract:
碩士
國立臺灣科技大學
機械工程系
95
The perovskite-structured oxide La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF) was widely used as cathodic electrode material in SOFC, but, according to the high thermal expansion coefficient, La0.6Sr0.4Co0.2Fe0.8O3-δ need to be modified for better thermal matchness and electrical properties. In this study, praseodymium element which has smaller ionic radius substituted La site and lattice structure, microstructure, thermal expansion coefficient, conductivity, electric over potential, electrochemical reaction and catalysis activation were researched. In order to estimate the durability, the cell was operated under high temperature (800 ℃) for a long time (200 hr) to investigate the performance of cathodic electrode. From the XRD results, the higher praseodymium element doped specimeus posses higher content of am orthorhombic phase and co-exist with a rhombohedra phase in specimen. From the Differential thermal analysis(DTA), Endothermic peaks was not found when the specimeus were tested under dopant quantity of (z) ranging from 0.0 to 0.5 and temperature ranged from 200 to 900 ℃. From thermal mechanical analysis, as the testing temperature raised, thermal expansion increased linearly and ranged in 14.7∼15.98×10-6K-1. The conductivity of LPSCF tested by four-point probe resistance measurement did not affected by Pr doping content in LSCF. While tested under 600 ℃∼800 ℃, the conductivity of LPSCFmaintained at 220 S/cm which is higher than those of LSM and LSF material systems performed. The overpotential behavior and AC impedance analysis of (La0.7Pr0.3)0.6Sr0.4Co0.2Fe0.8O3-δ under 800 ℃ showed the overpotential and polarization resistance of 11.7 mV and 2.3 Ω•cm2, respectively. As the specimens were tested in reduction environment, high density of exchanging current of about 20.05 mA/cm2 was achieved, suggesting that LPSCF provided high cathodic reaction zones junctions and numerous diffusing pathways for oxygen ions to access triple phase boundary. Specimens were tested under 800 ℃ for 200 hours to investigate the decaying condition, the performance of LPSCF, such as thermal expansion coefficient, conductivity, over potential, polarization resistance, catalysis activation and aging ability were superior to those of La0.6Sr0.4Co0.2Fe0.8O3-δ .
APA, Harvard, Vancouver, ISO, and other styles
9

GUO, HAN LIN, and 郭翰霖. "The Study of Lithium-Lanthanum-Zirconium-Tantalum Oxide Modification on High Voltage Performance for Lithium Cobalt Oxide Cathode Materials." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/e7m84a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Behera, Sukanti. "Thermoelectrics and Oxygen Sensing Studies of Selected Perovskite Oxides." Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2975.

Full text
Abstract:
Perovskite oxides show wide range of applications in the area of magnetism, ferroelectricity, piezoelectricity, thermoelectricity, gas sensing, catalyst development, solid oxide fuel cell, etc. This is due to flexibility in the structure and compositions that can be tuned by specific element doping. In the perovskite oxide (ABO3), large cation (A) is 12 -coordinated and smaller B-cation is 6 coordinated with oxide ions. Oxide materials are considered as better candidates for thermoelectric applications (interconversion of thermal into electrical energy) due to its non-toxicity and thermal stability at elevated temperature. These are insulating in nature and the conductivity can be increased by doping A and / or B –sites. Perovskite oxides are also used for oxygen monitoring in different applications including control and optimization of combustion of fossil fuels in industries and automobiles, biological and defines places, etc. In the present study, we focused on thermoelectric properties in single perovskite oxides of lanthanum cobaltite and calcium manganite and a double perovskite oxide of dysprosium barium cobaltite. Also, the oxygen sensing behaviour of dysprosium barium cobaltite at elevated temperatures is studied. The thesis contains seven chapters and a summary of respective chapters are given below. The first chapter outlines the basics of thermoelectric and gas sensing applications of both perovskite and double perovskite oxides. In the initial part, thermoelectric phenomena are explained. Thermoelectric effect is the conversion of thermal energy to electrical energy and vice-versa. Higher thermoelectric efficiency (η) can be achieved by maintaining a large temperature difference across the material. The efficiency depends on the thermoelectric figure of merit (zT) of material, which depends on thermopower (S), electrical resistivity (ρ) and thermal conductivity (κ) of the material and hence needs to be optimized. The latter part discusses the oxygen sensing property of distorted double perovskite 112 structure type as it shows advantages over other materials due to oxygen nonstoichiometric. Further, an overview of the relevant literature, objective and scope of the thesis are mentioned. The second chapter elucidates the materials and methods used for the present work. The materials viz. LaCoO3, CaMnO3-δ and DyBaCo2O5+δ, were selected for thermoelectric and oxygen sensing studies. Both the conventional solid state and soft chemistry methods were adopted for the synthesis of these materials. Powders were densified into pellets by hot uniaxial pressing / cold isostatic pressing and various heat treatments were carried out. Samples thus prepared were phase pure as confirmed using powder x-ray diffraction and Rietveld refinement performed for structural analysis. Morphological studies were carried out using scanning electron microscopy and transmission electron microscopy. Further Raman and x-ray photoelectron spectroscopic characterization of these materials were discussed. The transport properties viz. electrical resistivity, thermopower and thermal conductivity of compact pellets were measured at elevated temperatures. Further, the home-built apparatus for room temperature See beck measurements and chemo resistive oxygen sensing were explained in detail as a part of this work. The third chapter describes the effect of monovalent ion doping (Na+ and K+) at A-site of lanthanum cobaltite on thermoelectric properties. Lanthanum cobaltite system exhibit exotic behaviour due to commensuration phenomena of spin, lattice, charge and metal insulator transition. The synthesis, followed by structural refinements by Rietveld method using Fullprof suit program are explained. The results of the transport properties indicate that there is no appreciable change in the See beck Coefficient of K-doped samples throughout the studied temperature range. The Na-doped samples exhibit a decrease in the Seebeck value with increasing Na content at room temperature. At higher temperatures Seebeck value matches with that of the parent sample. This may be due to a change in the ratio of the concentration of Co4+/Co3+ ions which increases the configurational entropy of the system. In conclusion, the highest figure of merit (0.01) found for the Na / K- doped lanthanum cobaltite is for 15 atomic wt. % of doping amongst the studied samples. The fourth chapter explains about Tb/Nb co-doped calcium manganite for thermoelectric applications. The CaMnO3-δ shows enhanced thermoelectric properties, exhibits n-type behavior and the absolute thermopower is found to be 129 µV/K. Here, we investigated the Terbium and Niobium codoped at Ca and Mn-sites respectively. The presence of oxygen non-stoichiometry was confirmed using Raman spectroscopy (Mn3+ peak at 614 cm-1) and δ value was evaluated by iodometric titration. The thermoelectric properties of cold isostatic pressed (CIP) pellets prepared by the solid state and soft chemistry routes are compared. The non-monotonous behavior of absolute thermopower may be due to the increase of Mn3+ in the Mn4+ matrix and also the presence of oxygen defects in compounds. The thermoelectric figure of merit of solid state sample CaMnO3-δ estimated of 0.036 at 825K. The fifth chapter describes the thermoelectric properties of double Perovskite AA’B2O6 (112 type): (RE)BaCo2O5+δ. It is a disordered double perovskite with non-stoichiometry in oxygen and exhibits mixed valences of Cobalt. Resistivity of DyBaCo2O5+δ was found to be 0.09 Ω cm and Seebeck coefficient is found to be 42 µV/K. In order to improve the thermopower value, the Fe is substituted at Co-site. This varies the valences of Cobalt that in turn leads to a higher thermopower. Also, the morphology of thermally etched CIP pellets recorded and correlated with the transport properties. It shows the highest thermoelectric figure of merit of 0.25 at 773 K for 20 at wt % of Fe substituted sample. The sixth chapter explains about oxygen sensing studies of DyBaCo2O5+δ (112 type). The detailed structural and morphological characterization studies were carried out. Thermogravimetric analysis at isothermal temperature 873 K shows fast intake/release of oxygen of this disordered double perovskite structure. The higher chemo resistive oxygen sensitivity at the elevated temperature was measured. Further, the systematic study on the effect of oxygen sensing on the substitution of Fe and Cu at Co-site in DyBaCo2-xM xO5+δ was investigated. The possible bulk diffusion mechanism at higher temperature due to movement of oxygen defects were explained. The highest sensitivity was obtained for x = 0.4 at % of Fe and 0.2 at % of Cu at 973 K and 823 K respectively. The key findings and future aspects are summarized in the chapter-7.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lanthanum Cobalt Oxide"

1

Setz, L. F. G., H. P. S. Correa, C. Yamagata, and S. R. H. Mello-Castanho. "Synthesis and Sintering Behavior of Lanthanum Chromite Doped with Strontium and Cobalt for SOFC Interconnect Applications." In Advances in Solid Oxide Fuel Cells III, 237–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470339534.ch23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ledford, J. S., M. Houalla, L. Petrakis, and D. M. Hercules. "Influence of Lanthanum Oxide on the Surface Structure and Co Hydrogenation Activity of Supported Cobalt Catalysts." In Preparation of Catalysts IV, Proceedings of the Fourth International Symposium, 433–42. Elsevier, 1987. http://dx.doi.org/10.1016/s0167-2991(08)65426-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lanthanum Cobalt Oxide"

1

Brüning, B., B. Gries, H. Nakadate, and S. Zimmermann. "New Thermal Spray Powders for SOFC Components." In ITSC2011, edited by B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and A. McDonald. DVS Media GmbH, 2011. http://dx.doi.org/10.31399/asm.cp.itsc2011p0127.

Full text
Abstract:
Abstract In Solid Oxide Fuel Cells (SOFC), thermal spraying has become a preferred process in order to create functional and protective coatings. After a long period of research, SOFC is on the way to become a fully developed technology starting into mass production. Cost aspects of coating generation are becoming decisive. For this reason, thermal spraying has become the preferred process to apply e.g. Manganese Cobalt Iron Oxide (MCF) coatings which prevent the formation of volatile Cr oxides in the SOFC air supply and off-gas. Also Lanthanum Strontium Manganese Oxide (LSM) is now preferentially applied via thermal spraying. The presentation highlights the properties of commercially available spray powders for SOFC, their processing via different spray processes, and the properties of coatings achieved.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, S. L., C. J. Li, C. X. Li, and G. J. Yang. "Liquid Plasma-Sprayed Nanonetwork La0.4Sr0.6Co0.2Fe0.8O3/Ce0.8Gd0.2O2 Composite Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells." In ITSC 2016, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. DVS Media GmbH, 2016. http://dx.doi.org/10.31399/asm.cp.itsc2016p0846.

Full text
Abstract:
Abstract In this work, liquid plasma spraying is used to deposit composite coatings for potential use as cathodes in intermediate-temperature solid oxide fuel cells. A suspension containing well-distributed Gd-doped ceria (GDC) nanoparticles in a lanthanum strontium cobalt ferrite precursor solution was used as the feedstock, and GDC concentration was varied to study its effect on phase composition, microstructure, surface morphology, and electrochemical performance. The results are presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Bhattacharya, R., A. Khanna, B. Bosworth, N. Orloff, V. Gambin, D. Streit, P. Fay, and S. Datta. "Thermally Resilient Microwave Switch and Power Limiter based on Insulator-Metal Transition of Lanthanum Cobalt Oxide." In 2022 IEEE International Electron Devices Meeting (IEDM). IEEE, 2022. http://dx.doi.org/10.1109/iedm45625.2022.10019425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lassman, Alexander, Alevtina Smirnova, and Nigel Sammes. "An Investigation of Doped Perovskites Based on La, Pr, and Sm Ferrites as Cathode Materials for Solid Oxide Fuel Cells." In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65153.

Full text
Abstract:
Perovskites with the composition ABO3 have been studied as cathode candidate materials for solid oxide fuel cells. Both the A and B sites can be doped. This paper investigates ABO3 perovskites in which the A site ion is lanthanum (La), praseodymium (Pr), or samarium (Sm), doped with strontium (Sr). The B site ion is iron (Fe) doped with cobalt (Co) or nickel (Ni). Powders were prepared by the glycine-nitrate process, and were calcined at temperatures between 700°C and 900°C. XRD analysis was performed to determine the effect of calcination temperature on structure. Cathode pellets were made and sintered at 1200°C for 4 hours. The electrical conductivity of these pellets was measured, in ambient air, at temperatures ranging from 200°C to 800°C. The measured conductivity was generally higher for the ferrite-nickelates than the ferrite-cobaltites. Additionally, the samples with lanthanum as the A site cation demonstrated higher electrical conductivity than those with samarium or praseodymium.
APA, Harvard, Vancouver, ISO, and other styles
5

Tucker, David, Ayyakkannu Manivannan, Dan Haynes, Harry Abernathy, Nick Miller, Karon Wynne, and Angine´s Matos. "Evaluating Methods for Infiltration of LSCF Cathodes With Mixed Electric/Ionic Conductors for Improved Oxygen Exchange." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33214.

Full text
Abstract:
Infiltration methods for improving lanthanum strontium cobalt ferrite (LSCF) cathode performance through catalyst surface modification were evaluated at the U.S. Department of Energy, National Energy Technology Laboratory. Infiltration of mixed conductors into LSCF cathodes of solid oxide fuel cells promises a low cost method of improving oxygen exchange and performance in these materials at lower temperatures. LSCF cathodes on Nickel-Yttria Stabilized Zirconia (Ni-YSZ) anode supported cells were infiltrated with strontium-doped lanthanum zirconate (LSZ) pyrochlores using two methods. An aqueous solution of nitrate salts was vacuum infiltrated into the cathodes of anode supported button cells, and the cells were heated to form the pyrochlore phase in-situ. This was compared to the efficacy of infiltrating a suspension of pyrochlore nanoparticles. Different dispersants were used to prepare the nanoparticle suspensions at varying concentrations and pH levels, and the results are compared.
APA, Harvard, Vancouver, ISO, and other styles
6

Harris, J., and O. Kesler. "Atmospheric Plasma Spraying (APS) Low-Temperature Cathode Materials for Solid Oxide Fuel Cells (SOFCs)." In ITSC2009, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. ASM International, 2009. http://dx.doi.org/10.31399/asm.cp.itsc2009p0001.

Full text
Abstract:
Abstract Atmospheric plasma spraying is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500 to 700 °C) to be fabricated by spraying directly onto metallic supports. However, standard cathode materials used in SOFCs have high polarization resistance at low temperatures, necessitating alternative materials. In this study, coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection atmospheric plasma spraying. Coating thickness and microstructure were evaluated and X-ray diffraction (XRD) analysis was performed to detect material decomposition and the formation of undesired phases in the plasma. The results define the envelope of plasma spray parameters for depositing LSCF coatings and the conditions in which composite cathode coatings can be produced.
APA, Harvard, Vancouver, ISO, and other styles
7

Lanzini, A., P. Leone, M. Santarelli, P. Asinari, and M. Cali`. "Performance and Degradation Effects of Anode-Supported Cells With LSM and LSCF Cathodes." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43421.

Full text
Abstract:
The performance of solid oxide fuel cells is affected by various polarization losses, usually grouped in ohmic, activation and concentration polarization. Under typical operating conditions, these polarization losses are largely dependent on cell materials, electrode microstructures, and cell geometry: as an example, the performance of a tubular cell is strongly limited by the ohmic polarization due to the long current path of electrons, while in a planar cell each of these losses has a comparable effect. It is therefore of interest, in case of planar geometry, to investigate the performance limiting factors. In this paper, a performance evaluation of planar circular-shaped seal-less SOFC cells from InDEC® was performed, with an outline of the limiting factors at reduced temperature. Two different designs of planar cells are considered: both have porous NiO-YSZ anode as mechanical support, NiO-YSZ anode active layer, yttria-stabilized zirconia (YSZ) electrolyte, and only differ for the cathode design: (1) strontium doped lanthanum manganate (LSM)-YSZ cathode functional layer (CFL) and LSM cathode current collector layer (CCCL); (2) yttria doped ceria (YDC) blocking layer and lanthanum strontium cobalt ferrite oxide (LSCF) functional layer. The characterization was performed by taking V-I measurements over a range of temperatures between 650°C and 840°C with hydrogen as fuel, and air as oxidant. The dependence of the cell performance on the various polarization contributions was rationalized on the basis of a analytical model, through a parameter estimation on the experimental data, devoted to the determination of the temperature dependence of the area specific resistance (ASR) and of the cathode exchange current density: in particular, the performance limitation at low temperature is due to activation polarization for ASC1 and ohmic polarization for ASC2. Based on the results of the investigation, it is concluded that LSCF cathodes are really effective for decreasing the cathode activation polarization, allowing the reduction of operating temperature. Finally, a microstructural analysis with SEM and optical microscopy has been performed on the ASC2 cell after the polarization testing. The aim of this investigation was in particular to evaluate the degradation phenomena occurring in the anodic structure and over the interfaces between the various active layers. The ASC2 elastic modulus has also been estimated before and after polarization testing in order to evaluate the decreasing of the mechanical strength of the cell after a complete thermal cycle. The results describe a mechanical degradation of the structure and of the distribution of the phases.
APA, Harvard, Vancouver, ISO, and other styles
8

Albrecht, Kevin J., and Robert J. Braun. "Thermodynamic Analysis of Non-Stoichiometric Perovskites as a Heat Transfer Fluid for Thermochemical Energy Storage in Concentrated Solar Power." In ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/es2015-49409.

Full text
Abstract:
The implementation of efficient and cost effective thermal energy storage in concentrated solar power (CSP) applications is crucial to the wide spread adoption of the technology. The current push to high-temperature receivers enabling the use of advanced power cycles has identified solid particle receivers as a desired technology. A potential way of increasing the specific energy storage of solid particles while simultaneously reducing plant component size is to implement thermochemical energy storage (TCES) through the use of non-stoichiometric perovskite oxides. Materials such as strontium-doped lanthanum cobalt ferrites (LSCF) have been shown to have significant reducibility when cycling temperature and oxygen partial pressure of the environment [1]. The combined reducibility and heat of the oxidation and reduction reactions with the sensible change in temperature of the material leads to specific energy storage values approaching 700 kJ kg−1. A potential thermochemical energy storage system configuration and modeling strategy is reported on, leading to a parametric study of critical operating parameters on the TCES subsystem performance. For the LSCF material operating between 500 and 900°C with oxygen partial pressure swings from ambient to 0.0001 bar, system efficiencies of 68.6% based on the net thermal energy delivered to the power cycle relative to the incident solar flux on the receiver and auxiliary power requirements, with specific energy storage of 686 kJ kg−1 are predicted. Alternatively, only cycling the temperature between 500 and 900°C without oxygen partial pressure swings results in TCES subsystem efficiencies up to 76.3% with specific energy storage of 533 kJ kg−1.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography